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Using eSkel to implement the multiple baseline stereo application
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We present an application of theeSkelskeletal programming library to the multiple baseline stereo
problem. We compare its performance to that of a direct MPI implementation of the same algorithm.

1. Introduction

The skeletal approach to parallel programming is well documented in the research literature (see
[4,5,7,8] for surveys). It observes that many parallel algorithms can be characterised and classified by
their adherence to one or more of a number of generic patterns of computation and interaction. Skele-
tal programming proposes that such patterns be abstracted and provided as a programmer’s toolkit,
with specifications which transcend architectural variations but implementations which recognise
these to enhance performance. This level of abstraction makes it easier for the programmer to exper-
iment with a variety of parallel structurings for a given application, by enabling a clean separation
between structural aspects and application specific details. In theeSkel(Edinburgh Skeleton Library)
project, motivated by our observations [5] on previous attempts to implement these ideas, we have
begun to define a generic set of skeletons as a library of C functions on top of MPI.

This paper describes the first use ofeSkelon a significant application, the multiple baseline stereo
vision problem [6,10]. We begin by providing an overview ofeSkeland its conceptual basis, before
proceeding to a description of the standard multiple baseline stereo algorithm. We describe the
facility with which the algorithm can be expressed ineSkel, and examine the performance of the
resulting programs on a Beowulf cluster and on an SMP, focusing particularly on the overhead
incurred byeSkelwhen compared with an explicit MPI version of the same algorithm.

2. Structured parallel programming with eSkel

The eSkelproject [1–3] is an ongoing attempt to investigate the practicality and applicability of
skeletal programming systems. Building on previous experiences, its aims (to which we will return
in our experimental evaluation) were stated [5] as being to develop a skeletal system which

1. Promotes skeletal programming with minimaldisruption to the “conventional” parallel pro-
grammer’s conceptual model.

2. Allows the integration ofad-hoc(unstructured) code within an otherwise skeletal program.

3. Accommodates aflexible collection of variations on familiar parallel programming idioms.

4. Provides empirical evidence that skeletal programming need not incur significantperfor-
mancepenalties (and indeed might even provide performance improvements) judged against
equivalent ad-hoc parallel programs.

eSkel’s conceptual model and API are based around MPI. This basis, and the fact that the imple-
mentation is also built on top of MPI, ensure widespread portability.
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Figure 1. Conceptual structure of theDealskeleton.

In essence, aneSkelskeleton is a collective operation, called by all processes within a given MPI
communicator group. The call causes the processes to take on the roles of the various components of
the chosen skeleton (for example, the stages in a pipeline). It abstracts the implied communications,
either completely, leaving the programmer to specify only the activities within each component,
or partially, allowing the programmer to control the timing of communications within the spatial
constraints imposed by the skeleton (for example, allowing a pipeline stage to consume an input
without producing a corresponding output).

Skeleton calls may be nested, eithertransiently, meaning that the inner instantiation is created and
exists only between interactions of the outer call, orpersistently, meaning that the inner call lasts
for the duration of the entire outer call (in effect giving a flat skeleton structure combining the two
skeletons).

In the application described here, we use the only two ofeSkel’s collection of skeletons which
have so far been fully implemented, thePipelineand theDeal. Our pipeline is a straightforward
abstraction of the familiar paradigm: a sequence ofstages, any of which may be internally parallel,
processes a sequence of input items to produce a sequence of output items.Deal, while less familiar
by name, captures another familiar technique, typically applied within bottleneck pipeline stages:
the stage computation itself is replicated, with successive inputs dispatched cyclically to the replicas,
outputs being merged in the original order into the overall stream passed to the subsequent stage.
The technique is only applicable for stages in which no internal state is maintained from one input
to the next. Figure 1 sketches the structure of a singleDeal. More typically, either or both of the
input and output streams will be tied to other pipeline stages. Thus, theDealskeleton behaves like a
Farm with a cyclic allocation of the work to the farmers.

