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Abstract

In the past, most significant improvements in computer performance have been

achieved as a result of advances in simple device technology. The introduction of

large scale parallelism at the inter-processor level now represents a viable alter-

native. However, this method also introduces new difficulties, most notably the

conceptual barrier encountered by the user of such a system in efficiently coor-

dinating many concurrent activities towards a single goal. Thus, the design and

implementation of software systems which can ease this burden is of increasing

importance. Such a system must find a good balance between the simplicity of

the interface presented and the efficiency with which it can be implemented. This

book considers existing work in the area and proposes a new approach.

The new system presents the user with a selection of independent “algorithmic

skeletons”, each of which describes the structure of a particular style of algorithm,

in the way in which “higher order functions” represent general computational

frameworks in the context of functional programming languages. The user must

describe a solution to a problem as an instance of the appropriate skeleton. The

implementation task is simplified by the fact that each skeleton may be considered

independently, in contrast to the monolithic programming interfaces of existing

systems at a similar level of abstraction.

The four skeletons presented here are based on the notions of “fixed degree di-

vide and conquer”, “iterative combination” “clustering” and “task queues”. Each

skeleton is introduced in terms of the abstraction it presents to the user. Imple-

mentation on a square grid of autonomous processor-memory pairs is considered,

and examples of problems which could be solved in terms of the skeleton are

presented.

In conclusion, the strengths and weaknesses of the “skeletal” approach are

assessed in the context of the existing alternatives.
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Chapter 1

Generating and Controlling
Parallelism

1.1 Introduction

The task of designing and implementing any part of a computer system is essen-

tially a process of abstraction. The facilities provided by an existing level are used

to construct an implementation of an abstract level with its own, more desirable

properties. In a complete system, many such levels are involved, ranging say from

the design of transistors using the physical characteristics of semi-conductors to

the provision of highly specialised user interfaces built upon some underlying level

of software.

Each abstraction allows us to sacrifice a certain degree of freedom in return for

a more useful and appropriate set of resources. In practice, this is reflected by a

loss in performance of applications designed at higher levels over that which could

be achieved (in theory) by direct implementation at a much lower level. Thus,

a high level program subjected to a series of automatic compilations cannot be

expected to run as quickly as some hypothetical alternative solution, written

directly in micro-code for the same machine and exploiting every available short

cut. On the other hand, the original problem may be so complex as to make

the latter course impossibly difficult. In this way, the abstraction process can

be seen to make a wider range of solutions accessible in practice (though not,

of course, in theory). Furthermore, these higher level solutions reap significant

gains in portability and clarity.

The inevitable decline in performance associated with abstraction has an im-

portant corollary to the effect that the bounds upon the level at which it becomes

impractical to build further abstractions are dictated by the absolute performance

achievable at the hardware level. As hardware power and reliability increases, it
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becomes reasonable to move higher and higher levels of machine from the realms

of theory into practice. For example, while it would have been possible to conceive

of implementing a functional language interpreter on typical 1950’s hardware, the

resulting performance would have been uninspiring to say the least. Run essen-

tially the same program on a machine many thousands of times faster and the

abstraction suddenly provides a very useful, flexible tool.

The historical trends in hardware technology have been towards dramatically

increased miniaturisation, speed and reliability. Complex components can now

be mass produced at low cost. For the computer scientist, probably the most

important development has been the erosion of the distinction between processor

and memory technology, and the erstwhile mismatch in speed and cost between

them. Computer architects may consider processing elements to be as readily

available as were memory cells traditionally. Further technological developments

will emphasise the new freedom. The revolutionary feature of VLSI (and what lies

beyond) is not the increase in straightforward processing speed which it provides,

although this certainly has an important place in the evolution of traditional

systems. Far more significant is the fact that it is now quite possible to build

computers in which thousands of processors operate concurrently to solve a single

problem. It is now practical to increase raw performance by replication as well

as by miniaturisation.

As an idea this is nothing new. In the very first issue of the Communications

of the ACM, Saul Gorn [11] notes that:

“We know that the so-called parallel computers are somewhat faster
than the serial ones, and that no matter how fast we make access and
arithmetic serially, we can do correspondingly better in parallel. How-
ever access and arithmetic speeds seem to be approaching a definite
limit ... Does this mean that digital speeds are reaching a limit, that
digital computation of multi-variate partial differential systems must
accept it, and that predicting tomorrow’s weather must require more
than one day? Not if we have truly-parallel machines, with say, a
thousand instruction registers.”

Thirty years on, the difference is that we can now construct such machines.

However, Gorn also recognised the challenges that would be posed to the system

designer by the new parallel computers:

“But visualise what it would be like to program for such a machine!
If a thousand subroutines were in progress simultaneously, one must
program the recognition that they have all finished, if one is to use
their results together. The programmer must not only synchronize his
subroutines, but schedule all his machine units, unless he is willing
to have most of them sitting idle most of the time. Not only would
programming techniques be vastly different from the serial ones in the
serial languages we now use, but they would be humanly impossible
without machine intervention.”
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Whereas previous developments have slotted into the existing system hierar-

chy with ease, providing increased performance within the recognized framework,

parallel hardware asks new questions. To what extent should the new found

concurrency at the lower levels be reflected in the abstractions built on top? If

the answer is “substantially” then how is parallelism to be presented? If “not at

all” then is it possible to harness the new processing power to simulate existing

structures, but faster? How much faster? These are the questions underpinning

the work presented in this book.

