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Résumé

We propose in this paper a new technique to analyse quantitatively skeleton-structured
programs. We give an overview of high-level structured parallel programming and motivate its
usefulness and its relevance to applicative parallel programming. Then we introduce some basics
of performance evaluation and focus on the Performance Evaluation Process Algebra PEPA. The
presentation of these two concepts leads to PEPA models of two classical skeletons, Pipeline and
Deal. Finally we describe a simulator, written in Objective Caml, performing single-step debugging
on PEPA models, and we illustrate the use of the simulator on our models of skeletons.

1. Introduction

Applicative programming languages have many virtues. They combine strong, descriptive, static
type systems ; precise compile-time analysis of functions ; high-level program structuring facilities; a
carefully-considered semantics for the language ; and a regular, predictable view of functions and data
as first-class values which promotes code reuse when coupled with a polymorphic type system.

Programs written in applicative languages can be concise, aiding the process of code scrutiny
and inspection which detects programming errors. Together, benefits such as these enable developers
to quickly create high-quality applications which perform complex symbolic processing tasks. When
compared to similar applications which were developed in programming languages without these rich
benefits, applicative programs are often found to have relatively few programming errors. Socially, in
the theoretical computer science community, belief in applicative programming languages runs high.
Applicative programming languages are often the tool of choice for the implementation of theorem
provers and other verification tools where program correctness is very highly valued [29].

For all of their incontrovertible benefits, applicative languages have a disadvantage in that it is
challenging to implement run-time support for the pure functional programming style which exceeds—
or even equals—that of the imperative programming model. For reasons of pragmatism [29], practical
functional languages such as those in the ML family also include imperative data structures such as
arrays and (type-safe) updatable references, and loop constructs to allow repetition to be expressed
iteratively instead of recursively. The benefits of these features include the direct expression of
imperative algorithms and the savings in memory use which accrue from replacing non-tail-recursive
functions with iterations which execute in constant stack space. Applicative programmers who are
concerned with achieving peak efficiency are encouraged to use the imperative programming style
instead of one which overuses functions [26].

Even the imperative programming model can be inadequate for the most demanding computational
tasks. For these problems developers turn to the parallel execution of programs. Cognisant that
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arbitrary parallelism in applicative programming languages could increase the possibility of unwanted
program behaviour and subvert the good properties which made applicative languages so valuable
in the first place, the designers of parallel applicative languages emphasized structured parallel
programming [30] based on approaches such as the identification of algorithmic skeletons [7] which
are the structured parallel programming analogue of the higher-order polymorphic functions (map,
fold, and others) which are a cornerstone of sequential applicative programming. One of the design
principles of skeletons is that they can be nested arbitrarily [10] leading to a natural programming
model which has resonance with the regular, predictable nature of function composition in sequential
applicative programming.

Structured parallel functional programs have valuable qualitative benefits. For example, it is
guaranteed that structured parallel functional programs are free from deadlock [16, 27], and it is even
possible to make programs proof for some parallel languages [15]. However, the use of a structured
parallel programming approach does not provide similar guantitative guarantees about the efficiency of
the program. It is not even guaranteed that a parallel version of a program (irrespective of the language
used) will run at least as fast as the sequential version, much less surpass it. In the development of
successful parallel programs, intuitions about the likely run-time performance of a parallel code can
be significantly wrong. It is considerably more reliable to set the analysis of parallel codes on a
formal foundation by using mathematically sound methods for modelling and performance analysis of
programs.

When using quantitative analysis methods in advance of the implementation of an application
exact data about run-times of functions on processors cannot be obtained. Even when a system
implementation is available and deployed in active use, then the measured run-time of a function (as
opposed to its asymptotic complexity) will vary depending on load on the processor on which it is
executed, the size of the input data to be processed and other factors. For these reasons, the appropriate
modelling formalism to use is one which uses probabilistic random variables to estimate run-times. Such
a model gives rise to a stochastic process which is analysed in order to give insights into the eventual
performance of the system. When the only estimate of the run-times of functions which is known
is their average duration (as opposed to second or higher moments) then the appropriate random
number distribution to use is the exponential distribution. Stochastic processes over a finite state
space where all of the transition rates between states are exponentially distributed are an important
class of stochastic process known as Continuous-Time Markov Chains (CTMCs).

