
Journal of Systems Integration, 10, 127–143 (2001)
 2001 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Coordinating Heterogeneous Parallel Systems with
Skeletons and Activity Graphs

MURRAY COLE mic@dcs.ed.ac.uk
Institute for Computing Systems Architecture, Diûision of Informatics, Uniûersity of Edinburgh, Scotland

ANDREA ZAVANELLA zavanell@di.unipi.it
Dipartimento di Informatica, Uniûersitá di Pisa, Pisa, Italy

Abstract. Large scale parallel programming projects may become heterogeneous in both language and
architectural model. We propose that skeletal programming techniques can alleviate some of the costs
involved in designing and porting such programs, illustrating our approach with a simple program which
combines shared memory and message passing code. We introduce Activity Graphs as a simple and
practical means of capturing model independent aspects of the operational semantics of skeletal parallel
programs. They are independent of low level details of parallel implementation and so can act as an
intermediate layer for compilation to diverse underlying models. Activity graphs provide a notion of
parallel activities, dependencies between activities, and the process groupings within which these take
place. The compilation process uses a set of graph generators (templates) to derive the activity graph.
We describe simple schemes for transforming activity graphs into message passing programs, targeting
both MPI and BSP.

Keywords: skeleton, parallelism, activity graph

1. Introduction

The skeletal approach to parallel programming [3, 4, 6, 13] advocates the use of pro-
gram constructors, or ‘‘skeletons’’, which abstract useful patterns of parallel compu-
tation and interaction. This is held to ease the burden on the programmer, who
is freed to think in terms of these higher-level strategies while being absolved of
responsibility for their detailed implementation. As well as simplifying the initial
coding of a parallel application, skeletons may offer significant help when porting
to a new architecture is required. The nature of high performance computing makes
this a regular and labor intensive exercise. Emerging standards such as MPI (for
message passing) and OpenMP (for shared memory) have helped, but porting
between such models remains problematic. Current trends towards ‘‘cluster of SMP’’
architectures (in which small and medium scale shared memory machines are con-
nected to form larger ensembles) are most efficiently programmed in different lan-
guage frameworks at different levels [12]. This only serves to further complicate
porting. Abstracting the essential structure of a parallel application into a short
composition of skeletal primitives, each supported by diverse implementations,
offers the prospect of significant compiler support for traditional porting and also
the ability to express multi-framework computations in a way which cleanly separ-
ates code which is framework independent from that which is framework specific.

COLE AND ZAVANELLA128

We also speculate that the need for this style of programming may become more
acute with the impending development of ‘‘computational grids’’ [8, 9] within the
scientific programming community. Conceptually, a grid connects a number of
diverse computational and storage resources (including diverse parallel computers)
into a single resource, for the duration of a computation. Programmers will solve
problems by using appropriate combinations of local and remote resources.

Current parallel programs are normally written to be portable between different
sizes of the same machine by parameterizing with respect to p, the number of pro-
cessors. This allows the same code to run on different sized sub-domains of the same
machine on different days. Effectiveness relies on the fact that such domains tend
to be similarly structured and so what is good on a small domain tends to be accept-
able on a large one (though one can construct counter examples). Porting code to a
new architecture is a major effort, if not a completely new endeavor. However, this
happens infrequently enough (every few years) to be seen as cost-effective.

With grids, it will not just be p that varies, but also the component architectural
structures and inter-site communications performance, and this will happen not year
by year, but day by day, and in extreme circumstances, perhaps even during
execution. For a given application program, radically different implementation
strategies may be appropriate on different runs and perhaps even between phases of
the same run. Programming such flexibility directly into (for example) an MPI
framework will be very challenging given dramatically shorter time-scales. Auto-
mated support through clever compilation will become central. Program structuring
mechanisms such as skeletons will allow the programmer to tell the compiler enough
about the high-level opportunities for parallelism to make the task tractable while
avoiding over specification of detailed implementation strategy. The programming
model becomes one in which programs are structured at the top level with skeletal
annotations coordinating conventional parallel or sequential code and in which there
are a range of possible compile–execute paradigms:

1. recompile the same source for the ‘‘grid of the day’’;
2. compile once, but embed in the executable code which explores the available

resources and selects from a number of possible schedules according to these
(an extension of the current ‘‘parameterize by p’’ model);

3. as above, but compile in the ability to monitor and adapt the strategy in the
face of changing resource availability or performance.

