
J Sched
DOI 10.1007/s10951-009-0138-4

Adaptive statistical scheduling of divisible workloads
in heterogeneous systems

Horacio González-Vélez · Murray Cole

© Springer Science+Business Media, LLC 2009

Abstract This article presents a statistical approach to the
scheduling of divisible workloads. Structured as a task farm
with different scheduling modes including adaptive single
and multi-round scheduling, this novel divisible load theory
approach comprises two phases, calibration and execution,
which dynamically adapt the installment size and number. It
introduces the concept of a generic installment factor based
on the statistical dispersion of the calibration times of the
participating nodes, which allows automatic determination
of the number and size of the workload installments. Ini-
tially, the calibration ranks processors according to their fit-
ness and determines an installment factor based on how dif-
ferent their execution times are. Subsequently, the execution
iteratively distributes the workload according to the proces-
sor fitness, which is continuously re-assessed throughout the
program execution. Programmed as an adaptive algorithmic
skeleton, our task farm has been successfully evaluated for
single-round scheduling and generic multi-round scheduling
using a computational biology parameter-sweep in a non-
dedicated multi-cluster system.

H. González-Vélez (�)
Robert Gordon University, School of Computing,
Aberdeen AB25 1HG, UK
e-mail: h.gonzalez-velez@rgu.ac.uk

H. González-Vélez
Digital Technologies, IDEAS Research Institute, Aberdeen, UK
e-mail: horacio@acm.org

M. Cole
University of Edinburgh, School of Informatics,
Edinburgh EH8 9AB, UK
e-mail: mic@inf.ed.ac.uk

Keywords Divisible load theory · Divisible workloads ·
Scheduling · Task farm · Algorithmic skeletons · Structured
parallelism · Parallel patterns · Parallel processing

1 Introduction

The generic process of mapping large groups of totally inde-
pendent tasks with similar algorithmic complexity to distinct
computational nodes is known as the scheduling of divis-
ible workloads. Having been augmented with a schematic
language and network element modelling, it has become
an important area of study in computer science widely
recognised as divisible load theory (DLT). Being particu-
larly suitable for the solution of several representative com-
putational problems, DLT has been the subject of mono-
graphs (Bharadwaj et al. 1996; Drozdowski 1997), arti-
cle surveys (Bharadwaj et al. 2003; Blazewicz et al. 1999;
Robertazzi 2003), and an annotated bibliographic reposi-
tory (Robertazzi 2008).

The tasks in a divisible workload are independently dis-
tributed among all participating nodes in order to satisfy cer-
tain criteria, typically to minimise the makespan. This inde-
pendence makes DLT particularly suitable for use in distrib-
uted systems, as the amount of work assigned to a certain
node—i.e. the number of tasks—can be adjusted according
to the node and interconnection characteristics. Nonetheless,
DLT poses different challenges in terms of the characteris-
tics of the computing nodes, the system workload, and the
network topology.

Modern distributed systems—in the form of grids, clouds,
or large clusters—are typically composed of a multiplicity
of network links and computing nodes with dynamic laten-
cies and computation capabilities. As a result, parallel pro-
grams are required to adapt to the intrinsic heterogeneity of

mailto:h.gonzalez-velez@rgu.ac.uk
mailto:horacio@acm.org
mailto:mic@inf.ed.ac.uk

J Sched

the platform, adjusting to the resource usage and availabil-
ity at a given moment. Unfortunately, traditional system-
wide scheduling strategies concentrate on user loads, ergo
coarse-grain parallelism, disregarding the application char-
acteristics.

We propose to address this scheduling problem using a
task farm. A task farm (TF) consists of a farmer process
which administers a set of independent worker processes to
concurrently execute a large number of independent tasks,
collectively comprising a divisible workload. In a traditional
TF, each worker is allocated to a dedicated processor in a
parallel machine, the computation of each element in the
workload is independent and does not generate the same
amount of work. The TF aims at fairly distributing the work-
load to avoid worker starvation and farmer node contention
while minimising communication in order to produce the
best load-balancing.

Different TF implementations assign distinct task sizes1

to workers based on a certain scheduling method. Schedul-
ing variants are typically classified by the number of rounds
or installments in which the total workload is distributed.

Multi-round Scheduling. In its canonical form, the TF task-
to-node mapping is based on a self-scheduled work queue
(Hagerup 1997), where the farmer supplies one task to
any available worker at a given time. After processing,
a worker reports back to the farmer for the next unit of
work or termination. For a given workload, each worker
normally processes several tasks in multiple installments,
constituting a multi-round scheduling schema. The work
queue strategy provides an acceptable load balancing strat-
egy for large workloads of undetermined size in dedicated
systems with fixed network latency. The greedy nature of
self-scheduling allows the assign-to-idle-node scheme to
balance the system load over time. The generalisation of
the work queue model allocates more than one task per
round and takes into account variable network latency, ef-
fectively distributing small chunks of the workload in a
greedy fashion.

Single-round Scheduling. In contrast to multi-round sched-
uling, this mode distributes the entire workload among the
workers in one installment. Here, the task size is statically
estimated at once to minimise idle time and ensure that
minimal scheduling is required from the farmer’s side. This
is particularly relevant to fixed-size workloads in dedicated
homogeneous systems.

In fact, as the scheduling deals out the workload, it ulti-
mately determines the execution time on a per-node basis.
The DLT optimality principle (Bharadwaj et al. 1996) states
that, in order to minimise the makespan, all workers should
stop their processing at the same time, otherwise there ex-

1N.B. It is a common practice to refer to the number of tasks to be
executed by a given worker/node as ‘task size’.

ists a better workload distribution. Nonetheless, the generic
solution to the optimal scheduling of divisible workloads
is proven to be NP-hard (Drozdowski and Lawenda 2008;
Yang et al. 2007) and, therefore, remains an actively-studied,
open-ended problem (Beaumont et al. 2005). In particu-
lar, non-dedicated heterogeneous systems pose an increased
challenge (Beaumont et al. 2003), as the farmer is required
to adapt the task size assigned to workers because:

– The underlying architecture can maintain multiple com-
munication links between the farmer and workers with
different bandwidths and latencies.

– The workers and the farmer can run on non-dedicated
nodes with distinct background workloads in a distributed
environment.

Hence, as opposed to off-line scheduling where the node
resources and/or application characteristics are given in ad-
vance, it is arguable that an adaptive scheduling approach
should not require previous knowledge of the task nature
and the underlying infrastructure; or be constrained to a cer-
tain number of installments, nodes, or tasks.