CTMCs are important because they admit efficient solution methods for finding their stationary
probability distribution, making them a practically useful formalism for modelling and analysis. The
stationary distribution of a CTMC is a vector of probabilities expressing the likelihood of the system
being in each of the states of its finite state space in the long run (that is, at equilibrium), after
the necessary “warm-up” period has passed so that the influence of the initial state of the system is
no longer measurable. Meaningful measures of the system’s performance such as throughput can be
simply computed from such a stationary probability distribution. The stationary distribution can also
be used to determine hot-spots or bottlenecks in the system, underused or overused components, or
other flaws such as livelocks where the system enters a subset of its state space, and can never leave
this subset.

Typically, Continuous-Time Markov Chains are not used directly as a formal modelling language.
Rather, a higher-level modelling language is used and a CTMC is generated from this by the application
of the language semantics. High-level modelling languages which are used for this purpose include
stochastic Petri nets [28], stochastic automata networks [32, 14] and stochastic process algebras [21].
A particular instance of such a high-level stochastic modelling language is Hillston’s Performance
Evaluation Process Algebra (PEPA) [21], where the formal semantics of the language is given via
a Plotkin-style small-step operational semantics [33]. This semantic definition describes the labelled
multi-transition system (LMTS) which is generated from a parallel composition of sequential PEPA
processes (called PEPA components). The labels of the LMTS take the form of (activity, rate) pairs
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where the activity is an uninterpreted symbolic name for an event (such as an arrival into a pipeline,
or a departure from a pipeline) together with the exponentially-distributed rate at which this activity
can be performed. A CTMC is derived directly from this LMTS by erasing the activity names.

In the sequel, we describe the application of Hillston’s stochastic process algebra PEPA to the
modelling of algorithmic skeletons considering the Pipeline and Deal skeletons. Such models can then
be used to evaluate the performances of any skeleton-based applications, after a re-parameterisation of
the model. Section 3 describes a single-step debugger for PEPA models, and the use of the simulator is
illustrated in Section 4 through an example based on the models of skeletons described earlier. Finally,
we discuss related work and conclude.

2. Modelling algorithmic skeletons with PEPA

In this section, we give an overview of structured parallel programming and performance models,
and then we show how we combine both approaches by making performance models of algorithmic
skeletons.

2.1. An introduction to algorithmic skeletons
2.1.1. Structured parallel programming

Simple parallel programming frameworks (Posix threads, core MPI) are universal. They can be
used to describe arbitrarily complex and dynamically determined interactions between activities.
Programming is by careful selection and combination of operations drawn from a small, simple set.

It is difficult for programmers, examining such a program statically, to understand the overall
pattern involved (if such exists), and to radically revise it. It is very difficult for implementation
mechanisms (working statically and/or dynamically) to attempt optimisations which work beyond
single instances of the primitives.

However, in practice, parallel programs do not actually involve arbitrary, dynamic interaction
patterns. In many cases the pattern is entirely pre-determined. In other cases non-determinism is
constrained within a wider pattern. The use of an unstructured parallel programming mechanism
prevents the programmer from expressing information about the pattern—it remains implicit in the
collected uses of the simple primitives.

The structured approach to parallelism proposes that commonly used patterns of computation and
interaction should be abstracted as parameterisable library functions, control constructs or similar,
so that application programmers can explicitly declare that the application follows one or more such
patterns. This matters because it gives developers of parallel codes the right conceptual tools to
address the issues which make correct, efficient parallel programming hard.

A fuller introduction to this research agenda can be found in [10, 11].

What we call an algorithmic skeleton [7, 35, 10] is a programming construct which abstracts such
a pattern of processes and interactions. The programmer invokes one or more skeletons to describe
the structure of a program, specialising each with types and operations from the application domain.
Code handling the interaction and invocation of the domain specific operations is inherited implicitly
from the chosen skeleton. We briefly recall the concept of Pipeline parallelism, which is of well-proven
usefulness in several applications and of the Deal skeleton, which is often used nested inside a Pipeline
skeleton.
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2.1.2. The Pipeline skeleton