These are exciting opportunities which present technical challenges. In particular,
while much progress has been made in skeletal programming, existing work has a
number of practical weaknesses:

1. Operational semantics of skeletal constructs are often presented with a high
degree of informality. This leads to confusion over the precise meaning of nested
programs, and also hinders meaningful comparison of skeletal languages and
their relative expressiveness.

SKELETONS AND ACTIVITY GRAPHS 129

2. Compilation schemes tend to be closely tied to language specific mechanisms
and models. This is pragmatic, but is in conflict with the goal of simple port-
ability: as much of the compilation process as possible should be model
independent.

3. Fragments of base level code (i.e., the components which are coordinated by
the skeletal layer) are constrained to be sequential. This is convenient from the
implementation perspective, but threatens to severely constrain applicability.
Many (perhaps most) real parallel applications contain components whose
structures do not fit the ‘‘skeletal straitjacket’’.

In this paper we present the ‘‘activity graph’’ as an intermediate level concept
which addresses these issues. Our aim is to capture as much as can be said about the
operational behavior of skeletal programs while remaining generic across underlying
models. In particular, we do not embed any assumptions on either the data or inter-
action model of the underlying parallel layer. In Section 2 we introduce a simple
skeleton language and show that it can describe programs which combine arbitrary
forms of underlying parallelism. This section also introduces our running example.
Section 3 introduces activity graphs while Section 4 describes the graph generators
for the simple language and the front-end compilation process which calls them.
Sections 6 and 7 outline back-end compilation processes from activity graphs to
MPI and BSP respectively. Finally, Section 8 draws conclusions and proposes
further work.

2. Our Skeleton Language

This section introduces the toy skeleton language L adopted within the paper to
demonstrate the power and the simplicity of our approach. L is very simple in order
to avoid distraction from the activity graphs which are our main subject. For
example, we assume that the number of processors is a power of two. This is not a
fundamental requirement and could be relaxed in a real language at the expense of
a more complex semantic definition. Similarly, we would expect a full language to
incorporate other skeletal control constructs. Finally, in order to illustrate the pos-
sibility of dynamic choice between heterogeneous base levels (and architectures) we
include a very simple mechanism which permits the programmer to specify control
decisions based on the number active processors. A real language could be more
flexible in this respect. The language defined here suffices only to illustrate principles
and to implement our chosen example.

The syntax of L is given in Figure 1. It allows sequential composition, calls to
base level functions and provides three parallel skeletons. map indicates concurrent,
independent execution of the body statement: a group of p processors executing a
map are dispersed into p single processor groups each executing the body indepen-
dently. div constructs a binary tree of executions: a group of p processors executing
a div first execute the body collectively as a group, then independently as two groups
of size 1

2p, then as four groups of size 1
4p, and so on, finally executing the body as 1

2

p groups of size 2 (NB not p groups of size 1). con behaves symmetrically, executing

COLE AND ZAVANELLA130

Figure 1. The language L

the body on groups of size 2, then 4 and so on. Constructs can be nested arbitrarily,
though notice that calling a con or a div within a map will have no effect, since the
tree oriented constructors require at least two processors to activate the body.