A full discussion of theeSkelAPI is well beyond the space constraints of this paper.

3. The multiple baseline stereo application

The multiple baseline stereo problem [6,9,10] involves measuring depth in a scene with the help
of several cameras. The cameras have different baselines, enabling precise distance estimates to be
obtained with a stereo matching method. Paraphrasing [9],

“The input consists of three images, acquired from three horizontally aligned, equally
spaced cameras. One image is thereference image, the other two arematch images. For
each of 16 disparitiesd = 0..15, the first match image is shifted byd pixels, and the
second image is shifted by2d pixels. A difference imageis formed by computing the
sum of squared differences between the corresponding pixels of the reference image and
the shifted match images. Next, anerror imageis obtained by replacing each pixel in
the difference image with the sum of the pixels in a surrounding 13x13 window. Finally,
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Figure 2. Pipelined structure of the original algorithm.

the disparity imageis formed by finding, for each pixel, the disparity that minimises
error. We then know the depth of each pixel, which depends on this disparity.”

The algorithm naturally lends itself to pipelined and replicated parallelism, with stages for data
gathering (or in our case, in the absence of cameras, artificial generation), difference image calcula-
tion, error image calculation and disparity image calculation. Each input to the pipeline is a set of
three images. For a given triple of images, the difference and error calculations for each of the 16
disparities are independent and so there is scope for concurrent execution, as suggested by figure 2.
Finally, we note that the algorithm could apply internal data parallelism to the difference and error
computations.

The natural context of the application is in real-time processing of a stream of images. This means
that the most appropriate measure of performance is thethroughputwith which such a sequence is
processed. We adopt this metric in our performance graphs.

4. Parallel implementation with eSkel

For the purposes of our experiments we have chosen to implement a variant of the algorithm
described above. As sketched in figure 3, we have built a three stage pipeline, in which the first
stage generates images, the second implements all (16 per image set) of the difference, error and
disparity computations, and the final stage (which might be a display operation in a real application),
simply performs some checking of results. Our artificial inputs are constructed with easy checking
of outputs in mind. As noted above, the run-time of the calculations, which is our main concern,
depends only upon the size (rather than the content) of the images. Not surprisingly, this structure
results in a substantial bottleneck in the second stage. We resolve this with aDeal - successive image
sets are distributed to successive workers. We ran tests with between one and six replicas.

Stripped of application specific code, the program itself is straightforward. Figure 4 presents the
main program (with only simple C declarations omitted to save space). Since images are generated
within stage 0, and outputs are not stored, most of the data parameters are redundant (hence all the
NULLs and0s). Theimodes , spreads andtypes parameters to the skeleton call describe the
structure of the interfaces between stages.

In this version of the program, we have chosen to useexplicit communication for data leaving
stage 0 and entering stage 2 (line 3). By way of contrast, the workers in theDeal will experience
these communications in implicit mode. This is specified in two steps. For the stage itself, the
interaction mode is given as “devolved”, indicating the presence of a persistently nested skeleton.
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Figure 3. Structure of the algorithm as implemented.

An extract of the code for stage 2 (figure 5) completes the process, by specifying (line 4)implicit
interaction mode.

Lines 17-19 of figure 5 are the interface betweeneSkel’s data model and the standard C of the
computational fragments. Following the MPI approach, the three data arrays are received packed
into a single array, accessible through thedata field of theeSkel_molecule_t received by
the stage. Rather than wasting time explicitly unpacking the structure, we simply create convenient
pointers to the sections corresponding to each array. Lines 32-33 similarly prepare the result for
transmission to the final stage. The bulk of the processing is done by the function calls on lines
28-29. These are written in standard C.