In the simplest form of Pipeline parallelism [8], a sequence of N, stages process a sequence of inputs
to produce a sequence of outputs (Fig. 1). All input passes through each stage in the same order, with
processing of a particular input beginning as soon as its predecessor has left the first stage. Notice that
parallelism is introduced by overlapping the processing of many input instances. Indeed, it is quite
normal for the processing time of each individual input to be increased by pipelining. Performance
benefits accrue when many such instances are processed concurrently across the pipeline.

mputs outputs
—— > Stage 1 > Stage 2 —— «x2 —>» Stage Ny ——————— >

Fi1G. 1 — The Pipeline application

2.1.3. The Deal skeleton

It is well known that the performance of a pipeline is constrained by the processing time of its
slowest stage. This may be improved by exploiting parallelism within, as well as between, stages. A
simple approach is to implement the stage with several processors which take turns to accept inputs
from the incoming stream, returning results to the output stream in the same order. In this way, the
slow processing time of all but the first input can be masked by this intra-stage parallelism (Fig. 2).
The Deal skeleton [9] abstracts this pattern. The name is chosen by analogy with the process of dealing
out a pack of cards (inputs) in strict rotation to a collection of players (stage internal processors). In
our model, we will have Nw,; workers for a given Deal skeleton s.

From the application programmer’s perspective, it is important to note that this approach is only

valid for stateless stage computations. If the stage maintains and updates state from one input to the
next, then a more sophisticated internal parallelization strategy must be devised.

Stage 1 Stage 2 Stage N
inputs (short) « | (long) (short) outputs
> sequential 1 DEAL > nu > sequential >

w(1)

FiG. 2 — Pipeline and Deal

2.1.4. Related works

Several approaches to structured parallel programming have been developed over the past years,
and we give an overview of some of them in the following. Many works have been inspired by functional
programming, or are even extensions of functional languages, but not all of them. We present different
kind of skeletal frameworks.

Firstly, the Pisa Parallel Programming Language (P3L) [30, 2, 3] was inspired by functional
programming, and it was created to help the design of parallel applications with the use of skeletons.
In this language, the parallel computations are restricted to a set of parallel constructs, as described
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earlier. The OcamlP3l prototype [13] marries a real functional language (Ocaml) with the p3l
skeletons, forming the basis of a powerful parallel programming environment.

Some approaches have been developed on the basis of classical languages, such as the BSMLIlib
library [16] which is a library for Bulk Synchronous Parallel (BSP) programming with the functional
language Objective Caml. It is based on an extension of the A-calculus by parallel operations on a
data structure named parallel vector, which is given by intention. An extension of the lazy functional
language Haskell [23] has produced the parallel functional language Eden [5], which provides a new
perspective on parallel programming. It gives programmers enough control to implement their parallel
algorithms efficiently (including granularity issues) and at the same time frees them from the low level
details of process management. A library of predefined skeletons has been added to the language to
allow easy parallel programming.

Finally, some approaches are more detached from functional programming. The Edinburgh Skeleton
Library eSkel [8, 9] is a C library built on the top of the Message Passing Interface MPI [19]. It allows
the C programmer to use generic and flexible skeletons to abstract classical parallelism schemes. In
the following, we apply our works to the pipeline and deal skeletons as they are defined in this library,
since it is the library we are developing, but we keep in mind the fact that our approach could be
extended to any other skeleton framework.

Now that we have given an overview of structured parallel programming and presented some
common algorithmic skeletons, we focus in the following on performance evaluation, in order to
introduce performance models of skeletons.

2.2. An introduction to performance evaluation

In this section, we first present the Performance Evaluation Process Algebra PEPA [21]. Then we
discuss various tools for performance evaluation.

2.2.1. An introduction to PEPA

The PEPA language provides a small set of combinators. These allow language terms to
be constructed defining the behaviour of components, via the activities they undertake and the
interactions between them. Timing information is associated with each activity. Thus, when enabled,
an activity a = (a,r) will delay for a period sampled from the negative exponential distribution which
has parameter r. If several activities are enabled concurrently, either in competition or independently,
we assume that a race condition exists between them. The component combinators used in the skeleton
models, together with their names and interpretations, are presented informally below.

Prefix : The basic mechanism for describing the behaviour of a system is to give a component a
designated first action using the prefix combinator, denoted by a full stop. For example, the component
(a,r).S carries out activity («,r), which has action type « and an exponentially distributed duration
with parameter r, and it subsequently behaves as S.