We are concerned with the process of designing and implementing high level

programming systems which can exploit massively parallel hardware. Note that

the word “systems” is used deliberately here in preference to “languages”. We

are more interested in the abstract computational model implied by a particular

language than with a precise syntax. Depending upon the approach taken, the

amount of real language design involved in the process can vary from none at

all to the complete specification of a new language. We will see examples of

both and of instances falling between these extremes in the material presented

in the remainder of this chapter. The new approach proposed subsequently will

be seen to fall towards towards the former end of the scale. It allows the bulk

of a program to be described in an existing language, adding just enough super-

structure to significantly ease the task of parallel implementation. In order to

put these proposals in context, we begin with a review of existing approaches.

1.2 The Spectrum of Existing Systems

A variety of techniques are currently being used to address the problem of building

higher level programming systems upon parallel hardware. When less important

details are filtered out, the resulting systems fall into three rough categories.

The level of abstraction in the first category is high. Users of these machines

are not required to deal with parallelism at all and need have no knowledge of

the implementation to make use of the system. In the second category the degree

of abstraction is reduced. Here, users are required to present explicitly parallel

solutions. However, in doing so they are allowed certain freedoms not afforded

directly by the hardware. The third category contains systems in which the user

is required to specify solutions which use parallelism in a style very close to that

physically present.

The use of a parallel computer to tackle some problem involves encounters with

several well known sources of difficulty. The designer of a parallel programming
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system must decide which of these to handle implicitly and which to leave to

the programmer. In the ensuing discussion we will consider the choices made in

the design of existing systems. It will become clear that these essential problems

are inextricably interwoven and that it makes little sense to consider any one

in isolation. However, in order to set the scene and clarify terminology, we will

briefly present the main characteristics of each.

The most fundamental and obvious task is that of problem decomposition, the

identification of parallelism. Processes must be described which can operate con-

currently to achieve a solution, or some indication of how these can be generated

dynamically must be found. We should be certain (or at least very confident,

in less predictable circumstances) that the parallel solution will be faster than

a traditional sequential solution! Unfortunately, the eventual performance will

be governed by a host of other implementation issues but an optimistic starting

point is clearly essential.

The second problem is that of distribution, the physical exploitation of the

potential parallelism identified by decomposition. We must specify a mapping

from operations which may be executed concurrently to the available processors,

or as before, indicate the mechanism by which this mapping can be achieved

dynamically.

It is most unlikely that decomposition and distribution of a problem will lead

to a situation in which a large number of processes perform entirely indepen-

dent operations upon entirely independent data. More realistically, our parallel

processes will perform sequences of similar or identical tasks upon data which

is shared, to a greater or lesser extent. The third problem to be addressed is

that of implementing this code and data sharing. The obvious choice is between

the replication of information (with the associated costs in space and consistency

maintenance) and direct sharing (with the problems of granting and controlling

access efficiently).

Finally, it is necessary to consider the precise mechanisms by which the sharing

of resources (whether code or data) is to be described and controlled. Communi-

cation and synchronization underlie the whole notion of concurrent operation and

will be present in at least one and probably many levels of any parallel system.

We are now in a position to examine the relevant characteristics of our three

categories more closely. In doing so, we inevitably omit many other fascinating

aspects of the systems involved. References [29, 4, 2, 10] provide good starting

points for further reading.
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1.2.1 Highly Abstract Systems

The first category contains systems in which the abstract machine presented to

the user is entirely devoid of parallelism and is completely isolated from the un-

derlying implementation mechanism. Such systems typically present functional,

logical or data-flow models of computation. They are often referred to as be-

ing “declarative” systems, since the programmer makes a series of declarations

which define the properties of a solution to some problem, rather than specifying

a precise series of operations which will lead to the solution. Thus, languages of

this type (at least in their pure forms) are not only non-parallel but also non-

sequential, having no notion at all of a flow of control.

All truly functional languages are based on the lambda calculus. This is a

very simple, but powerful language of expressions and transformation rules on

expressions. The only objects present are identifiers, single argument function

definitions (“abstractions”) and applications of functions to arguments. A “pro-

gram” consists of a collection of such objects and its execution amounts to eval-

uating the result of applying a top-level function to an argument. This type of

function application is the only operation present and involves the replacement

of a function-argument pair with a copy of the function body (from its definition)

in which occurrences of the “dummy” or “free” variable have been replaced by

copies of the actual argument (which may of course itself be a function appli-

cation). Functions and arguments may be nested. This simple system can be

shown to provide as much computational power as any other fundamental com-

puting mechanism (e.g. the Turing machine). A particularly powerful aspect of

the model is the ability to define “higher order functions”, to which we will re-

turn in chapter 2. Other convenient features such as multiple argument functions,

localised definitions and data structures may all be defined as lambda expressions.

In the same way, a high level functional program is simply a function defini-

tion which refers to other functions in its body. A “call” of the program involves

supplying arguments to this function and “execution” consists of employing the

function definitions (conceptually using the application by substitution technique

from the lambda calculus) to obtain an alternative, but equivalent representation

of the function and arguments pair. This “output” is simply a more useful rep-

resentation of the original program and “input”, in the way that “6” is a more

useful representation of “(4 − 2) ∗ 3”.

The important point is that execution may progress from the initial to the final

representation in any fashion which maintains equivalence. In particular, it will

often be possible to execute many parts of the transformation concurrently since
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the conventional problems associated with changes of state have been discarded

along with the notions of state and store themselves (at least at this abstract

level). An obvious way to represent the program as it evolves is as a graph, in

which nodes represent function applications. The children of a node are the argu-

ments of the corresponding application. The process of expanding and contracting

the graph (i.e. program evaluation) is referred to as “graph reduction”.