The lowerlayer defines data structures and functions in the base language and
basefn corresponds to calls to these functions from L. The definition of a basefn is
provided by the programmer in the base language, augmented by two values obtain-
able at run time through reserved identifiers mygrpsize (the size of the subgroup
of processors executing the basefn) and myrank (the identifier of a processor within
a subgroup). These can be used to specialize each processor’s behavior, in conven-
tional SPMD style. Base functions will be written to be sequential or parallel to fit
the context in which they are called. In our simple language, functions called within
a map will be sequential (because map indicates a group size of one) while those
called within div or con (but outside map) will be parallel (exploiting the unstructured
parallel mechanisms of the base level). The ? construct denotes choice between two
base functions. Purely for the purposes of our example, its semantics are that bigfn
? smallfn will execute bigfn if the number of processors in the executing group
is larger than the number of processors in a cluster of the executing architecture
(assumed to be provided as a run-time constant by the system), and smallfn
otherwise.

2.1. Homogeneous Programs

As an example, we have selected a relatively complex parallel algorithm: the block-
based bitonic mergesort. In this section we express the algorithm in L with two
alternative different base levels, expressed in MPI and the shared memory language
Fork95 [10] respectively. In the next section we will show how the program can be
adjusted for a ‘‘cluster of SMPs’’ architecture to use MPI between clusters and
Fork95 within clusters.

The algorithm was originally presented in [1], while the more realistic block-based
(many items per processor) variant is discussed in [11]. Very briefly, the algorithm
is essentially a mergesort (hence the outer con) in which the merge step involves some
data re-organization followed by a division process in which smaller and smaller sub-
sequences are separated out (hence the inner div). The program can be expressed as
a composition of our skeletons, following the analysis made in [5]. The top level of

SKELETONS AND ACTIVITY GRAPHS 131

Figure 2. Bitonic mergesort program.

Figure 3. Excerpt from base level in C�MPI.

the program is presented in Figure 2. Notice that the semi-colons and parentheses
belong to the base language syntax. Base function quick_sort is the usual
sequential operation, merge_split is an internally parallel merging step and
reverse_half is a parallel data redistribution step required to form bitonic
sequences.

We emphasize that there is no reference in L to data or its distribution. These matters
are handled by the model specific lower layer, in conjunction with the functions which
operate there. Thus, in the example, the meaning of a and the functions called to act
upon it are a property of the base language. The purpose of the upper layer is to capture
parallel algorithmic structure. For example, with C�MPI as the base language the
statement map {quick_sort(a);} means ‘‘run quick_sort(a); on each pro-
cessor in the group.’’ As is normal with MPI’s SPMD style, the conceptualization
of the p local arrays a as a single nameless global array exists only in the program-
mer’s head. The semantic nature of the constructs is analogous to that of control
constructs in any imperative language, rather than that of pure higher-order
functions.

In MPI, the function rev_half, is implemented with a single collective com-
munication as presented in Figure 3. Treating the data as a sequence of per-pro-
cessor chunks, its effect is to reverse the sequence of chunks in the lower half of the
data set (without reversing the chunks internally). In Fork95, the data is stored in
an array shared memory and to achieve the same effect we arrange for the group of
processors to re-arrange the lower half of the array directly, as depicted in Figure
4). In contrast to the MPI case, we can use all the processors in the group to achieve
this, since all data is equally accessible to all processors (hence the absence of the

COLE AND ZAVANELLA132

Figure 4. Excerpt from base level in Fork95.

Figure 5. Heterogeneous bitonic mergesort program.

condition on myrank, the halved chunk size during copying and the index calcu-
lation for the start address of chunks). Fork95’s synchronization semantics ensure
that there are no race conditions during copying (pairs of processors are simul-
taneously exchanging the ith items in their chunks). The other base level compu-
tations can be expressed similarly in various parallel base languages.

2.2. Heterogeneous Programs

As noted in the introduction, architectural trends are towards hierarchical and
heterogeneous systems, in which it may be appropriate to program on different
paradigms at different levels. As a simple example, consider a two level ‘‘cluster of
SMPs’’ machine, in which we would like to program in MPI between clusters and
in Fork95 within clusters. Our model (with its admittedly tailor-made ? construct)
allows such possibilities to be expressed concisely, and most importantly, in a way
which does not hide the oûerall algorithmic structure, even across base layers. For
bitonic mergesort, the required behavior is as expressed in Figure 5, where versions
of base level specific functions have had their names prefixed to reflect the base
language used.