Choice : The choice combinator captures the possibility of competition between different activities.
The component P + () represents a system which may behave either as P or as () : the activities of
both are enabled. The first activity to complete distinguishes one of them : the other is discarded.
The system will behave as the derivative resulting from the evolution of the chosen component.

Constant : It is convenient to be able to assign names to patterns of behaviour associated with
components. Constants are components whose meaning is given by a defining equation.

Hiding : The possibility to abstract away some aspects of a component’s behaviour is provided by
the hiding operator, denoted P/L. Here, the set L of visible action types identifies those activities
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which are to be considered internal or private to the component and which will appear as the unknown
type .

Cooperation : In PEPA direct interaction, or cooperation, between components is the basis of
compositionality. It is denoted by P Dﬁ @, where P and () are the two components cooperating, called
co-operands. The set which is used as the subscript to the cooperation symbol, the cooperation set L,
determines those activities on which the co-operands are forced to synchronise. For action types not
in L, the components proceed independently and concurrently with their enabled activities. However,
an activity whose action type is in the cooperation set cannot proceed until both components enable
an activity of that type. The two components then proceed together to complete the shared activity.
The rate of the shared activity may be altered to reflect the work carried out by both components to
complete the activity (for details see [21]). We write P || @ as an abbreviation for P B Q when L is
empty.

In some cases, when an activity is known to be carried out in cooperation with another component,
a component may be passive with respect to that activity. This means that the rate of the activity
is left unspecified (denoted T) and is determined upon cooperation, by the rate of the activity in the
other component. All passive actions must be synchronised in the final model.

The dynamic behaviour of a PEPA model is represented by the evolution of its components, as
governed by the operational semantics of PEPA terms (see [21]). Thus, as in classical process algebra,
the semantics of each term is given via a labelled multi-transition system (the multiplicities of arcs
are significant). In the transition system a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes one derivative to evolve into another.
The complete set of reachable states is termed the derivative set and these form the nodes of the
derivation graph which is formed by applying the semantic rules exhaustively.

The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) which
is used to derive performance measures from a PEPA model. The graph is systematically reduced to a
form where it can be treated as the state transition diagram of the underlying CTMC. Each derivative
is then a state in the CTMC. The transition rate between two derivatives P and () in the derivation
graph is the rate at which the system changes from behaving as component P to behaving as Q. It is
the sum of the activity rates labelling arcs connecting node P to node Q.

2.2.2. Tools for performance models

There are a number of methods and tools available for analysing PEPA models [6] in order to learn
more about the systems which they model. An overview of these can be found in Figure 3.

[ PERFORMANCE EVALUATION PROCESS ALGEBRA j
e 7 e 7 e 7 e 7
PEPA PRISM IPC PEPA
Workbench DNAmaca debugger
& J & J & J & J
e 7 e 7 e 7 e 7

Continuous time Probabilistic Transient analysis Execution
Markov Chain model checking of passage times trace
& J & J & J & J

Fi1G. 3 — Tools for Performance Evaluation Process Algebra
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One way in which a PEPA model can be solved directly is to use the PEPA Workbench [17] to
generate the state space of the model and the infinitesimal generator matrix of the underlying Markov
chain. The PEPA Workbench can solve this for the steady-state probability distribution of the system
and performance measures such as throughput and utilisation can be computed from this.

The PEPA Workbench represents the state space of the model as a sparse matrix. A different
approach to the representation of the infinitesimal generator matrix of the CTMC is taken by the
PRISM probabilistic symbolic model checker [25] which stores matrices using multi-terminal binary
decision diagrams (MTBDDs). These are a compact storage format for very large models which have
useful symmetric properties. PRISM supports PEPA as one of its input languages and offers a range
of numerical solution procedures : Power, Jacobi, forwards and backwards Gauss-Seidel, JOR and
forwards and backwards SOR. In addition, PRISM allows formulae of Continuous Stochastic Logic to
be model-checked against CTMC models, providing a method for undertaking custom performability
verification to find the answer to queries which combine time, probability and paths through the
system execution.