With this approach, the task of decomposition to generate parallelism is sim-

ple. The abstract execution model allows candidate nodes to be expanded at

any time, while function applications may be evaluated as soon as arguments are

available. Thus, a potentially parallel process is generated every time a node

reaches one of these states.

It is important to realise that this does not imply that every functional pro-

gram is actually highly parallel. As a trivial example, consider defining a function

to compute factorials. The obvious definition will look something like this:

factorial 0 = 1
factorial n = n ∗ factorial (n − 1)

Such a function would execute sequentially on a typical graph reduction machine,

irrespective of the number of available processors. A more complex definition

notes that

factorial 0 = 1
factorial n = product 1 n

product a a = a

product a b = (product a ⌊a+b
2
⌋) ∗ (product(⌊a+b

2
⌋ + 1) b)

which produces significant potential parallelism. Although declarative systems

involve no explicit notion of execution sequence, it is unfortunately clear that

some knowledge of the execution mechanism can be used to great effect by the

programmer.

The main problem for the implementor of a functional system comes with the

realistic distribution of the available parallelism. In graph reduction, the structure

of the graphs produced is specific to each problem instance. Furthermore, this

structure only becomes apparent during execution and evolves dynamically. Thus

any mapping scheme which tries to distribute the graph and the associated work-

load effectively must be both dynamic and general purpose. This problem can be

tackled in two ways. The first approach [16] attempts to balance work dynamically

in a localised manner by allowing idle processors to grab work (effectively portions

of the expanding graph) from busy neighbours. Contrastingly, schemes such as

[7] take a more global view. The graph is stored as a globally accessible “pool
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of packets” which in practice is distributed across the local processor memories.

An interconnection network deals with accesses to non-local packets. There is a

difficult trade-off here between the locality of access and lack of global scheduling

of the former method, and the more complicated global access and distribution

of the latter.

An alternative approach [15] recognizes the difficulty of automating distribu-

tion and allows the introduction of program annotations which provide a means

of influencing the execution mechanism. These are guaranteed to preserve the

semantics of the computation, but may improve its efficiency. Such additions

may be argued to move the model out of this category, in that the programmer is

now partly (or even wholly) responsible for the task of decomposition. Similarly,

[20] discusses a language which allows program partitioning and interconnection

structure to be described in a declarative style.

The distinction between “data” and “code” in a functional system is blurred

– both are intermingled in the graph during expansion, reflecting their common

foundations in the lambda calculus. However, it is possible to recognize that

the function definitions play a more static role, in some ways similar to that of

more conventional code. They provide templates describing the expansions and

reductions which may be applied to the graph. Most systems [7, 16] provide each

processing element with a copy of all the function definitions which may be used

during execution to manipulate independent areas of the graph concurrently.

A functional program contains no explicit notions of communication or syn-

chronization. However, in a realistic implementation these are introduced as a

by-product of decomposition, distribution and sharing, and must be handled by

the system itself (and consequently by the implementor of that system).

The data flow model of computation [9] arrives at a similar point to graph

reduction by a different route. Here the underlying principle is the representa-

tion of a computation as graph of “operator” or “instruction” nodes connected

by edges along which data items flow. Each node receives data “tokens” along

its input edges, performs some simple calculation and distributes resultant data

tokens on its output edges. The basic control mechanism is that a node may only

perform its operation once it has received data tokens on all of its inputs. Thus,

nodes may execute in parallel, subject only to the availability of data. A typical

data-flow graph will be re-entrant and for any realistic problem, there will proba-

bly be more operator nodes in the graph than there are available processors. The

processes of associating output tokens with appropriate operator nodes and of

deciding which are ready for execution is known as “matching”. Ready operators
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must then be selected for actual execution. These processes are usually separated

(at least in principle) from the “execution units”.

The important difference between this approach and those discussed above

is that whereas a graph reducer manipulates the graph by modifying both data

and the “instruction code” itself, a data flow graph is statically defined by the

program and only data is manipulated. Languages built upon these concepts

are still “functional” but may be dressed up to resemble (at least superficially)

sequential imperative languages [3], particularly if “scientific” applications are

envisaged. The compilation process from high level language to the underlying

data-flow graph has some similarity to the process of expansion in graph reduction

and amounts to the decomposition phase of parallel implementation.

There is nothing analogous to the function definitions of functional language

schemes, since these have been compiled away. Consequently all the problems of

distribution, communication and synchronization are associated with the data-

flow graph and the interactions between its node operators. Although the struc-

ture of the graph is static, it will only be apparent during (or even after) execution

that some sections of the graph were more active than others. Thus, a good dis-

tribution scheme is difficult to obtain. Existing solutions follow the two patterns

observed in the functional case in choosing whether or not to attempt to localise

operations upon certain portions of the graph to particular processors.

Finally, logic languages are based on Horn clauses, a restriction of first order

(predicate) logic. The model of computation centres on the definition and inves-

tigation of relationships described as predicates, among data objects described

as arguments to these predicates. In similar fashion to functional programming,

the specification of a computation consists of a collection of such predicates and

their associated clauses. The role of the outermost function application, whose

value is assessed in a functional system, is now played by the outermost predicate

together with its arguments. Given fixed arguments, the interpretation is similar

– “execution” consists of deciding whether the predicate is true given the argu-

ments and the associated definitions. More interestingly, it is possible to specify

the outermost predicate with unbound arguments. The purpose of execution is

now to find bindings to the arguments which allow the predicate to be satisfied,

or to determine that no such bindings exist.

At an abstract level, the process of evaluation may be seen as expanding and

searching a tree of possibilities presented by consideration of the various depen-

dencies between appropriate predicates and clauses. As with graph reduction,

the semantics of pure logic languages often allow this process to proceed at many
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points in parallel. Similarities between the two styles are emphasised in [8].