SKELETONS AND ACTIVITY GRAPHS 133

Figure 6. Expanded activity graph for bitonic mergesort.

Figure 7. Activity graph definition.

3. Activity Graphs

Activity graphs express the coordination structure of groups of processors operating
concurrently. They are designed to provide an intermediate layer for the process of
skeletal program compilation, serving as a common, language (and model) indepen-
dent target notation for the translation from purely skeletal code, and as the source
notation for the language specific phase of base language code generation. In the
former role they also provide a precise operational semantics for the skeletal layer,
thereby enhancing the programmer’s understanding of the language, and serving as
a useful (and previously lacking) common ground for the comparison of diverse
skeletal languages. Figure 6 depicts the activity graph for our bitonic mergesort
example on four processors indicating abbreviated names for the base language func-
tion calls and active processor ranges in parentheses.

The type of activity graphs is defined in Figure 7, where program corresponds to
a source program statement. Vertices correspond to activities which take place on

COLE AND ZAVANELLA134

contiguously indexed groups of processors. In a flattened activity graph, all activities
will be function calls to the base level language (or to run-time resolved choices
between these using the ? operator) but during the compilation process they may
correspond to unexpanded skeletal constructs or to other self-contained activity
graphs. An edge between two vertices indicates that there may be a dependency
between the corresponding activities. The resolution of such dependencies falls to
the base language dependent phase of compilation. Notice that no assumption is
made on the underlying implementation model. Different implementation strategies
(e.g., message passing or shared memory) can be instantiated as appropriate.

It is important to stress that while the definition allows arbitrary graph topology,
the graphs which actually emerge from our intended usage will exhibit various
regularities following the operational structure of the programming constructs they
represent. Such properties will be exploited in the compilation phase from activity
graph to base level parallelism.

4. Compiling Skeletons to Activity Graphs

In this section we explain the methodology for transforming a program written using
our skeleton language into an activity graph once a range of processors is chosen.
The activity graphs we obtain when compiling skeletons program are flat meaning
that all the activities at its vertices are base function calls or choices between base
function calls involving the ? operator from L.

The compilation process exploits a set of rules one for each skeleton, named graph
generators. The compilation algorithm takes the initial, completely unexpanded,
activity graph ({(program, (0, pA1))}, { }) and recursively expands it by applying
appropriate graph generators to unflattened vertices. Notice that the extension of
the language with a new skeleton only requires the definition of a new graph gener-
ator. Since the behavior of the skeleton is introduced using an intermediate layer, a
new constructor does not require any change to the back-end compilation. This
property can be exploited to refine the behavior of ‘‘generic’’ coordination patterns
to fit with several classes of parallel algorithms: multi-grid, divide and conquer etc.
Graph generators allow us to express the semantics of new skeletons in terms of
‘‘coordinations’’, in contrast to more abstract functional notations which do not fix
such meta-implementation details.

In the remainder of the paper we will use the abstract syntactic object seq to
indicate statement sequencing.

4.1. Graph Generators

A graph generator is a graph template which can be specialized with a given program
and range in order to produce an activity graph:

Gskel : : programBrange→AG (1)

SKELETONS AND ACTIVITY GRAPHS 135

The Graph Generator for sequential composition is described by Equation (2).

Gskel(seq (p1, p2), range)G({û1, û2}, {(û1, û2)}) (2)

where:

û1G(Gskel(p1, range), range)

û2G(Gskel(p2, range), range)

Note that we do not attempt to introduce pipeline parallelism. Such a facility
would require examination of cost information which is orthogonal to our purpose
here. Such issues are considered in [14].