Yet other solution procedures are accessed via the Imperial PEPA Compiler (IPC) [4]. IPC is a
functional program written in the Haskell lazy functional programming language [23]. Its function is to
compile a PEPA model into the input language of Knottenbelt’s DNAmaca analyser [24]. The possible
solution methods offered by DNAmaca include direct methods (Gaussian Elimination, Grassmann),
classical iterative methods (Gauss-Seidel, fixed SOR, dynamic SOR), Krylov subspace techniques
(BiCG, CGNR, CGS, BiCGSTAB, BiCGSTAB2, TFQMR) and decomposition-based methods (these
include AI (Aggregation-Isolation), AIR). The distinctive feature here is that these can be used to
compute passage-time quantiles for PEPA models. Such expressions are often found in service-level
agreements (SLAs) which regulate the expected timed behaviour of the system. DNAmaca plots its
results as a probability distribution function (PDF) or a cumulative density function (CDF).

Finally, the behaviour of the model can be explored interactively using our newly developed single-
step debugger (Section 3). The PEPA Workbench also incorporates a single-step debugger, but its use
is limited because it requires the state-space of the model to have already been generated before the
debugging session begins. This means that it cannot be used to find missed synchronisations which
mean that the state-space of the model is prohibitively large. Our novel O’Caml implementation does
not have this restriction, and stores only the current state of the model.

2.3. Models of Pipeline and Deal skeletons

We present models of the Pipeline and Deal algorithmic skeletons described in Sections 2.1.2 and
2.1.3, skeletons which are taken from the eSkellibrary. The models are Performance Evaluation Process
Algebra as described in Section 2.2.1.

To model a Pipeline application, we decompose the problem into the stages, the processors and
the network. Some of the stages can then be modelled as Deal skeletons.

The stages

The first part of the model is the application model, which is independent of the resources on which
the application will be computed. The application consists of Ny stages, which are each modelled by
a PEPA component Stages (s =1,...,N;).

When Stage, is not a Deal, it executes sequentially. As its first activity, it obtains data (activity
moves), then processes it (activity processs 1), and finally moves the processed data to the next stage
(activity movesy1). In the processs activity, the 1 in the index denotes the first (and only) worker
for this stage (i.e. the number of workers for the stage s is Nws = 1). The second subscript will play
a more important role in Deal, when there may be many workers. The definition is in Fig. 4a.
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All the rates are unspecified, denoted by the distinguished symbol T, since the processing and
move times depend on the resources on which the application is running. These rates will be defined
later, in another part of the model.

When Stage, is a Deal, we consider that we have Nw; workers which have to process a sequence
of inputs. In our model, we enforce cyclic allocation of inputs to workers by introducing, for each Deal,
a Source component and a Sink component which interface between the Deal workers and the move
actions which link this stage to its pipeline neighbours. Each worker ¢ € {1,..., Nw,} first gets an
input from the source with an input, ; action, processes it (process,,;) then transfers its output to
the sink (output, ;). We obtain the definitions Sources, Sinks and Workers; of Fig. 4b, where the
workers are defined for ¢ = 1,..., Nw,. All the workers are independent, and they are synchronised
with the source and the sink via the input and output actions. We define LI, = {inputs,i}ie{lv___, Nuw,}
and LO; = {outputs ;}ic{1,.. . Nw,} in the Stage, definition (Fig. 4b).

Once all the stages have been defined, the Pipeline application is then a cooperation of the
different stages over the move, activities, for s = 2..N,. The activities move; and moven, 1 represent
respectively, the arrival of an input into the application, and the transfer of the final output out of the
Pipeline. They do not represent any data transfer between stages, so they are not synchronised within
the Pipeline application. As above, the rates on the input and output actions are left unspecified.
These will be defined elsewhere in the model. The Pipeline definition is in Fig. 4c.

The processors

We consider that the application must be mapped to a set of N, processors. Each worker is
implemented by a given (unique) processor, but a processor may host several workers. In order to
keep the model simple, we decide to put information about the processor (such as the load of the
processor or the number of stages being processed) directly in the rate us ; of the activities processs;,
for s = 1..Ns and ¢ = 1..N,,, (these activities have been defined for the components Stages). Each
processor is then represented by a PEPA component which has a cyclic behaviour, consisting of
sequentially processing inputs for a worker. Some examples follow.