1.2.2 Idealised Parallel Systems

The systems discussed in the first category were characterised by the isolation

of the abstract (or idealised) design space seen by the programmer from the

parallel, distributed implementation. The second category considers machines

in which the two levels are closer together and in particular, those in which

the programmer’s world includes explicit parallelism. The programmer is now

responsible for decomposing the solution into a collection of concurrent processes.

The abstraction remaining is concerned solely with the mechanisms by which such

processes cooperate, and may take one of two closely related forms.

In the first, all processes are presented with equal access to some kind of shared

memory space. In its loosest form, any process may attempt to access any item

at any time. A variety of refinements of the scheme exist, each with its own rules

defining the semantics which resolve or forbid clashing access requests. In a typical

model, each such access is assumed to take unit time. The implementation task

is to devise a scheme which can satisfy any legal combination of requests within

some reasonable time on the realistic machine.

The second flavour of idealised machine discards shared memory based coop-

eration in favour of some form of explicit message passing. Typically each process

is given the power to pass a message to any other in unit time, concurrently with

a collection of other such exchanges (i.e. a complete communication network is as-

sumed to exist). Once again the implementation task is to mimic such behaviour

in reasonable time.

In the “shared memory” camp, much theoretical work on parallel algorithms

focuses on the use of a variety of classes of idealised parallel machines (e.g. see

[10]). Such machines consist of a collection of n standard uni-processors each

with its own local memory. Additionally, they have access to an m location

shared memory (SM), upon which they may operate during any instruction, with

a variety of rules governing conflicts. In the most restrictive case, exclusive-

read exclusive-write (EREW), no two processors may attempt to access the same

shared memory location during the same time step. Concurrent-read exclusive-

write (CREW) machines allow an arbitrary number of read accesses to the same

location but require writing to be unique, while CRCW models allow completely

arbitrary access to any locations during the same time step. Again, a variety

of schemes govern the semantics of clashes, ranging from those in which a write

clash results in a random (i.e. junk) value being recorded, through those in which
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a randomly selected processor is successful and on to those in which the successful

processor is chosen deterministically (e.g. by highest processor identity or smallest

written value). The result of a read coinciding with several writes can be similarly

defined. Some models augment the instruction set to include operations such

as “fetch and add”. Concurrent execution of several such operations on some

location l produces the same result as if the instructions had been executed in

some unpredictable sequential order. Thus, each participating processor receiving

a copy of the original contents of l incremented by a unique subset of the other

“added” values, while l itself has its contents incremented by the sum of all the

values specified in the instructions.

Proposed implementations of such machines associate each processor with a

real sequential processor and its own local memory. The real processors are typ-

ically connected by some sparse network with unit time fixed length message

passing between immediate neighbours only. Any other communications are for-

warded through the network to their destinations. Since in reality there is no

centralised memory, the idealised SM locations must be distributed across the

local memories. Processors are required to cooperate in the simulation of the

access patterns specified by each idealised step.

Straightforward solutions map each SM location to a single local memory

location. Thus, simulation of a particular memory access requires message passing

between the active processor and the one responsible for the location. Realisation

of a complete idealised step is therefore reducible to the problem of concurrently

routing a set of such messages around the network. This is closely related to the

issue of sorting on networks and a variety of routing schemes have emerged, each

with particular networks in mind. Useful results are obtained by the introduction

of hashing techniques [26] to generate the shared to local memory mapping and of

randomising routing phases [37] intended to alleviate the problems associated with

awkward message permutations. In spite of good average or expected behaviour,

any such scheme is vulnerable to steps in which all processors attempt to access

locations stored by the same real processor. These can occur whenever m ≥ n2,

and for fixed degree networks immediately imply an n fold simulation slow down,

a performance level which could be matched by a single processor1.

A proposed remedy to this problem [26] is to keep multiple copies of each

SM location in different real processor memories and to access only the most

convenient. Initially this was proved successful only for dealing with multiple

1This is true even of EREW models, since it is not necessary that the n requests refer to the
same location but merely to the same processor’s local memory.
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reads. However, in a striking paper Upfal and Wigderson [36] show that the

technique can be efficiently extended to include concurrent write steps. Several

practical projects, such as the New York University “Ultracomputer” [12] have

drawn from this pool of theoretical ideas.

The occam language [18] 2 takes a contrasting standpoint which bases coop-

eration on explicit process to process message passing, with no shared memory.

Although theoretically close to the shared memory model, the point-to-point com-

munication scheme encourages a different approach to problem solving. An occam

process may be connected to any number of others by one way communication

channels. A process runs asynchronously, accessing only its own exclusively local

memory until it wishes to communicate with another process. Communication

of some message down a channel takes place only when both sending and re-

ceiving processes indicate readiness (by attempting to execute output and input

statements respectively). The sending process specifies the message, while the re-

ceiving process indicates the location in its memory where the new value should

be stored. In this manner, explicit synchronisation of processes can be achieved.

Write clashes are explicitly prohibited by a syntactically enforced rule which for-

bids processes running concurrently to write to common shared variables.

The occam programmer is required to consider the decomposition of data into

independent sets in addition to the decomposition of work into processes. Any

sharing of data must be programmed explicitly by message passing. In theory,

occam programs allow any complexity of process connection network, including

complete interconnection.

In terms of handling the key issues in the use of parallelism introduced pre-

viously, the machines in this category exhibit a clear shift in responsibility from

system to user. No support is provided for problem decomposition, with the

programmer explicitly specifying the processes which may operate concurrently.