4.1. Performance
In assessing the performance of a new programming model (in our case,eSkel), it is important to

try to distinguish overheads introduced by the implementation mechanism from constraints which
are inherent characteristics of the algorithm or underlying machine. To this end, the following pro-
grams were written:

• Sequential. This represents a “sensible” rendition of the algorithm. The images are processed
in sequence by a loop and there is no unnecessary copying, as might be performed by a se-
quential emulation of the parallel algorithm. No attempts have been made to optimise lower
level aspects (e.g. thinking about array access patterns to enhance cache utilisation), but this
is equally true of our parallel versions.

• Raw MPI . A straightforward MPI implementation of the adapted algorithm, generalised to
allow for cyclic distribution of image sets to a number of workers in the second stage (in other
words, a hand-coded “deal”, specialised to this application, and thereby omitting some of the
data marshalling hidden inside theeSkelversions).

• eSkel. The “PipelineandDeal” program described above.
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1 spread_t spreads[STAGES+1] = {SPGLOBAL, SPGLOBAL,SPGLOBAL,SPGLOBAL};
2 MPI_Datatype types[STAGES+1] = {MPI_INT, MPI_INT, MPI_INT, MPI_INT};
3 Imode_t imodes[STAGES] = {EXPL, DEV, EXPL};
4 eSkel_molecule_t *(*stages[STAGES])(eSkel_molecule_t *) = {
5 (eSkel_molecule_t * (*)(eSkel_molecule_t *)) stage1,
6 (eSkel_molecule_t * (*)(eSkel_molecule_t *)) stage2,
7 (eSkel_molecule_t * (*)(eSkel_molecule_t *)) stage3
8 };
9

10 MPI_Init(&argc, &argv);
11 SkelLibInit();
12
13 MPI_Type_contiguous((ROWS+WINY)*COLS, MPI_INT, &MPI_int_array);
14 MPI_Type_commit(&MPI_int_array);
15 types[1] = MPI_int_array; types[2] = MPI_int_array;
16
17 if (myrank()==0) mystagenum = 0;
18 else if (myrank()==nprocs-1) mystagenum = 2;
19 else mystagenum = 1;
20
21 Pipeline (STAGES, imodes, stages, mystagenum, BUF, spreads, types,
22 NULL, 0, 0, NULL, 0, &outmul, 0, mycomm());
23
24 MPI_Finalize();

Figure 4. The main program

1 void stage2 (void) {
2 int outmul;
3
4 Deal (mycommsize(), IMPL, worker, myrank(), STRM,
5 NULL, 0, 0, SPGLOBAL, MPI_int_array,
6 NULL, 0, &outmul, SPGLOBAL, MPI_int_array, 0, mycomm());
7 }
8
9 eSkel_molecule_t * worker (eSkel_molecule_t *item) {

10 int *ref, *m1, *m2, i, j;
11
12 float curbesterr[ROWS*COLS];
13 int curbestdisp[ROWS*COLS];
14 float diffimg[(ROWS+WINY)*COLS];
15
16
17 ref = &((int *)(item->data[0]))[0];
18 m1 = &((int *)(item->data[0]))[(ROWS+WINY)*COLS];
19 m2 = &((int *)(item->data[0]))[2*(ROWS+WINY)*COLS];
20
21 for (i=0;i<ROWS;i++)
22 for (j=0;j<COLS;j++) {
23 curbesterr[i*COLS+j] = 9999999.0;
24 curbestdisp[i*COLS+j] = 0;
25 }
26
27 for (curdisp=0;curdisp<MAXDISP;curdisp++) {
28 gendiffimg(ref,m1,m2,diffimg,curdisp);
29 updatedispimg(diffimg,curbesterr,curbestdisp,curdisp);
30 }
31
32 item->len[0] = 1;
33 item->data[0] = curbestdisp;
34 return item;
35 }

Figure 5. Code for stage 2.
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Figure 6. Performance of the raw MPI algorithm on the two machines.

Our experiments were conducted on two platforms:

• A 64 node (1.8 GHz Intel Pentium 4 processors) Beowulf cluster networked with a 100Mb
ethernet, using the Los Alamos Message Passing Interface LA-MPI.