Nevertheless, scant research has been devoted to the
adaptive exploitation of the structure of a parallel applica-
tion to improve the overall resource usage. Since the tasks in
a divisible workload must be grouped in order to minimise
communication costs in a distributed system, little attention
is paid to partitioning using the application structure. We ar-
gue that the intrinsic coordination characteristics of an algo-
rithmic skeleton place this paradigm in a preponderant po-
sition to explore workload scheduling. Based on the central
premise of application adaptiveness to resource availability,
we would like to research their actual correlation and pro-
vide an online scheduling methodology to enable a divisible
workload to conform to the heterogeneity of a large distrib-
uted system.

1.1 Contribution and structure

This work significantly extends our initial findings on
single-round scheduling (González-Vélez 2006) and para-
meterisable skeletal task farms (González-Vélez 2005), by
providing a comprehensive statistical online framework to
automatically schedule divisible workloads based on the dis-
persion of the participating nodes and size of the workload.
Being application-agnostic and parameterisable, our ap-
proach addresses the multi-round scheduling case by defin-
ing an installment factor which dynamically quantifies the
number of rounds using the number of tasks in the workload
and the system circumstances. The single-round schedul-
ing case is reduced to a special case for systems with low
dispersion, where all participating nodes are equally able
to process tasks, given their load conditions and processing
capabilities.

The underlying assumptions are that the workload is em-
barrassingly parallel, i.e., all tasks are independent and each

J Sched

task has similar computational complexity. The farmer and
each worker process are presumed to be mapped to differ-
ent nodes of a heterogeneous distributed system. Our ap-
proach is relevant to single-level tree architectures and, con-
sequently, has been empirically evaluated on a multi-cluster
with Ethernet interconnections.

This paper is structured as follows. Firstly, we exam-
ine other pertinent approaches to the scheduling of divisible
workloads in heterogeneous systems and position our contri-
bution accordingly. Secondly, we describe the relevant con-
cepts of our methodology from a generalised multi-round
approach, considering the single-round as a special case and
introducing the concept of a generic installment factor based
on the dispersion of the calibration times of the participating
nodes. Thirdly, we present some experimental results using
a parameter-sweep application for the estimation of calcium
concentration, carried out on a non-dedicated heterogeneous
multi-cluster system. Finally, we conclude with a discussion
of the relevance of our work.

2 Related work

Historically preceding the advent of DLT, the distribution of
independent atomic operations among processors has been
analysed in the scheduling of parallel loops. Static strate-
gies include isometric chunks where the overall set of oper-
ations, or a fixed subset, is equally divided among participat-
ing processors (Kruskal and Weiss 1985), and self-schedule
workqueue where the distribution is unitary (Hagerup 1997).
As a result of the evolving variation in the complexity of
the operations and/or the load of the processors, dynamic
loop scheduling strategies utilise resource awareness indica-
tors to guide the number of operations assigned to a proces-
sor. Polychronopoulos and Kuck (1987) initially suggest the
use of self-guided parallel loop scheduling, a methodical ap-
proach employing a decreasing number of operations per
chunk based on the loop index in order to reduce the load
imbalance. Safe self-scheduling augments such an approach
with expected execution times, obtained through profiling
or previous runs, to determine a variable number of opera-
tions (Liu et al. 1994). Adaptive factoring methods employ
historical execution times of certain loop iterations, on a per
processor basis, to adjust the number of operations delegated
to a processor (Cariño and Banicescu 2008). These methods
arguably supersede the traditional batch-oriented factoring,
where a processing batch is determined through a fixed ratio
of pending iterations and then divided equally among par-
ticipating processors. Comparatively, our approach incorpo-
rates performance-based adjustment as in adaptive factoring
and decreasing chunk size as in self-scheduling. Neverthe-
less, it also enhances such concepts by defining a dispersion-
based installment factor, which determines the initial di-
vision of the workload, and a continual feedback process

which maintains an acceptable task distribution among the
nodes.

Moreover, it is widely acknowledged that one of the ma-
jor challenges in large heterogeneous distributed systems is
the prediction and improvement of performance. Such sys-
tems are characterised by the dynamic nature of their hetero-
geneous components, due to shifting patterns in background
load which are not under the control of the individual ap-
plication programmer. In principle, it is expected that effi-
cient intra-application scheduling must be aware of the sys-
tem conditions, and adapt their execution according to vari-
ations in the available computation and communication re-
sources. The challenge is, therefore, to produce and support
scheduling policies which can respond automatically to this
variability.

From a more DLT-oriented perspective, abstract mod-
els for the scheduling of divisible workloads in heteroge-
neous systems have provided near-optimal theoretical solu-
tions to particular cases. Banino et al. (2004) have developed
a polynomial solution for the steady-state case, where all
processing capabilities, applications requirements, and com-
munication links are known in advance. The Uniform Multi-
Round algorithm assumes that every node receives decreas-
ing, fixed task sizes in every round and provides an ap-
proximation to the optimal number of rounds by minimising
the application makespan in a simulated environment (Yang
et al. 2005). Drozdowski and Lawenda (2007) tackle the
problem as an optimisation of the application makespan but
relax the assumption on fixed task sizes, approximating the
solution via branch-and-bound and genetic algorithms on a
simulated heterogeneous environment.

The online scheduling of divisible workloads therefore
requires the dynamic generation of estimators to deter-
mine the task sizes and, ideally, the number of rounds.
Ghose et al. (2005) propose the use of probing—the ex-
ecution of a sample number of tasks on participating
nodes to approximate the node processing and communi-
cation conditions—in order to distribute the tasks among
the participating nodes accordingly. Although different re-
search groups have included variations to probing in their
works (Comino and Narasimhan 2002; Legrand et al. 2008;
Li et al. 2005; van der Raadt et al. 2005; Viswanathan
et al. 2007), effectively fostering resource-awareness in
their online scheduling methods, our calibration approach
is application-agnostic as it does not require any previous
knowledge or performance figures for the actual application
at hand.

Thus, the novelty of our work lies in

– the introduction of a dispersion-based installment factor
to guide a decreasing chunk size;

– the use of application-agnostic calibration (probing) and
execution routines to keep the initial performance asser-
tions current; and

J Sched

– its system infrastructure orientation as we do not rely on
simulators, dedicated configurations, or performance esti-
mators to model the general system, particularly to char-
acterise the background load in terms of its job arrival
rate.

3 Adaptive task farming

Adequate scheduling rests on the premise that the workload
can be optimally distributed to the nodes with the most con-
venient resources for a given application, so it is crucial to
be able to automatically enable an application to cope with
resource variability. Our approach intends to optimise the
application performance from a non-invasive systems in-
frastructure standpoint, using real resource measurements
and application times.