There is a split over the issue of data sharing. In the shared memory abstrac-

tions all data is shareable and the system takes responsibility for implementation.

In those without shared memory, the user is required to partition data between

processes and handle sharing explicitly by message passing. Code sharing is not

an issue, while only the non-shared memory machines typically provide facilities

for explicit inter-process communication. The burden here is still carried by the

system which provides abstractions to more general networks than are physically

present in hardware.

Finally, a variety of approaches are evident to the issue of synchronisation.

2occam is a trademark of the INMOS group of companies.
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At one extreme, the straightforward progression through a shared sequential pro-

gram provided in several theoretical models relieves the user of any difficulty. The

system handles the problem of bringing together divergent threads introduced by

data dependent branching. The occam model requires any synchronisation to be

expressed explicitly but the semantics of its communication primitives make this

relatively simple. The more practical shared memory models are the least help-

ful here, requiring careful use of shared variables to ensure process rendezvous,

though instruction sets augmented by “fetch and add” style instructions are use-

ful.

1.2.3 Low Level & Restrictive Systems

The final category completes the journey through the levels of abstraction afforded

by parallel systems. It includes systems in which the user is required to consider

both explicit parallelism and the realities of the hardware topology in designing

a solution.

The Meiko Computing Surface [25] is a good example. Computing power

is provided by a large collection of independently programmable processing el-

ements, each with private local memory and four bi-directional communication

channels. All channels are linked to a central switch where they may be connected

in pairs to realise any network of degree four between the processors, as specified

by the user. An occam solution to the problem in hand is constructed, but the

user is responsible for the explicit mapping of occam processes to processors and

channels to actual communication links. Thus, while communication between pro-

cesses sharing the same processor is unlimited, actual parallelism between them is

non-existent. On the other hand, communication between genuinely concurrent

processes (on distinct processors) is restricted by the selected topology.

Turning to the key issues, it is clear that systems such as this represent a

completion of the transition from system to user responsibility. The program-

mer is entirely responsible for problem decomposition and distribution. Code

sharing will be implemented by simple replication, while any data sharing and

communication required must be programmed explicitly with direct reference to

the physical machine topology. Some support for the mechanics of synchronisa-

tion may be provided (e.g. by machines which run occam code on each node) but

it will be up to the programmer to determine how and when to use this.
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1.3 Conclusions

The preceding section categorised approaches to the problem of providing a useful,

general purpose programming model combined with an implementation efficiently

harnessing the computational power of parallel hardware.

The highly abstract approach of the first category has the obvious advantage

that the user specifies solutions in familiar, well understood languages, free of

concurrency. Against this must be weighed the difficulties of implementation and

the corresponding loss of power over that available from the bare hardware. The

fact that the degree of exploitable parallelism is dependent upon the program and

is variable throughout execution makes problem independent analysis extremely

difficult. Existing experimental results (e.g. [22]) report on only relatively small

scale machines.

Algorithms used to implement the idealistic parallel machines of the second

category are far more amenable to traditional analyses of time complexity. The

algorithms usually involving routing and sorting across networks and it is often

possible to estimate worst case performance to within a constant factor. Often an

algorithm’s complexity will be independent of the details of the particular step

being simulated. In these cases it is possible to provide accurate estimates of the

run time for a complete user program by multiplying the number of idealised steps

by the simulation slow-down per step. Thus, in return for the effort of specifying

an explicitly parallel solution, the user is rewarded with a more concrete estimate

of run time. On the other hand, the standard overhead is incurred whether or

not a particular program uses the full power of the simulation.

Contrastingly, the explicitly parallel systems in the third category incur only

constant overheads, since there is no significant implementation cost. Programs

are mapped directly onto the hardware by the user, performing as expected, and

a cunning solution can extract the maximum achievable performance. In practice

there are many examples of processor networks whose topology is especially well

suited to the structure of certain problems.

In summary, existing systems either present a relatively friendly abstraction

with hidden, unpredictable overheads (the first category), a harder to use abstrac-

tion still with in-built but better understood overheads (the second category) or

a low-level, awkward abstraction essentially without overheads.

While varying widely in the degree of machine independence provided, all of

these approaches share one common principle. In each case, the programming

model presented to the user is intended to be “universal” in the sense that its full

range of mechanisms may be used in the specification of any computation. In the
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more abstract machines this freedom has the result of allowing the description of

computations which will be difficulty to implement in parallel. In the low level

machines, geared directly towards parallel implementation it produces systems

which are hard to use in many situations. The work presented in the subsequently

proposes and investigates a new approach to the problem, based on the rejection

of the concept of a single, universal programming model.
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Chapter 2

Algorithmic Skeletons – A New
Approach

In this chapter we introduce the “algorithmic skeleton” as the concept which

will underpin our proposed approach to the provision of high level programming

systems for parallel machines. We begin by discussing the lessons which can be

learned from the survey introduced in chapter 1 and consider their implications.

Section 2.2 describes the overall structure of the new approach.

In subsequent chapters we will present specifications and possible implementa-

tions of four candidate skeletons. Consequently, section 2.3 introduces the model

of parallel hardware upon which the implementations will be built, while sec-

tion 2.4 discusses the methods which will be employed in their construction and

the measures which will be used to predict their efficiency.