• A 52 node (0.9 GHz Ultrasparc III processors) Sunfire E15k SMP with the native Sun imple-
mentation of MPI.

All runs were repeated six times, with results shown below being averages. None of the runs deviated
from the average to any interesting extent. All experiments involved the processing of 20 images,
each of 240×256 pixels. We measure performance in terms of throughput, as described above.

4.2. Performance of the underlying algorithm
Before assessingeSkel, it is important to understand the capabilities of the parallelised multiple

baseline stereo algorithm itself. Figure 6 compares the performance of the sequential and raw MPI
programs on each of the platforms. The sequential performance (data points for one processor) is a
little better on the Beowulf, presumably reflecting the greater speed of its processors. There are no
data points for two processors because our chosen parallelisation requires at least three processors.
For four and more processors, we see the effect of adding extra workers to the second stage: the data
points forp processors indicate the use of a directly programmed “deal” withp − 2 workers. We
notice that performance on the Beowulf is disappointing, with the parallel versions only eventually
marginally beating the sequential one, and with the curve flattening very quickly. This suggests that
the relatively low computation to communication ratio inherent in the algorithm is too much for
this machine to cope with. In contrast, the situation on the SunFire is much more promising, with
parallelisation apparently worthwhile, (flattening at about eight processors).

4.3. Performance ofeSkel
We can now investigate the performance ofeSkel. Figure 7 compares the throughput of the raw

MPI and correspondingeSkelprograms on the Beowulf. The first data point is for three processors
because, as noted above, this is the smallest natural number of processors for a parallel version. We
observe that the two programs perform quite similarly, with a performance loss of around 8% for
eSkel. Figure 8 illustrates a similar comparison for the Sunfire. The overall pattern is similar, with
a performance gap which is slightly wider (around 10-13%). We are encouraged by these results,
particularly since we have already observed that the application is inherently communications-heavy,
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Figure 7. Performance ofeSkeland MPI on the Beowulf.
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Figure 8. Performance ofeSkeland MPI on the Sunfire.

and so can be expected to highlight any weaknesses in the underlying system. We additionally note
that the current implementation ofeSkelis a proof-of-concept prototype, with considerable scope
for optimisation, and expect that the performance gap highlighted here can be significantly closed.

The observant reader may wonder why the performance gap is more noticeable for the Sunfire,
when intuition might suggest that this machine, with its relatively superior communications tech-
nology, might be more forgiving of communications profligacy. One credible hypothesis might
suggest that this is related to the relative merits of the implementations of MPI on the two ma-
chines: eSkelmakes heavy use of collective communications (particularlyMPI_Scatterv and
MPI_Gatherv ). If these operations were less effectively implemented (with respect to simple
sends and receives) on the SunFire than on the Beowulf, then we would expect the observed effect.
However, simple experiments with the operations were unable to produce any convincing evidence.
Another hypothesis would suggest that there may be a cache-related effect at work. Remembering
that all “communication” in the Sunfire is underpinned by shared memory, might it be the case that
the sends and receives of the raw MPI versions have better cache side-effects than the scatters and
gathers of theeSkelimplementations?
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5. Conclusions

We conclude with some observations motivated by the assessment criteria laid out in section 2.

1. Conceptual disruption. The “skeletons as collective operations” approach seemed to fit the
algorithm neatly. The pointer twiddling and casting to interface to incoming and outgoing
data was messy. While this is partly inherited from MPI (the raw program needed similar
code to allow the arrays to be transmitted efficiently), the molecule concept added a level of
indirection.

2. Ad-hoc parallelism. The application itself is too regular to need this, but the performance
monitoring code (omitted from the extracts here) exploited this facility.

3. Flexible skeletons. It was helpful to be able to program a pipeline in which the data stream
was generated directly by the first stage.

4. Performance. As noted above, this seems to be at least encouraging.
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