At the core of our adaptive task farm are a calibration
algorithm and an execution algorithm, which can be instan-
tiated into different scheduling methods for assigning task
sizes to different nodes according to their capacity, at once
(single-round scheduling), or in several installments (multi-
round scheduling).

Worker resources are quantified—at a given time on
a certain system topology from an application-specific
perspective—by means of a fitness index F . Defined during
the calibration phase, F is to be used by the TF to determine
the task size on a per node basis and, consequently, define
the TF scheduling. Moreover, in the generic multi-round
scheduling, its value is also adjusted during execution.

A task farm can be symbolically represented as TF =
〈I,O,f 〉, where I is the input, O is the output, and f is
the processing function. A worker executes a task by map-
ping f into a subset of I , computing a subset of O , and
then reporting back to the farmer for the next unit of work
or termination.

Let S denote the workload assigned to the farmer during
the current round (thus for single round and the first round
of multi-round schedules, S = |I |, the number of tasks in
I), and N the number of participating workers (typically
N � S). Thence, our objective is to calculate αı , the task
size for each worker:

αı ∀ ı ∈ [1,N] subject to
N∑

ı=1

αı = S

We formally define F as the vector containing the relative
fitness Fı of each node:

N∑

ı=1

Fı = 1 (1)

The actual values for Fı are transient, as they periodically
change according to the latest calibration of every node. In-
deed, Fı ought to be formally expressed as a function of

time t , Fı(t), where t is the time when the calibration snap-
shot is taken. However, since all decisions are local to each
snapshot, we have simplified its notation by omitting t for
readability purposes. This temporal behaviour of Fı is fur-
ther discussed in Sect. 3.2.2.

We can determine αı as

αı = S × Fı ∀ ı ∈ [1,N] (2)

Note that αı is the total number of elements assigned to
node ı, and the key differentiator for the scheduling lies
in how this amount is distributed. If distributed in one in-
stallment, then the scheduling will be considered single-
round, otherwise it will be multi-round. Therefore, we can
extend (2) to consider an installment factor k:

αı = S

k
× Fı ∀ ı = 1, . . . ,N (3)

where k,Fı ∈ R, S ∈ N and 0 < Fı ≤ 1, k ≥ 1.

Since k and F are crucial to our approach, Sects. 3.1 and 3.2
discuss the calibration and execution phases respectively,
with special emphasis on the determination of both parame-
ters.

3.1 Calibration

During this phase, the N nodes are automatically calibrated
with the execution of one element from the workload stored
in I , the execution times are written to t , and the processed
results are stored in O . Note that t is therefore the vector
containing all tı , the individual calibration nodes for each
node. Then, F is computed using the inverse of the t , ei-
ther direct or adjusted. These steps have been abstracted in
Algorithm 1.

It is important to highlight that the calculation of F varies
according to the calibration method, which can be:

– Times-only: The basic way to calculate F , times-only cal-
ibration defines F as a normalised decreasing function
based on the inverse of tı for each ı node as shown in (4).

Fı =
1
tı∑N

j=1
1
tj

(4)

– Statistical: F is determined by first employing a curve-
fitting method for t , and then using the fitted t in (4).
– Univariate Linear Regression: t is considered depen-

dent on the processor availability.
– Multivariate Regression: The processor availability and

the network latency are considered independent and are
employed to fit the t values.

While the overhead in the calibration is reduced, as this
initial processing counts towards the overall processing, its
complexity is still bound by the slowest node.

J Sched

Algorithm 1: Calibration Algorithm for the Task Farm

3.1.1 Statistical calibration

Statistical calibration has been widely used in the physical
sciences to describe the use of measured physical variables
in order to extrapolate a certain unknown via a series of
mathematical transformations (Martens and Naes 1989).

In our case, the idea is to calculate the fitness of a certain
node via the statistical extrapolation of its execution time,
using the processor availability and the communication la-
tency. This extrapolated fitness will ultimately determine the
task size assigned to a node.

Given a certain node, its processor availability measures
the processing fraction allocatable to a new process to be
executed, while its communication latency is the time taken

to receive a message from the farmer. Let aı and �ı respec-
tively be the processor availability and the communication
latency for node ı. Consequently, α, t, a, � are vectors of
size N which store the values for task size, execution time,
availability, and latency. Supplied by a resource monitoring
tool, the a and � vectors contain measured physical values
typically expressed as the CPU fraction allocatable to a new
full-priority standard user process and the time in millisec-
onds to send a TCP message from the farmer to a certain
node.

F is directly determined using t , and, transitively, so is α.
As t is application-dependent, its value can be correlated
with the resources available at a given time.

Such correlation can therefore be explored using:

– a only, uni-variate linear regression, or
– a and �, multi-variate linear regression.

Univariate Linear Regression
Let us define a′

ı , the scaled availability for worker ı, as

a′
ı = aı × rp′

ı

rp′
ı = bmı

maxN(bm)

where rpı is the relative performance of worker ı, bmı is
any known benchmark value for worker ı, and maxN(bm)

is the maximum bmı among N workers.
Using linear least-squares regression, we set a′, the vector
of a′

ı for the N workers as a predictor (independent vari-
able) and allow t to be the dependent variable. Then, we
attempt to fit a curve along the observed values in t using
the regression function in (5).

t = c0 + c1a
′ (5)

Our objective is to assign fewer tasks to the workers which
executed tasks more slowly and, in consequence, min-
imise the overall execution time. Hence, we calculate the
F in (4), using the estimated (fitted) values t shown in ex-
pression (5).

Multivariate Linear Regression
Since processor availability is not necessarily the only de-
termining factor, further exploration needs to take into ac-
count additional system parameters. In order to provide
ground for discussion, Fig. 1 introduces the schematic rep-
resentation of the relation between processor availability,
communication latency, and execution times for the case
study to be discussed in Sect. 5.1.
It is clear from Fig. 1 that the shortest execution times, rep-
resented by the darkest segments, tend to gravitate towards
the right following the higher values of a, while the longest
times are located in the upper left segment (lowest a). In
this particular case, the strong implication of the trend is
that the execution time on a given node is determined by

J Sched

Fig. 1 The correlation between
scaled availability (a′), network
latency (�), and execution
times (t), where a′ and � are
used as predictors and t as the
dependent variable

the processor availability and is influenced, to a lesser ex-
tent, by the latency.
Using multi-variate linear least-squares regression, we set
a′ and � as the predictor vector within a matrix (X) and
allow t to be the dependent vector. Then, similar to the
univariate case, we use t as expressed in (6) to calculate F

in (4).

t = c0 + c1� + c2a
′2 (6)

3.2 Execution

Single isometric installments are well suited to a dedicated
homogeneous system, as its node processing capabilities are
even. However, in a dynamic system with heterogeneous
nodes, single installments should be determined using the
node fitness and, in the case of multiple rounds, their actual
number and size ought to be dynamically adjusted accord-
ing to the system load and the prevalent fitness of the system
nodes.