2.1 Motivation

In the first chapter we considered a variety of programming systems which shared

the goal of facilitating the efficient use of parallel hardware. Our investigation

focussed on the issues of problem decomposition, distribution, code and data

sharing, communication and synchronisation. We examined the ways in which

particular systems divide responsibility for these between implementation and

programmer. In retrospect, the resulting categorisation may be seen to be closely

linked to the way in which systems handle the first two issues. Thus, in the

first category full responsibility for both is allocated to the implementation, the

second category leaves decomposition to the user but handles distribution in

the implementation, while the third category makes the programmer deal with

both. This neat correspondence should not be surprising, since decomposition

and distribution are clearly the two most fundamental issues involved. While
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solutions to the other problems are important and will have serious implications

for performance, the type of sharing and communication required is determined

by the way in which decomposition and distribution are handled. Without a

parallel algorithm there can be no messages to exchange or data to share.

More importantly, the survey also illuminated one common principle which

unites all categories. This is the notion that the model of computation and its

associated programming constructs should be “universal” in the sense that they

may be employed unrestrictedly in solving any problem. The motivating the-

sis for our new approach is that this “universality” is at the root of the serious

difficulties encountered by existing approaches when dealing with problem decom-

position and distribution. Thus, at the more abstract end of the spectrum, the

expressiveness of the languages allows the programmer to specify computations

which are either inherently sequential or so obscurely parallel that any realistic

implementation will struggle to find a good decomposition and distribution strat-

egy. As the simple “factorial” example demonstrates, this can be true even if

the problem itself does admit an implicitly parallel solution. At the other end

of the spectrum, systems targeted towards specific hardware have such restric-

tive models of computation (e.g. “anything that looks like a hypercube”) that

the programmer may struggle to find good solutions to problems with anything

but the most natural and obvious decomposition. Between these extremes, the

difficulties are more equitably shared between system and programmer, but must

still be overcome.

Following from this analysis of the situation, we are tempted to conclude that

the provision of a single, universal programming framework is incompatible with

the goal of uniformly efficient parallel implementation. If the latter property is

to remain a target then we must discard the former. However, our rejection of

“universality” should not also throw out the high level of abstraction and machine

independence which we associate with good systems. Indeed, our target system

should not even be explicitly parallel, since we have already noted that problem

decomposition is a difficult task for the programmer. Our goal then, is to define

a programming system which, while appearing non-parallel to the programmer,

admits only programs which it can guarantee to implement efficiently in parallel.

The solution which we propose draws its inspiration from two sources. Firstly,

we note that the challenge of designing good algorithms in a purely sequential

context has been the subject of extensive study. As experience has grown, a

selection of generalised algorithmic techniques has emerged, each well suited to

a certain variety of problems but inappropriate for others. For example, we are
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familiar with concepts such as “divide and conquer”, “dynamic programming”

and more recently “simulated annealing”. When investigating a new problem we

may try to formulate a solution in one of these well known styles. Since we already

know how to implement the essential computational structure of each technique,

it will only be necessary to introduce problem specific details to produce a new,

tailor-made program.

An analagous process can provide the foundation of our new system. We

must identify a similar collection of algorithmic techniques, each having a com-

putational structure which lends itself specifically to parallel implementation.

Thus, if the essential structure can be parallelized, then any instantiations of the

technique dealing with real problems will also share this property. This is already

beginning to happen. In particular, the inherently parallel qualities of “divide

and conquer” have been noted [22, 28, 14]. However, to produce the kind of ide-

alised system envisaged above, we must go one step further than the development

of a new set of parallel programming “folklore”, describing such good techniques.

Instead, we must aim to embed them within the syntactic structure of the pro-

gramming model in a way which forces the programmer to use one or other of

them as the central structure of every program. Furthermore, we would ideally

like the programmer’s visualisation of these structures to be non-parallel.

Our second source of inspiration suggests a means by which we can achieve

this strict enforcement in a coherent, high-level way. This is the concept of

“higher order” functions which is central to the expressive power of pure functional

languages. We now present a brief introduction to “higher order functions”, for

the unfamiliar reader.

Simple functions accept items of some data type as arguments and return

items of some data type as results. For example, the integer square function

defined

square x = x ∗ x

takes an integer as its argument and returns an integer as its result. The type of

this function can be denoted

square : int → int

Some simple functions are able to operate upon items of more than one data type

because the operations they perform do not inspect the details of the argument

but only its “structure”. A good example is the function “head” which takes a

list of items of some particular type as its argument and returns the first item on

the list as its result. Clearly the type of the items themselves is of no consequence
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and such functions are said to be “polymorphic” 1. Their type can be denoted

using dummy symbols to represent arbitrary types. Thus, “head” has type

head : [a] → a

where square brackets denote “list of” and “a” stands for any type.

Higher order functions are slightly more complicated. Rather than taking

and returning simple data items, they accept other functions as arguments and

return new functions as results. The function which is returned is a structural

composition of the argument functions and possibly some others. Probably the

simplest and most commonly used higher order function is “map”. The single

argument required by map is some function f with type

f : a → b

Remember that a and b can be any, possibly identical, types. The result of

applying map to such an f is another function “map f” of type

(map f) : [a] → [b]

that is, a function which has a list of elements of type “a” as its argument and

returns a list of elements of type “b”. The effect of “map f” is to apply “f” to every

element in the argument list, placing the result in the corresponding position in

the result list. For example, “map square” would have type

(map square) : [int] → [int]

and would return the list of squares of the integers in the argument list. The

important point is that we can regard “map” as a function in its own right, with

type

map : (a → b) → ([a] → [b])

i.e. a function which deals with other functions rather than simple data types.

Higher order functions are precisely the kind of object which we seek to give

a more solid basis to our notion of “generalised algorithmic techniques”. They

do not concern themselves with the lowest level details of particular problems.

Instead, they capture the higher level computational structure of whole classes

of algorithm. Solutions to particular problems can be instantiated by supplying

the “customising” argument functions appropriate to the task in hand. Thus,

we can equally well use map in conjunction with some other simple function to

1i.e. “having many forms”
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produce a different result, using a method which has the same overall structure.