The conquer [5] paradigm is introduced in our language using the con skeleton.
The generator of con is given by Equation (3). Notice that we define the leaves of
the tree to be two-processor groups (rather than single processors). This follows
naturally from the observation that in real situations, when the quantity of data far
out strips the number of processors, it is common to use different algorithms for the
sequential ‘‘reduce within a processor’’ phase and the parallel tree reduction phase.
Our div construct behaves analogously. The activity graphs generated for div and
con are shown in Figures 8 and 9. Given that �range �G2t:

Gskel(con(p), range)G(V, E) (3)

where:

VG{ûij , rij }

1⁄ i⁄ t, 0⁄ j⁄2 tAiA1

ûijGp, rijG(l, u)

lGj2i, uGlC(2iA1)

EG{(ûij , û(iC1)(j�2)) �1⁄ i⁄ tA1}

The con skeleton is defined as construct to merge subgroups of activities using a
standard binary tree. The div skeleton automatically generates the tree of a binary
divide. The generator for div is given in Equation (4).

Gskel(diû(p), range)G(V, E) (4)

where:

VG{ûij , rij }

1⁄ i⁄ t, 0⁄ j⁄2iA1A1

ûijGp, rijG(l, u)

lGj2 tAiC1, uGlC(2 tAiC1A1)

EG{(û(iA1)(j�2), ûij) �2⁄ i⁄ t}

COLE AND ZAVANELLA136

Figure 10. The compilation algorithm.

Finally, the map skeleton models independent parallel replication. Its generator is
given in Equation (5).

Gskel(map(p), range)GV, {}) (5)

VG{(p, (i, i)) �0⁄ i⁄ �range�A1)}

4.2. The Algorithm

The algorithm to compile a skeleton program into a flat activity graph starts from
a trivial activity graph given by: AG0G({(program, (0, pA1))}, {}) and recursively
expands the nodes of the graph which contain program subtrees. When all nodes
are basefn or a choice between these, the compilation stops. A high level description
of the algorithm is given in Figure 10. We use skel to stand for any skeletal construct.

The functions notflat, sources, sinks and connected are defined in Equations (6)–
(9).

notflat (V, E) ≡ ∃ (p, r) ∈ V: pGskel (prog) (6)

SKELETONS AND ACTIVITY GRAPHS 137

Figure 11. The syntax tree of Bitonic Mergesort.

Figure 12. Expansion of seq.

connected (A, B)G{(u, û)}: u ∈ A, û ∈ B, range (u)∩ range (û) ≠ ∅ (7)

sinks (V, E)G{û ∈ V: ∀ (x, y) ∈ E: x ≠ û} (8)

sources (V, E)G{û ∈ V: ∀ (x, y) ∈ E: y ≠ û} (9)

The auxiliary functions delete, add and replace implement the intuitive operations
on the graph of removing edges, adding edges and replacing a vertex with a subgraph
(with the subsequent operations handle the connection of the new sub-graph to the
whole).

5. Compilation Example

The compilation process may be better understood through our running example.
Figure 11 shows the abstract syntax tree for the bitonic mergesort.

Let us consider the four steps of the compiling process assuming that pG4 and
rG(0, 3). The operations on the edges are shown in Figure 12 (expansion of seq),

COLE AND ZAVANELLA138

Figure 13. Expansion of map and con.

Figure 14. Expansion of seq.

Figure 13 (expansion of map and con) Figure 14, (next expansion of seq) and finally
Figure 6 (expansion of div, to produce the flattened graph).

step 1:
ûGseq{prog1, prog2}
prog1Gmap{quicksort(a)}
prog2Gcon{seq{reûerse_half (a), diû{merge_split (a)}}}
replace (ag, û, Gskel (seq (prog1, prog2), (0, 3)))

step 2:
ûGmap{quicksort(a)})