The execution phase for our TF can therefore be de-
scribed as follows:

– if single-round scheduling, substitute k = 1 in (3) and,
consequently, distribute the workload in one round, using
F to calculate the task size for each node;

– otherwise, assume multi-round scheduling and calculate k

based on the node dispersion. As the quotient S
k

in (3) im-
plies multiple installments (if and only if k > 1), adapt the
task size accordingly during the execution by refreshing
F according to the most recent execution time for each
node and the remaining amount of work to be completed.

3.2.1 Installment factor

One of the key issues when determining the task size is the
initial number of tasks to be distributed. While single-round

scheduling directly distributes the entire workload in the first
round, generic multi-round scheduling is more complex. In
the work queue case, it uses one task per node utilising as
many tasks as nodes in the pool in the initial round, and
continues in this fashion throughout the entire execution.
Nonetheless, there is a potentially large number of possi-
ble combinations, which can use a larger number of tasks
in each round and minimise the farmer–worker communica-
tion.

To this end, we have proposed to define a new concept:
the installment factor. Denoted by k, this constant is in-
tended to adaptively regulate the workload distribution in
order to determine the installment size for a given worker in
multi-round scheduling.

We determine k in terms of S, the workload, and the dis-
persion in the calibration times of the N nodes in the pool.
This dispersion can be estimated by their coefficient of vari-
ation (CV), as represented in (7), and, as S can be easily
conceived as a continually growing function for different
problem instances, we can express k using (8).

Given that t = 1

N

N∑

ı=1

ti and σ =
√√√√ 1

N

N∑

ı=1

(ti − t)2,

CV = σ

t
, (7)

k = ln(S)CV (8)

Assuming that the differences in calibration times reflect
not only the system heterogeneity but also its dynamism, a
highly dynamic system will have a series of calibration times
with a significantly large standard deviation, σ , and k will
grow accordingly, while a steady system will have a neg-
ligible standard deviation and therefore k will approach 1,
regardless of the input size. Nonetheless, for a given CV ,
the k will increase logarithmically on S. We have tacitly as-
sumed that S > e, i.e., the divisible workload is composed

J Sched

Fig. 2 The installment factor, k

is a function of the number of
tasks, S, and the coefficient of
variability, CV , expressed as
k = ln(S)CV . The six different
lines of k are delineated by the
variation of CV from 0 to 1 in
intervals of size 0.2

of at least three tasks. The behaviour of k for different values
of S and CV is plotted in Fig. 2.

We would like to emphasise that calculating k in this
generic way relieves the programmer from statically defin-
ing the best scheduling, as the system automatically pro-
vides the most suitable number of rounds according to the
dispersion in the system and the application at hand. Single-
round scheduling simply becomes a special case of the adap-
tive multi-round scheduling for systems with complete node
homogeneity.

3.2.2 Adapting the task size

The initial calculation of F , the fitness index, abstracts ab-
initio the resource availability in a given system, but its tem-
poral validity is not necessarily assured as the load condi-
tions frequently vary over time.

In our adaptive approach to multi-round scheduling, we
propose to adapt F periodically according to the latest per-
formance reading for a node.

Let us examine an illustrative case involving four work-
ers, w1, w2, w3, and w4, with calibration times of 1, 2, 3,

and 4 time units, respectively. Suppose that initially S = 68
and bear in mind that the first four elements are processed
during calibration. Thus,

F1 = 0.48,F2 = 0.24,F3 = 0.16, and F4 = 0.12

by (4)

t = 2.5, σ = 1.3, and CV = 0.5 (k ≈ 2)

by (7) and (8).

As per (3), implemented in practical terms as shown
in (9), half of the remaining workload (S = 64/2) will be

initially distributed to the workers w1,w2,w3, and w4 in
chunks of size 15,8,5, and 4.

αı =
⌊

S

k
× Fı + 0.5

⌋
(9)

Let us suppose that the initial calibration times are pre-
served as a result of an unchanging node availability, hence
the expected execution times for the assigned task sizes will
be 15,16,15,16. Given that w1 reports first for the next in-
stallment, the farmer will then assign 8 elements as now
S = 32. Then, if w3 follows, the installment will be 2 as
now S = 24 after the assignation to the first worker. The full
installment sequence for each worker and the timing chart
are presented in Table 1 and Fig. 3, respectively.

Note that the resulting installment sequence chiefly fol-
lows a geometrical progression with ratio 1/k and reflects
the load balancing spirit of the algorithm. Furthermore, as
the task sizes α1 = 32, α2 = 15, α3 = 10, α4 = 7 ponder the
fitness of every worker, so does the number of installments
per node 8, 5, 5, 4. The combination of these characteris-
tics intrinsically reduces the possibility of load imbalances,
as larger chunks are initially assigned to reduce scheduling
overhead, then smaller chunks are distributed, and, at the
end, their size is always one, reducing the load imbalance
while maintaining resource awareness.

The aforementioned conditions hold true if and only if
the fitness of every node remains constant over the execu-
tion of the workload. However, one of the principal charac-
teristics of non-dedicated heterogeneous systems is their dy-
namism. Let us assume that the w4 performance/availability
doubles during the execution of its first chunk composed of
4 elements, resulting in an execution time of 8 instead of
the expected 16. As per (4), this modifies its own and the

J Sched

Table 1 Actual installment sizes for each worker, e.g. the fourth
worker, w4, has a sequence of installments of size 4,1,1,1 (or a task
size of α4 = 7) with corresponding durations of 16,4,4,4

Installment α1 α2 α3 α4

1 15 8 5 4

2 8 3 2 1

3 3 2 1 1

4 2 1 1 1

5 1 1 1

6 1

7 1

8 1

Total (αi) 32 15 10 7

Termination time 32 30 30 28

Fig. 3 (Color online) Graphical representation of the installment tim-
ing sequence for each of the four participating workers w1,w2,w3,

and w4, taking into account their associated calibration times of 1,2,3,

and 4 time units respectively

other nodes’ fitness as (F1 = 0.43,F2 = 0.215, F3 = 0.14,

F4 = 0.215) and, consequently, the installment sizes, e.g.,
the next installment for w4 is 3.