— In the case with no Deal, when N, = N,, we map one worker per processor :

def
Processor; = (process;i, pin)-Processor;

— If several workers are hosted by the same processor, we use a choice composition. In the following
example (N, = 2, Ny, = 2, and the first stage is a Deal with 2 workers), the first processor
processes the first worker of both stages, and the second processor processes only the second
worker of Stage 1 (so that Stage 1 is distributed across two processors).

def

Processor, (processi i, p1,1).-Processory

+ (processa i, p2,1).Processory
def
Processory = (processi 2, p,2).Processors

More generally, since all processors are independent, the set of processors is defined as a parallel
composition of the processor components (Fig. 4d).
The network

Rather than directly representing the physical structure of the underlying network architecture,
our network model is designed to allow us to derive the rates of the logical communication actions
(move, input, output) of our Pipeline and Deal models from the NWS monitored physical processor to
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a. Stage without Deal

Stage, = (move,, T).(processs 1, T).(movesy1, T).Stage,

b. Stage with Deal

Source; = (moves, T).(inputs 1, T).
(moves, T).(inputs2, T).

moves, T).(inputs N, Sourceg

def
Workers; =

(
(inputs;, T). (processs i» 1).(outputs i, T).Worker, ;
def (
(

).
™).
7).
).

Sinks = (outputs:, T).(movestq,
OUtPUts 2, T) (mOU€S+1,
(outputs N, 1).(movesy1, T).Sink,
Stages = Source, |L>Iﬂ (Workers,l [l ... Workers,NwS) LD§1 Sink,

c. The Pipeline application

Pipeline = Stage; . el }Stageg Stagen,
moves

{movez} {moven,}

d. The processors

Processors = Processory || Processors || ... || Processorn,

e. The network

Network = (movey, \1).Network (movey, 1, AN, +1)-Network

+o
+ (inputs i, Als1).Network + ... + (inputyn,,, M N,,)-Network
+  (outputs1,AO,1).Network + ...+ (outputsn, ,AOs N, ).Network

f. Overall model

Mapping =< Network l%? Pipeline E? Processors

F1G. 4 — PEPA definitions
9
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processor latency information. Using A, for the rate of a move, and Al ; and AO;; for the respective
rates of input, ; and outputs; activities, the definition of the network is straightforward.

For example, assuming that only the stage s is a Deal, we obtain the definition of Fig. 4e. If some
other stages are also modelled as Deals, we need to add their input and output activities into the
choice.

Pipeline with Deal

Once we have defined the different components of the model, we just have to map the stages onto
the processors and the network by using the cooperation combinator. Two cooperation sets are used.
L,, synchronises the application and the network (it is the set of all the move, input and output
activities), while L, synchronises the application and the processors (it is the set of all the process
activities). The definition is in Fig. 4f.

3. Description of the simulator

High-level models of complex systems are not obviously correct just because they have been
expressed in a theoretically well-founded formal language. Like programs, they may contain mistakes
which need to be repaired.

Errors in computer programs sometimes fall into recognisable classes (divide by zero, array bounds
violation, and the like). Sometimes errors in programs are more difficult to detect (returning the
wrong integer value, an incorrectly formatted string, and so forth). These errors need to be detected
by comparing the incorrectly-returned value and the expected one.

Similarly, errors in high-level models of stochastic processes are sometimes of an obvious kind, and
sometimes not. In the former category are deadlocks and synchronisations in which neither partner in
the synchronisation determines the rate. Errors such as these can be detected during the generation of
the state space, or before. Errors of the second kind include specifying Markov processes which have
too few states or transitions (or too many), and protocol errors where activities are being performed
in the wrong order by some component. These are much more difficult to detect because nothing in
the generation of the state space of the model or the solution for the long-run probability distribution
will fail in this case. As with programs which return the wrong value, there is a logical error which
could be found by comparing the generated state space with the expected one. Unfortunately though,
we do not have an expected state space to compare against. Errors such as these are very difficult to
detect, and there is no easy solution here.

To provide partial assistance with this problem we have implemented a debugger for PEPA
models which allows the modeller to step through the state space of the model looking for missed
synchronisations, unreachable components, or other modelling errors. The debugger is implemented
by embedding the PEPA language in Objective Caml and using the O’Caml top level loop to issue
commands to compute the derivatives of the current model state, choose activities to follow, and
single-step through the model or set breakpoints on components or activities and run the model until
they are encountered. This allows a modeller to find unreachable activities or components, pointing
to a problem with the model.