For example, given a function “uppercase” which returns the uppercase equivalent

of its lower case character argument

uppercase : char → char

we can easily use “map uppercase” to transform a list of characters in the same

way

(map uppercase) : [char] → [char]

The high-level algorithm is identical to that of “map square” with only the lower

level details differing. In other words, the use of “map” ties down the essential

structure of our computation, while its argument function produces a problem

specific program which solves the task in hand.

2.2 Algorithmic Skeletons

While higher order functions fit snugly into the syntactic framework of functional

languages, we can also imagine a similar facility in the context of conventional

imperative languages. Here, a higher order function could be represented as a pro-

gram or procedure “template”, specifying the overall structure of a computation,

with gaps left for the definitions of problem specific procedures and declarations.

The fit would be somewhat better in languages which allow procedures to be

passed as parameters. Thus, the system which we are about to propose could

be presented to the programmer in the context of any “base” language, whether

declarative or imperative. Our subsequent use of the term “higher order function”

should be interpreted with this freedom in mind.

The programming model which we intend to investigate can now be described.

In this model, the programmer is presented with a selection of specialised higher

order functions (or similar, depending upon the base language) from which one

must be selected as the outermost function in the program. The programmer

may then use the full power of the language to describe the functions to which

the selected higher order function will be applied to produce the problem specific

final program. The restriction on program structure imposed at the highest level

is the means by which we curb the “universality” problem. Only those programs

whose outermost structure matches one of the acceptable higher order functions

are legal. Having achieved this restriction, we will not be concerned with the

lower level details of program, since these will not affect the essential structure

of the algorithm or its implementation.. Thus, the full power of the “host” lan-

guage can be made available at these levels. We will refer to each suitable higher
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order function as an “algorithmic skeleton”, since it describes the computational

skeleton of an algorithm without overspecifying the details.

It would be quite easy to provide such a facility in a conventional environment,

with no thought to parallelism. We would define “skeletons” for all the famil-

iar algorithmic paradigms and support each with an optimised machine code

implementation into which the problem specific user code would be plugged au-

tomatically. The key to achieving efficient parallel performance for such a model

is to ensure that each of the permissible higher order functions describes a com-

putational structure for which we can find an efficient parallel implementation,

irrespective of the problem specific details. In other words, it should correspond

to a good parallel “algorithmic technique”. Of course, the actual specification of

each skeleton as seen by the programmer need not (and ideally should not) be

explicitly parallel. It is sufficient that it be equivalent to some other explicitly

parallel “skeleton” which the system knows how to implement.

If we are to avoid falling into the trap of trying to implement a universal lan-

guage automatically, it seems that we must restrict ourselves to exploiting only

the parallelism inherent in the basic structure of each skeleton. The lower level

problem specific functions may or may not be parallelizable, but we should ig-

nore them, since to attempt deeper analysis leads us into the the original trap

of “universality”. The implementation task is to parallelize the distribution and

manipulation of data implied by the highest level structure, leaving other func-

tions to be executed entirely sequentially on individual processors as required,

just as user code would slot directly into the structure of an entirely sequential

implementation. This approach has two subsidiary benefits. Firstly, the choice

of language used to describe the problem specific details is only restricted by the

availability of compilers for the sequential processors which comprise the parallel

machine. Secondly, we can always take advantage of the best such compiler, since

the generated code is not required to interact with the parallel super-structure.

In summary, the programmer sees each skeleton as a higher order function

(or program “template” if the base language is imperative) which is one of a

collection of algorithmic tools from which a problem specific program must be

fashioned. Meanwhile, to the system implementor, each skeleton is a generic

computational pattern for which an equivalent, efficient parallel “harnesses” must

be defined. Just as conventional languages require different compilers for different

machines, so each skeleton will require a different implementation for each parallel

machine. As with conventional compilers, these differences will be invisible to

the programmer, who always sees the same machine independent programming
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framework.

In order to contrast our approach to those discussed earlier, it is instructive to

consider the ways in which the issues of problem decomposition and distribution

are handled. The key observation is that the parallel decomposition is already

implicit in the structure of each skeleton. Thus, in selecting a particular skele-

ton (which may either be explicitly declarative or imperative and sequential), the

programmer is also unwittingly selecting a parallel problem decomposition. Sim-

ilarly, the task of distribution has been reduced to the problem of implementing

each of a selection of pre-defined decomposition patterns, one per skeleton. Since

these must only be implemented once (for each hardware topology), they can be

carefully hand-crafted to extract maximum performance. All complete programs

written in terms of the same skeleton will use the same pre-defined implementa-

tion structure with its in-built distribution strategy. Thus, in selecting a skeleton,

the programmer is also selecting an associated distribution plan.

We may throw further light on the proposal by imagining an interactive session

with a “programming environment” which could be constructed around such a

model. Upon activating the system, the programmer might be presented with a

menu listing the available skeletons. Just as with a conventional programming

language, details and examples of these would be described in the accompanying

user’s guide. An appropriate skeleton for the problem in hand would be selected.

Similarly, the programmer would select a base language in which to specify the

procedures and data structures fleshing out the skeleton. The system would

respond by displaying the generic program which describes the operation of the

selected skeleton in the chosen base language.

Finally the system prompts the user to provide descriptions of the data struc-

tures and procedures required to turn the generic skeleton into a complete solution

specification. Provided that these are consistent in terms of the selected language

syntax, the “programming” task is now complete. To initiate a “run” of the pro-

gram it only remains to indicate the location (in the local file system) of a data

structure describing an instance of the problem, just as the name of a Pascal “file

of records” might be specified conventionally.