SKELETONS AND ACTIVITY GRAPHS 139

progGquicksort (a)
replace (ag, û, Gskel (map (prog, r)))
ûGcon{seq{reûerse_half (a), diû{merge_split (a)}}}
progGseq{reûerse_half (a), diû{merge_split (a)}}
replace (ag, û, Gskel (con (prog, r)))

step 3:
ûGseq{prog1, prog2}
prog1Greûerse_half (a)
prog2Gdiû{merge_split (a)}
replace (ag, û, Gskel (seq (prog1, prog2), r)))

step 4:
ûGdiû{prog}
progGmerge_split (a)
replace (ag, û, Gskel (diû (prog)))

6. Compiling Activity Graphs to MPI Programs

In this section we show how the structure of activity graphs can be exploited to
derive a message passing implementation of the bitonic mergesort example. The
technique is explained for the case in which modules are written using MPI and the
final result of the compilation is an MPI program composed by user-defined code
interleaved with coordination-management code, automatically generated.

Any such two level language scheme impose a number of requirements on the
way in which base-level code may be expressed, in order to be able to give sensible
semantics to complete programs. In the case of MPI, an obvious constraint is to
require the activities of base level functions to be self-contained (so that processors
in one group cannot interfere with those in another).

A simple enforcement mechanism would be to constrain all base level communi-
cations to occur within a group specific communicator (say mycomm) provided by
the implementation, or sub-communicators thereof. We will assume that such a
method has been chosen. Then, the operations to establish the corresponding
myrank and mygrpsize will refer to mycomm.

An important aspect of the skeletal approach is that it constrains the forms of
parallelism (and therefore the structures of the activity graphs) which can arise. For
any particular language, we can exploit this knowledge in our compilation strategy.
In the case of our very simple language L, the class of possible activity graphs is
very simple: the graphs will be layered and within each layer i there will be a unique
module fi in execution on a set of different ranges having the same size si .

The focus of implementation in MPI is on using communicators to model the
processor group structure required by the program. The corresponding compilation
strategy makes use of a stack of communicators com_stack so that group contexts
can be saved and restored dynamically as execution proceeds. Two higher level func-
tions: split_n and join_n are defined on top of them. The two functions are

COLE AND ZAVANELLA140

Figure 15. Generating the operations on communicators.

Figure 16. MPI code for the Bitonic example.

employed to modify the communicator structure in the following way: for each layer
i the compiler computes the exponent of subgroups size k[i] such that siG2k[i]. The
calls to modify the structure of communicators between layer i and layer iC1 are
generated by the algorithm in Figure 15. Once the communicators structure has been
modified the user-defined function fiC1 is called. The MPI program derived by the
Bitonic Mergesort activity graph is shown in Figure 16, where compilation has
assumed that the number of real processors available is 4, in order to match the
situation illustrated in earlier figures. Of course, the generated code could easily be
made parametric in the number of processors. For completeness, the communicator
stack operations are presented in Figure 17.

7. Compiling Activity Graphs to BSP programs

In this section we show how the structure of activity graphs can be transformed to
a BSP [15] program written using the Paderborn University BSP library (PUB) [2].

SKELETONS AND ACTIVITY GRAPHS 141

Figure 17. MPI stack operations.

PUB is a BSP library extending the standard BSP model with the possibility of
decomposing the parallel computers into subgroups of processors each operating
independently. This feature is obtained by introducing BSP objects to distinguish
the context in which the primitives are executed (similar to MPIs communicators).
BSP objects can be created using the bsp_partition operation. After the
execution of a bsp_partition each subgroup operates as an autonomous BSP
computer (i.e., with its own processor numbering). The management of a BSP object
is simpler than that of MPI communicators, indeed a stack of BSP objects is auto-
matically maintained by the system and we can use bsp_done to resume the

COLE AND ZAVANELLA142

Figure 18. PUB stack operations.

previous object from it. Therefore we can write the split_n and join_n primitives as
illustrated in Figure 18:

The PUB library allows the programmer to write the base functions using C and
the DRMA (Direct Remote Memory Access). Using the DRMA style is particularly
suitable because a structure can be registered or deregistered as a shared area using
the bsp_push_reg and bsp_pop_reg operations. A shared area can be written
using bsp_put and bsp_get.