This simulator is completely independent from the single-step debugger implemented in the PEPA
Workbench. The use of the applicative language O’Caml implies a rigorous type checking and allows us
to implement much more functionalities than what was available in the previous debugger. Moreover,
there is no need to generate the state space of the model before we can use it.

The code of the new simulator is closely related to the model that we are considering, since we
define every activity and rate as a specific type to allow a rigorous type checking within the model.

10
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We detail the code of such simulator in the next section on our models of skeletons. The core of the
simulator is of course the same for every model, but it is necessary to include directly in the code
the part dependent from the model. We want to point out that one of the objectives of the simulator
will be to have its model-dependent code generated automatically from the model we want to debug,
allowing a straightforward use. Even if this automatic generation has not been implemented yet, we
show in the next section how such simulator would work on a specific example.

4. An example

In this section we illustrate the use of the new O’Caml simulator for the skeleton models presented
in Section 2.3. As it has been pointed out previously, a part of the code of this simulator is model-
dependent and thus has been written by hand, but it will in future work be generated automatically
from a compiler of PEPA models. The goal of this section is to show how the simulator works through
an example.

We consider a two stages pipeline, where the first stage is a deal with two workers. The first part of
the simulator is specific to the model, it consists of the definition of the identifiers used in the model,
as well as the activities and rates. These match the description of the model given in Section 2.3.
We need to add the special activity Tau to allow hiding in PEPA models. The rate type allows us to
define symbolic rates appearing in the model, to use these instead of the real value of the rate for the
debugging purpose. The special rate Top is added for synchronisation purposes, it corresponds to the
T symbol in PEPA, and the rate Const allows us to directly assign a value without using a symbolic
name.

Source | Workerl | Worker2 | Sink | Stagel | Stage2
Network | Procl | Proc2 | Procs;;

Tau of activity | Inputl | Input2 | Outputl | Output2
Movel | Move2 | Move3 | Processl | Process2;;

Top | Const of float | Lambda | LambdaI | LambdaQ | Mu;;

type identifier

type activity

type rate

We then define the type component according to the PEPA semantics. The type checking of the
various parts of the model is then performed automatically from this definition.

type component = Prefix of ((activity * rate) * component)

| Choice of component * component

| Coop of component * activity list * component
| Hiding of component * activity list

I

Var of identifier;;

The last part of the simulator relevant for our model is the definition of the model, which consists
of a function defining every identifier. We just display a part of it since it is all very similar to the
models we are referring to.

let definition = function
Source -> Prefix ((Movel, Top), Prefix ((Inputl, Top),
Prefix ((Movel, Top), Prefix ((Input2, Top), Var Source))))

| Workerl -> Prefix ((Inputl,Top), Prefix ((Processl, Top),

Prefix ((Outputl, Top), Var Workerl)))
| Stagel -> Coop (Var Source, [Inputl;Input2], Coop ((Coop (Var Workerl, [],

Var Worker2)), [Outputl;QOutput2],Var Sink))

| Stage2 -> Prefix ((Move2, Top), Prefix ((Process2, Top),
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Prefix ((Move3, Top), Var Stage2)))

| Network -> Choice (Choice (Choice (Choice (Choice (Choice (

Prefix ((Movel, Lambda), Var Network),

Prefix ((Inputl, Lambdal), Var Network)),

Prefix ((Qutputl, Lambdal), Var Network)), ...))))
| Procil -> Prefix ((Process1,Mu), Var Procl)
| Procs -> Coop (Var Procl, [], Var Proc2)
|

L

The simulator consists then of a series of definitions and functions to allow a pretty print of the
components. We can also assign real values to the symbolic rates defined earlier. The core of the
simulator is the function one_step_derivatives, which returns the list of the derivatives of a given
component, together with the activities and rates allowing us to reach these derivatives.

val one_step_derivatives: component -> ((activity * rate) * component) list = <fun>

The use of this function allows the user to locate by hand the problems, and to ensure that
everything is corresponding to his/her expectations. The obvious errors in the definition of the model
are detected automatically by O’Caml thanks to the rigorous type checking.