As a result of this feedback through the latest execution
time for each node, the fitness index value is constantly re-
freshed for each processor. Nonetheless, it is also important
to emphasise that the summation of the fitness indices (Fi)
is always equal to one, as initially defined in (1), regardless
of the number of processors and the value of the installment
factor.

It should be clear that, by recalculating the fitness of
every node according to its latest execution time, the
execution phase assimilates immediate feedback not
only to the node but also to the system as a whole. As
the performance of a node is mainly defined by its sys-
tem load, this technique arguably adapts the TF ex-

ecution according to the prevailing load conditions,
which can be conceived as the equivalent to a contin-
ual system-wide calibration.

Figure 4 illustrates a realistic 8-worker example in a
non-dedicated heterogeneous cluster using S = 9600 and
k = 2.735. Each chart depicts the installment sequence as a
continual line, where the size of every installment is indexed
to the left y-axis and correlated with the prevailing load con-
ditions indicated with the dashed bars indexed to the right
y-axis. The system load value is the 1-minute node/worker
load average as displayed by the Linux uptime command.

Thus, chart (b) represents the 7-installment sequence for
w2 with sizes 454, 263, 161, 159, 2, 1, and 1 under loading
conditions of 0.94,2.3, 1.14, 0.96,7.47, and 7.23. Note the
dramatic reduction between the fourth and the fifth install-
ments as a result of the 7-fold load increase, or the nearly-
constant size between the third and the fourth installments
as a result of the load reduction. Chart (f) has a more linear
behaviour, as the w6 load follows a more steady pattern.

Although it is difficult to accurately characterise the en-
tire system and the algorithm behaviour, the eight charts pro-
vide a succinct illustration of the overall functionality.

Although k is dependent on the calibration times of the
nodes and can arguably be modified every time the fitness is
affected, we have decided not to recalculate it every time to
avoid overhead, as it only serves as a geometric ratio in the
progression, rather than a determining factor for feedback.

4 Implementation

For convenience, we have implemented a simple algorithmic
skeleton for the task farm.

Algorithmic skeletons abstract commonly-used patterns
of parallel computation, communication, and interaction
(Cole 2004, 1989). While computation constructs manage
logic, arithmetic, and control flow operations, communica-
tion and interaction primitives coordinate inter- and intra-
process data exchange, process creation, and synchronisa-
tion. Skeletons provide top-down design, composition, and
control inheritance throughout the program structure. Paral-
lel programs are expressed by interweaving parameterised
skeletons analogously to the way in which sequential struc-
tured programs are constructed.

In order to use our implementation, one needs to define
the tuple 〈I,O,f 〉—where I and O are the input and output
vectors, and f is the worker function—and the scheduling
mode. It requires no further input from the user. Based on
the prevalent load conditions of the defined platform, the
calibration phase then automatically calculates the F and
the corresponding number of tasks per node αı and proceeds
according to the selected TF scheduling.

J Sched

Fig. 4 (Color online) An empirical example of the functionality of the
task farm adaptiveness on an actual 8-worker system. For each worker,
w1 to w8, the chart depicts with a solid line the installment size se-

quence with its value indexed to the left y-axis, and, with dashed bars,
the system load present at the node when that given installment is dis-
tributed with its value indexed to the right y-axis

Figure 5 presents the algorithmic skeleton API imple-
menting the TF. We stress that it is merely a syntactic ve-

hicle to support the investigation of application scheduling
schemes, which forms our main contribution. A more so-

J Sched

Fig. 4 (Continued)

Table 2 The six different scheduling modes for our task farm skeleton

No. Name Values Description

1 SCH_TRAD αı = 1 Traditional multi-round scheduling based on a work queue
(1 by 1)

2 SCH_DEAL Equation (3) holds. (k = 1 ∧ Fı = 1
N

) Single-round scheduling assuming equal task sizes for the
N nodes

3 SCH_DEALDYN_LR Equations (3) and (4) hold. (k = 1) Single-round scheduling with statistical univariate
calibration (t adjusted via curve-fitting)

4 SCH_DEALDYN_MV Equations (3) and (4) hold. (k = 1) Single-round scheduling with statistical multivariate
calibration (t adjusted via curve-fitting)

5 SCH_DEALDYN_SM Equations (3) and (4) hold. (k = 1) Single-round scheduling with times-only calibration

6 SCH_MULTI Equations (3) and (4) hold. (k = ln(S)CV) Generic variable chunk-size multi-round scheduling with
times-only calibration, and single-round as special case
(CV � 0)

phisticated interface could be defined for production use.
The API provides sufficient flexibility to accommodate dif-
ferent options in terms of the worker function (worker);
the type and size of the input (in_data, in_length,
and in_type) and output (out_data, out_length,
and out_type); the MPI communicator (comm); and the
scheduling mode (sched). In particular, the valid schedul-
ing modes are presented in Table 2.

That is to say, this skeleton can be used unaltered with
single-round scheduling either simply (DEAL) or with re-
source awareness (DEALDYN) in its three variants, and with
multi-round scheduling either non-adaptively (TRAD) or
adaptively (MULTI).

Note that the adaptive mode (MULTI) effectively gen-
eralises the scheduling of divisible workloads, as
single-round scheduling effectively becomes a special
case of the multi-round scheduling for systems with
low dispersion.

Our current TF implementation employs the GNU Sci-
entific Library (Galassi et al. 2005) to calculate the regres-
sion in the statistical calibration and the coefficient of vari-
ability in the adaptive multi-round scheduling. The Network
Weather Service (Wolski et al. 1999) is used for the forecasts
of processor availability (a) and latency (�) in the statistical
calibration. Nonetheless, it is important to emphasise that
the implementation is open to the use of any other statistical
or resource monitoring routines.

5 Experimental evaluation

Our experiments have been designed to take advantage of
the TF intrinsic task parallelism—which presents virtually
no inter-process communication—and the ability to access
different data sources—inherent to any heterogeneous dis-
tributed system. As a result, they deploy a parameter-sweep
for a series of independent executions of a stochastic sim-

J Sched

Fig. 5 The application program interface (API) to our adaptive task farm algorithmic skeleton

Fig. 6 (Color online)
A calcium concentration graph
generated by an illustrative run
of the parameter sweep,
employing 104 channels and
simulation time 10 ms in
intervals of 10 µs

ulation algorithm of voltage-gated calcium channels on the
membrane of a spherical cell. Parameterised in terms of the
number of channels and time resolution, the algorithm cal-
culates the calcium current and generates a calcium concen-
tration graph per run.