8. Conclusions and Future Work

We have defined the concept of activity graphs and have demonstrated their utility
in the field of parallel program coordination, particularly in the skeletal style. We
believe that activity graphs offer a precise formalism for the expression of the oper-
ational semantics of parallel program structures in a way which has previously been
lacking, operating at a level which captures details of the structure of coordination,
but independent of the model specific means by which that coordination may be
implemented. We hope that this work will serve as a unifying foundation upon which
we and others will build in the future.

There are many possible avenues for future development. Firstly, as demon-
strated, we have already made a preliminary study of the back-end process of com-
piling activity graphs to concrete low-level code, using MPI and BSP as a target.
Obvious extensions are to automate this work and to target further implementation
layers, for example OpenMP, or similar. Secondly, the skeletal language L described

SKELETONS AND ACTIVITY GRAPHS 143

served as a demonstrator only. It will be most interesting to extend our approach to
fuller, realistic languages. Finally, we have deliberately avoided issues of cost model-
ing and optimization in this presentation, since we believe them to be orthogonal to
our primary semantic purpose. However, we are aware that the structural
information captured by our activity graphs should be useful in this respect.

We are interested in the application of the Activity Graphs to the coordination of
heterogeneous systems placed within a computational grid. In such a context we
envisage compiling the graph generated from our skeletal program to some meta-
description of the available resources. Assuming that a meta-communication layer
is provided (as in the Nexus [7] framework) we can use it as target for the com-
pilation. This approach seems to be suitable for managing the two-level hetero-
geneity arising from multiple communications layers (e.g., MPI, TCP�IP) and
multiple computational resources (SMPs, MPPs and clusters) while maintaining
portability and extensibility.

References

1. K. Batcher, ‘‘Sorting networks and their applications,’’ in Proc. AFIPS Spring Joint Computer Con-
ference, pp. 307–314, 1968.

2. O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping, ‘‘The Paderborn University BSP (PUB)
Library—design, implementation, and performance,’’ in Proceeding of 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP),
1999.

3. G. Botorog and H. Kuchen, ‘‘Efficient parallel programming with algorithmic skeltons,’’ in L. Bouge,
P. Fraigniaud, A. Mignotte, and Y. Robert (eds.), Proceedings of EuroPar ’96, Vol. 1123 of LNCS
pp. 718–731, 1996.

4. M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman, London,
1989.

5. M. Cole, ‘‘On dividing and conquering independently,’’ in Lecture Notes in Computer Science 1300,
pp. 634–637, 1997.

6. J. Darlington, Y. Guo, H. To, and J. Yang, ‘‘Parallel skeletons for structured composition,’’ in
Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
19–28, 1995.

7. I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S. Tuecke, ‘‘A wide-
area implementation of the message passing interface.’’ Parallel Computing 24(12), 1998.

8. I. Foster and C. Kesselman, ‘‘Globus: A metacomputing infrastructure toolkit.’’ International Journal
of Supercomputing Applications 11(2), pp. 115–128, 1997.

9. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kauf-
mann, San Francisco, 1998.

10. J. Keller, C. Kessler, and J. Traff, Practical PRAM Programming. Wiley, New York, 2001 (to
appear).

11. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing. Benjamin
Cummings, Redwood City, 1994.

12. S. Orlando, P. Palmerini, and R. Perego, ‘‘Coordinating HPF programs to mix task and data parallel-
ism,’’ in Proceedings of 15th ACM Symposium on Applied Computing, 1, pp. 240–247, 2000.

13. S. Pelagatti and M. Danelutto, Structured Deûelopment of Parallel Programs. Taylor and Francis,
1997.

14. H. To, ‘‘Optimising the parallel behaviour of combinations of program components,’’ Ph.D. thesis,
Department of Computing, Imperial College, 1995.

15. L. G. Valiant, ‘‘A bridging model for parallel computation.’’ Communications of the ACM 33(8),
p. 103, 1990.