To use it, we firstly need to define the component that we wish to analyse. In our case, the Pipeline
application is defined by

let pipeline = Coop(Var Procs, [Processl;Process2],
Coop(Coop(Var Stagel, [Move2], Var Stage2),
[Movel;Move2;Move3; Inputl; Input2;0utputl;Output2],Var Network));;

Then we can print the result obtained by one_step_derivatives, which indicates the list of the
activities which can occur and the corresponding rate, as well as the derivative component. In this
example, the only activity enabled is Movel, with a rate lambda.

# print_string (prettyprint_derivatives (one_step_derivatives pipeline));;

-(movel, lambda)-> (Processors <processl, process2> ((((inputl, top).(movel, top).
(input2,top) .Source <inputl,input2> ((Workerl <> Worker2) <outputl,output2> Sink))
<move2> Stage2) <movel, move2, move3, inputl, input2, outputl, output2> Network));

- : unit = O

It is then possible to evolve through the system by applying the one step debugger to the resulting
components.

Notice that as far as our skeletons models are concerned, different parameterisations of the models
should not affect the structure of the underlying continuous time Markov Chain. The debugging
phase is therefore necessary only once per skeleton models, and not for every applications using
such skeletons. However, when considering a new PEPA model, an adequate simulator should be
automatically created and the single-step debugger may help finding errors and problems in the
model.

5. Related work and Conclusions

Many analysis tools for stochastic process algebras operate by simulating a path through the state
space of the model, following the small-step operational semantics of the language. Here, and in an
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earlier paper [18], our aim was to assist with finding errors in the formulation of the model. In other
works the authors have different aims, but they could be used to achieve some of the same ends.

Frequently, a motivation for single-step, transition-following execution of stochastic process models
is because it leads to a simulation of the system behaviour. When a very general class of models is
being considered, with general distributions for random variable, deterministic delays or behavioural
non-determinism, this may be the only analysis method which is available.

A simulation-based approach to the analysis of stochastic process calculus models is found in the
work of Philips and Cardelli [31] on an abstract machine model of a variant of Priami’s stochastic
m-calculus [34]. There, Gillespie’s algorithm is implemented to allow the model of the system to be
simulated, giving rise to a trace of a time-limited execution path. The simulator is implemented in
Objective Caml and produces output files which can be rendered in proprietary third-party tools to
visualise the results.

Some other works aim to enhance the quantitative aspects of skeleton-structured applicative
programs, but taking another angle of view. As an example, Alt and Gorlatch [1] propose an
optimisation of the mechanisms of Java RMI (Remote Method Invocation) in order to improve
the performances of grid applications. Another approach is taken by Di Cosmo and Pelagatti [12],
motivated by the development of OcamlP3l. They introduce a calculus which describes several
strategies to distribute arrays on a set of processors, and a cost is associated to each distribution. Thus,
this approach allows to take quantitative decisions to improve the performance of the application.
Finally, Hayashi and Cole [20] present work on VEC-BSP, a simple functional language which
incorporates concepts of "shape" [22] and parallel skeletons to enable definition of a statically evaluated
execution cost calculus, itself parameterised by the cost measures of BSP.

We made in this paper an overview of structured high-level parallel programming with an emphasis
on work about skeletons. Then we made a short introduction to performance evaluation through
Performance Evaluation Process Algebra (PEPA) and we presented classical tools based on process
algebra models. Finally we described how we can mix both subjects by proposing performance models
(in PEPA) of algorithmic skeletons (from the eSkel library).

We then introduced the idea of a simple one-step debugger for PEPA models. A first version of the
debugger has been implemented with the help of the applicative language O’Caml, allowing a rigorous
type checking and an easy detection of errors within the models. The debugger has been tested on our
PEPA models of skeletons, but it can be used on any other PEPA models.

What we need to do next is to implement a compiler of PEPA models which will automatically
generate the single-step debugger for any model. This should be quite straightforward once we have
made a detailed analogy between the PEPA definitions and the corresponding O’Caml definitions
which need to be included in the debugger. The core of the debugger is common to all models,
but the part specific to the model, including the definition of the components and activities, needs
to be rewritten to match the PEPA description. Moreover, more functionality could be added to the
simulator, for example to allow several derivation steps or derivate with respect to a subset of activities
as long as it is possible.

Further work will include a case study involving more skeletons and showing how we can cope with
problems on a real application. As well, the simulator will be applied on applications which are not
necessarily based on skeletons, and this task will be much easier once the automatic generation of the
debugger will be implemented.
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