A spherical cell possesses thousands of voltage-gated
channels, and simulating their stochastic behaviour implies
the processing of a large number of random elements with
different parametric conditions. Such parameters describe
the associated currents, the calcium concentrations, the base
and peak depolarising voltages, and the time resolution of
the experiment. This process can be modelled stochasti-
cally, defining a threshold based on voltage and time con-
straints, and aggregating individual calcium currents for a
given channel population (González-Vélez and González-
Vélez 2005).

Furthermore, as the voltages and the peak duration can be
varied without affecting the complexity, the parameter space
can be explored while preserving the complexity constant
at each run. The model has been abstracted as the function
f where the number of channels (channels) and time res-
olution, defined as the number of steps (steps), determine
its temporal complexity on a per-experiment basis as shown

in (10).

Time(model) = Order(channels × steps) (10)

Thus, a typical experiment involving the simulation of
104 channels for a second in 10 µs intervals (105 steps)
will have Order (109) temporal complexity. Each experi-
ment generates two result files: a data file which records the
calcium currents values over time and a gnuplot script to au-
tomatically produce graphs for these values.

Figure 6 presents a typical processed calcium concentra-
tion graph for 104 channels and a 10-ms simulation time
with a time interval of 10 µs, i.e., a time resolution of 103

steps and a complexity Order (107).
The physiological interpretation of the algorithm is be-

yond the scope of this work, nonetheless it is interesting
to underscore its relevance to the biomedical community.
A complete description of the simulation algorithm, a com-
prehensive parameter sweep, and the physiological interpre-
tation of the results are reported by González-Vélez and
González-Vélez (2007).

In the following sections we present a series of exper-
iments which explore the parameter space in breadth and
width: the single-round ones cover statistical and times-only
calibration for a single problem size (breadth), while the

J Sched

Fig. 7 Uni-processor execution
of the workload under variable
load conditions. It employs a
sequential version of the worker
function in a single processor,
and load-generating function. In
the x-axis, the values represent
the number of instances of the
load-generating program, and
the y-axis indicates the
execution time in seconds

Table 3 Parameter space for the single-round scheduling task farm.
Key: E: Experiment; S: Sweep

Parameter Value

E Number of Channels 104

Time Resolution 104

Peak Duration 0.06 s

S Peak Voltage Steps 0.125 mV

No. of Experiments 960

multi-round focus on times-only for different problem sizes
(width).

5.1 Single-round scheduling

For this case study, we have instantiated the parameter space
with 960 experiments of similar complexity, S = 960, by
varying the peak voltage, and have defined O to store the
individual times for each experiment. Previously discussed
in our work on single-round scheduling (González-Vélez
2006), the full instantiation is shown in Table 3, using a sim-
ulation time of 0.1 s with an interval of 10 µs, and the peak
voltage varied in 0.125-mV steps.

Initially and as a sanity check, we have implemented the
sequential version of the workload, executed it in a ded-
icated reference node, and observed its performance un-
der increasing load conditions. Figure 7 plots the execution
times in seconds under increasing load conditions. The val-
ues in the x-axis represent the number of instances of the
load-generating program, which is equivalent to 1 in the 1-
minute reading from the Linux/Unix uptime command. As
expected, it degrades linearly when the system load is in-
creased.

Table 4 presents the execution times of a simple TF ver-
sion on a 1-farmer 1-worker dedicated configuration and

compares them to the uni-processor version. The MPI ver-
sion with single-round scheduling, where the farmer assigns
the 960 elements at once to the worker, performs roughly
on a par with its uni-processor counterpart (5890 s versus
5976 or <2% difference). The MPI version with work queue
scheduling, where the farmer assigns a single task at once,
is 23% slower than the uni-processor version (7330 s versus
5976 s), and this is mainly due to the overhead incurred by
the frequent communication. All entries represent the arith-
metic mean, with a small variance, of a series of executions.

For our main evaluation, we have deployed three variants
of the single-round scheduling: times-only and linear re-
gression in univariate and multi-variate modes. For the uni-
variate case, we have used the scaled availability, a′, as pre-
dictor variable, and for the multi-variate, we have addition-
ally employed the network latency, �. Both fit the execution
times t using linear regression. The baseline is an isometric-
installment single-round scheduling, i.e., equal task sizes to
all participating workers.

We have run a series of experiments with 6, 12, 24, and
48 worker processes mapped to an equal number of nodes
with the farmer located at process 0. The results are pre-
sented in Fig. 8 and are based on the aforementioned 960-
experiment parameter sweep.

We have chosen the BogoMips (van Dorst 1996) as the
known benchmark value in order to scale the availability val-
ues, based on its wide availability in Linux systems and its
claims to reflect more accurately the processing power of a
node than the standard CPU frequency. Nonetheless, the API
is not tied to this benchmark, and, alternatively, our evalu-
ation can potentially use the 1-processor figures from any
other widely used benchmark.

Each value in the chart represents the average of the ex-
ecutions run under different conditions on three different
days. All times are measured at system level and include not

J Sched

Fig. 8 Summary of the
execution times, in seconds, of
the task farm with single-round
scheduling using 6, 12, 24, and
48 workers. Key: [Baseline]
Isometric-installment
single-round scheduling;
[Times-Only] Single-round
scheduling with times-only
calibration; [Multivariate]
Single-round scheduling with
statistical calibration using a′
and � as predictors; [Univariate]
Single-round scheduling with
statistical calibration using a′ as
predictor

Table 4 Execution times, in seconds, of the task farm skeleton for
the 960-experiment parameter-sweep. Cases No. 1 and 2 are the MPI
version using one farmer and one worker, with single-round and work
queue scheduling respectively. Case No. 3 is a sequential version em-
ployed as the baseline. The three cases represent the average of five
executions on a dedicated system

Case Experimental Execution

No. version time

1 MPI single-round 5890 s

2 MPI work queue 7330 s

3 Baseline (uni-processor) 5976 s

only the TF processing but also the calibration and startup-
termination periods. The experiments did not run concur-
rently, in order to avoid any contention. During three differ-
ent days, the evaluation series coped with different system
loads and network conditions.

Our single-round scheduling evaluation consistently out-
performs the single-round version using isometric install-
ments by 70% for the times-only calibration and 56% and
48% respectively for the univariate and multivariate linear
regression cases. Furthermore, if we compare the different
modalities of our single-installment scheduling, the times-
only calibration performs 43% and 33% better than the sta-
tistical calibration modes. Such performance superiority can
be possibly associated with the arithmetic operations gen-
erated by the linear regression. Thence, we intend to use
times-only calibration for the remainder of our experiments.

5.2 Multi-round scheduling

Here we have run a more comprehensive series of ex-
periments incorporating three different complexities: light,
medium, and heavy.

At the single experiment level, while maintaining the
number of calcium channels, the time interval, and the base

Table 5 Parameter space for the multi-round scheduling task farm.
The final time rows show the average execution time, in seconds, for a
whole parameter sweep on 8, 16, and 32 workers using adaptive multi-
round scheduling. Key: E: Experiment; S: Sweep

Parameter Light Medium Heavy

E No. Channels 104 104 104

Time Resolution 103 104 105

Peak Duration 0.006 s 0.06 s 0.6 s

S Voltage Steps 0.0125 mV 0.03125 mV 0.125 mV

No. Experiments 9600 3840 960

8-worker Time 868.4 s 3199.6 s 7720.8 s

16-worker Time 470.4 s 1730.2 s 4205.1 s

32-worker Time 235.3 s 869.2 s 2125.1 s

voltage constant at 10000, 10 µs, and −80 mV, respectively,
we have varied the simulation time for each experiment us-
ing 0.01 s, 0.1 s, and 1 s, i.e., a time resolution of 103,
104, and 105 steps, respectively. Note that the complexity
of the experiments in the medium case is similar to that of
those employed in the preceding section for the single-round
scheduling.

At the parameter space level, the parameter sweep looks
upon peak voltages in [−60,60 mV]. Employing steps of
0.0125 mV, 0.03125 mV, and 0.125 mV, this range is
evenly divided, producing an associated number of exper-
iments of S = 9600, 3840, and 960, respectively. Note that
the variation in the value of S has no bearing on the com-
plexity of the experiments as described in (10). Table 5
shows the three instances of the parameter space.

We have assembled nine different scenarios by vary-
ing the number of workers 8,16,32 executing the light,
medium, and heavy complexities, and compared our adap-
tive scheduling with the work queue which is the de-facto

J Sched

Fig. 9 (Color online) Execution
time summary for the task farm
using adaptive multi-round
scheduling on 8, 16, and 32
workers with light, medium, and
heavy problem complexities, as
described in Table 5. The
hatched and solid bars represent
the execution times for each
combination of
worker-scheduling-complexity
setting for one-by-one and
adaptive scheduling modes,
respectively. The top dotted line
represents the overhead incurred
by the initial calibration. Key:
[processors no.] [scheduling
mode], e.g., 8a means 8 workers
and adaptive scheduling model
and, analogously, 8o represents
8 workers and one-by-one
scheduling

scheduling for heterogeneous, dynamic systems. While the
results have demonstrated a performance improvement of
8% for the light case with eight processors and more modest
gains for the remaining light, medium, and heavy cases, the
automatic calculation of the installment factor and the peri-
odic refinement of the task size should be considered impor-
tant contributions for self-scheduling parallelism. What is
more, the overhead incurred varies from 3.9% for the heavy
complexity to 0.4% for the light one. A summary of the re-
sults is presented in Fig. 9.

6 Conclusions

While simulation and theoretical formulations have tradi-
tionally provided a preponderant foundation for generic ap-
proaches in the study of scheduling, there is a clear need for
empirical work to inquire into the performance of adaptive
algorithms.

In this work, we have investigated the feasibility of us-
ing a skeletal task farm to schedule divisible workloads and,
consequently, enhance the performance of the correspond-
ing parallel programs. Being agnostic to the application it-
self, our methodology has deployed a pragmatic approach
in order to instrument the parallel program at compilation,
allowing it to adapt at execution.

By implementing a realistic parameter sweep application,
we have evaluated our approach using two different scenar-
ios:

1. a single-round scheduling, which employed times-only
and statistical calibrations with no feedback, and

2. a multi-round scheduling with times-only calibration and
periodic adaptation throughout the execution. In addition

to this continual adaptivity, this case has illustrated the
ability to automatically discriminate between the multi-
and single-round scheduling by introducing an install-
ment factor based on the dispersion of the calibration
times of the participating nodes.

While the suggested formula for the installment factor
has helped us to construct a useful DLT heuristic based on
the dispersion of the nodes and the number of tasks, fur-
ther research is required to demonstrate its optimality and/or
uniqueness. We strongly believe that as long as the install-
ment factor is correlated to tasks and dispersion, it will pro-
vide a useful guidance to steer the number of scheduling
rounds.

As proven by the uni-processor figures, the load in the
system directly impacts upon the execution times. Hence, it
is crucial to note that the adaptive method shows advantages
regardless of the system load. In other words, the adaptive
farm is able to adjust itself to the dynamism of the environ-
ment.

Section 5.1 has provided the evidence that the calibration
phase of the worker function on the nodes can considerably
enhance the performance of a task farm, and F can help in
predicting variations in system conditions.

The corrective properties of linear regression to relieve
exogenic factors in larger runs, such as the arrival of ad-
ministrative jobs or indiscriminate interactive usage, were
thought to be useful. However, times-only calibration has
proven to be the most effective for our purposes.

From an efficiency perspective, it is arguable that the
single-round performance ought to be enhanced by con-
veying dynamic re-calibration into the distribution when
any performance bottlenecks arise. Therefore, we have pre-
sented the evaluation of the generic multi-round case which

J Sched

automatically calculates the installment factor based on the
dispersion of the calibration times of the nodes, and per-
vades the impact of changes in the nodes’ fitness through
a periodic adjustment. Despite their modest performance re-
sults, the proposed algorithms have substantial implications
for self-scheduling and load-balancing.

With respect to the analysis of divisible workloads, the
findings of the case study provide an alternate approach to
the single-round scheduling problem using forecasts of re-
source utilisation. This tacitly reinforces the notion that al-
though heterogeneous systems are often highly dynamic,
forecasts based on historical resource utilisation can accu-
rately provide some guidance for distributing workloads.

References

Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., &
Robert, Y. (2004). Scheduling strategies for master-slave tasking
on heterogeneous processor platforms. IEEE Transactions on Par-
allel and Distributed Systems, 15(4), 319–330.

Beaumont, O., Legrand, A., & Robert, Y. (2003). Scheduling divisi-
ble workloads on heterogeneous platforms. Parallel Computing,
29(9), 1121–1152.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y., & Yang, Y.
(2005). Scheduling divisible loads on star and tree networks: Re-
sults and open problems. IEEE Transactions on Parallel and Dis-
tributed Systems, 16(3), 207–218.

Bharadwaj, V., Ghose, D., Mani, V., & Robertazzi, T. G. (1996).
Scheduling divisible loads in parallel and distributed systems. Los
Alamitos: IEEE Press.

Bharadwaj, V., Ghose, D., & Robertazzi, T. G. (2003). Divisible load
theory: a new paradigm for load scheduling in distributed systems.
Cluster Computing, 6(1), 7–17.

Blazewicz, J., Drozdowski, M., & Markiewicz, M. (1999). Divisible
task scheduling—concept and verification. Parallel Computing,
25(1), 87–98.

Cariño, R., & Banicescu, I. (2008). Dynamic load balancing with adap-
tive factoring methods in scientific applications. The Journal of
Supercomputing, 44(1), 41–63.

Cole, M. (1989). Algorithmic skeletons: structured management of
parallel computation. Research monographs in parallel and dis-
tributed computing. London: Pitman/MIT Press.

Cole, M. (2004). Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming. Parallel Computing,
30(3), 389–406.

Comino, N., & Narasimhan, V. (2002). A novel data distribution tech-
nique for host-client type parallel applications. IEEE Transactions
on Parallel and Distributed Systems, 13(2), 97–110.

Drozdowski, M. (1997). Selected problems of scheduling tasks in
multiprocessor computer systems. Monographs: Vol. 321. Poz-
nan: Poznan University of Technology Press. http://www.cs.put.
poznan.pl/mdrozdowski/txt/h.pdf. Last Accessed: 17 Jan 2009.

Drozdowski, M., & Lawenda, M. (2007). Multi-installment divisible
load processing in heterogeneous distributed systems. Concur-
rency and Computation: Practice and Experience, 19(17), 2237–
2253.

Drozdowski, M., & Lawenda, M. (2008). Scheduling multiple divisible
loads in homogeneous star systems. Journal of Scheduling, 11(5),
347–356.

Galassi, M., Davies, J., Theiler, J., Jungman, B. G. G., Booth, M., &
Rossi, F. (2005). Least-squares fitting. In GNU scientific library
reference manual, network theory (Chap. 36, pp. 361–369). Bris-
tol.

Ghose, D., Kim, Hj., & Kim, Th. (2005). Adaptive divisible load
scheduling strategies for workstation clusters with unknown net-
work resources. IEEE Transactions on Parallel and Distributed
Systems, 16(10), 897–907.

González-Vélez, H. (2005). An adaptive skeletal task farm for grids.
In Lecture notes in computer science: Vol. 3648. Euro-Par 2005
(pp. 401–410). Berlin: Springer.

González-Vélez, H. (2006). Self-adaptive skeletal task farm for com-
putational grids. Parallel Computing, 32(7–8), 479–490.

González-Vélez, V., & González-Vélez, H. (2005). A grid-based sto-
chastic simulation of unitary and membrane Ca2+ currents in
spherical cells. In CBMS’05, IEEE, Dublin (pp. 171–176).

González-Vélez, V., & González-Vélez, H. (2007). Parallel stochastic
simulation of macroscopic calcium currents. Journal of Bioinfor-
matics and Computational Biology, 5(3), 755–772.

Hagerup, T. (1997). Allocating independent tasks to parallel proces-
sors: an experimental study. Journal of Parallel Distributed Com-
puting, 47(2), 185–197.

Kruskal, C. P., & Weiss, A. (1985). Allocating independent subtasks on
parallel processors. IEEE Transactions on Software Engineering,
11(10), 1001–1016.

Legrand, A., A, Su., & Vivien, F. (2008). Minimizing the stretch when
scheduling flows of divisible requests. Journal of Scheduling,
11(5), 381–404.

Li, P., Veeravalli, B., & Kassim, A. (2005). Design and implementation
of parallel video, encoding strategies using divisible load analysis.
IEEE Transactions on Circuits and Systems for Video Technology,
15(9), 1098–1112.

Liu, J., Saletore, V., & Lewis, T. (1994). Safe self-scheduling: a paral-
lel loop scheduling scheme for shared-memory multiprocessors.
International Journal of Parallel Programming, 22(6), 589–616.

Martens, H., & Naes, T. (1989). Multivariate calibration. Chichester:
Wiley.

Polychronopoulos, C. D., & Kuck, D. J. (1987). Guided self-
scheduling: a practical scheduling scheme for parallel supercom-
puters. IEEE Transactions on Computers, 36(12), 1425–1439.

Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. Com-
puter, 36(5), 63–68.

Robertazzi, T. G. (2008). Divisible load scheduling. Web site. http://
www.ece.sunysb.edu/~tom/dlt.html. Updated: 18 Oct 2008. Last
Accessed: 17 Jan 2009.

van der Raadt, K., Yang, Y., & Casanova, H. (2005). Practical divisible
load scheduling on grid platforms with APST-DV. In IPDPS’05,
Denver, p. 29b.

van Dorst, W. (1996). The quintessential Linux benchmark: all about
the “BogoMips” number displayed when Linux boots. Linux Jour-
nal (21es), 4.

Viswanathan, S., Veeravalli, B., & Robertazzi, T. G. (2007). Resource-
aware distributed scheduling strategies for large-scale computa-
tional cluster/grid systems. IEEE Transactions on Parallel and
Distributed Systems, 18(10), 1450–1461.

Wolski, R., Spring, N., & Hayes, J. (1999). The Network Weather Ser-
vice: a distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems, 15(5–6),
757–768.

Yang, Y., van der Raadt, K., & Casanova, H. (2005). Multiround algo-
rithms for scheduling divisible loads. IEEE Transactions on Par-
allel and Distributed Systems, 16(11), 1092–1102.

Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., & Legrand, A.
(2007). On the complexity of multi-round divisible load schedul-
ing (Tech. Report 6096). INRIA, ISSN: 0249-6339.

http://www.cs.put.poznan.pl/mdrozdowski/txt/h.pdf
http://www.cs.put.poznan.pl/mdrozdowski/txt/h.pdf
http://www.ece.sunysb.edu/~tom/dlt.html
http://www.ece.sunysb.edu/~tom/dlt.html

	Adaptive statistical scheduling of divisible workloads in heterogeneous systems
	Abstract
	Introduction
	Contribution and structure

	Related work
	Adaptive task farming
	Calibration
	Statistical calibration

	Execution
	Installment factor
	Adapting the task size

	Implementation
	Experimental evaluation
	Single-round scheduling
	Multi-round scheduling

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