At this point the system takes over. The data and compiled user code frag-

ments are loaded across the parallel hardware together with the pre-defined sys-

tem code required to implement the selected skeleton (this may already be present

if the local memory is large enough). The hardware executes the skeleton, calling

up user routines as appropriate, and returns an instance of the appropriate data

structure (representing the results) to the file system. The mechanisms imple-
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menting this process are entirely hidden from the user.

A useful comparison can be made with the “routine library” facility, often

found as part of a conventional programming model. Here, a collection of very

specific (at least when compared with the skeletons) collection of program mod-

ules is provided. An appropriate selection of routines is made, and conventional

language constructs are used to build these into a program which solves the prob-

lem. The user is required to conceive of and describe the overall solution, but is

given help with the details. In contrast, the skeletal machine presents a collection

of ready made (and invisibly implemented) frameworks. The programmer’s task

is to select one and fill in the details. Our long term goal is to attain the prop-

erty of being “general-purpose” by providing a wide enough range of individually

specialised options, rather than a single, all-purpose language.

2.3 Parallel Hardware

If our proposed system is to be shown to be genuinely useful, it will not be

sufficient to show that each skeleton encapsulates a good parallel problem decom-

position. It will also be necessary to show that an efficient distribution of this

parallelism can be implemented on a realistic parallel machine. Subsequent chap-

ters will sketch and analyse such implementations, which will all be described in

terms of one machine model. This section introduces our choice of this underlying

hardware. It must be emphasised that this selection and the corresponding imple-

mentation represents only one possible instantiation of our “skeletal machine”.

There is nothing inherent in the high level specifications which ties us to any

particular model of parallel hardware. Many other possible implementations can

be envisaged. Our purpose here is simply to show that one unarguably realistic

implementation could be constructed.

As noted in section 1.1, the recent technological drive has been towards provid-

ing large scale replication of processing and storage elements, sharing the same

design and fabrication processes. It is essential that the magnitude of these

advances is not lost upon the designer of programming systems. Parallel im-

plementations of abstract machines should be designed to make effective use of

essentially indefinitely expandable numbers of significantly powerful components.

Of course, any real machine sitting in the corner of a room is most definitely of a

fixed, finite size. However, it is vital that systems be designed in such a way that

substantial hardware expansion can be accommodated within a uniform frame-

work. To design a highly efficient ten processor machine which grinds to a halt
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when expanded to a hundred processors is to disregard the real significance of the

new hardware. For this reason, performance analyses of the asymptotic (in the

number of processors) type employed in this text must initially carry more weight

than experimental or simulated results derived from small scale implementations.

It is most important to get the broad principles right first and to worry about

the details later.

The range of existing and proposed parallel hardware is diverse. However,

to provide coverage of sufficient depth for the our purposes, it is possible to

isolate the relationships between three types of hardware object as being of prime

importance. These are the processing elements, the memory modules and the

interconnection network.

The issue relating processing elements to memory modules concerns the ques-

tion of whether particular elements are associated physically with particular mod-

ules. For example, the Computing Surface [25] is constructed from a collection of

independent processor-memory pairs. Each processor has exclusive access to its

own memory module at the hardware level – non-local access must be arranged

by message passing in software. On the other hand, processors in the New York

University Ultracomputer [12] are independent of any particular memory module.

Access capability, via the network, is equally distributed. This equality is both

a strength and a weakness. By removing the problems associated with arranging

access to “distant” data it also prohibits any super-imposed system from exploit-

ing locality to improve performance. In our selected hardware we take the former

approach of associating each processor with a unique memory module. We will

attempt to exploit this locality in our implementations.

The other important area concerns the network structure and its degree of

integration with the processors and memories. In terms of structure, a wide vari-

ety of networks have been considered previously, ranging from the simplest “bus”

scheme, in which every element competes for access to the single communication

link, to complete interconnection schemes in which every element has a distinct

connection to every other. Between these extremes range rings, grids, trees, shuf-

fles hypercubes etc. In terms of integration we must decide whether processors

and memory should be distributed throughout the network and active within it,

or if they should they sit beside it, feeding in requests and receiving replies?

Again, the choice essentially concerns the presence or absence of a notion of

locality. Once more, for our purposes, a decision is made in favour of its presence.

Although we cannot hope to arrange for every memory access to refer exclusively

to local memory, it should be possible to exploit some degree of near-neighbour
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locality . This will only be possible if the notion of “neighbour” has any meaning

and if the processors themselves influence the flow of data. Thus, in our selected

hardware, processor-memory pairs will be located at the vertices of the selected

network, actively forwarding non-local messages, requests and so on.

An immediate implication of this decision for the choice of a particular network

is that the level of connectivity between physical elements must be sparse. Bearing

in mind that we expect the number of processors and memories in use to be

large, it is not reasonable to expect a single component (e.g. a bus) to connect

directly to many other components and still provide reasonable performance.

A wide variety of networks have been proposed as a basis for general purpose

parallel computers, with consideration given to issues such as degree, diameter,

optimal layout, wire length, regularity and fault-tolerance. The requirement for

sparsity suggests that we should only consider networks whose degree grows as

a small function of the number of elements, or even only those in which the

degree is constant. Furthermore, the poor results for two dimensional layout,

and consequently edge length, of most “logarithmic diameter” networks (e.g. as

reported in [6]) make networks based on hypercubes, shuffles, etc. less attractive

if we are looking towards direct hard-wired implementation as a long term goal.

Of the regular networks with logarithmic diameter, only the tree appears to have

a suitably concise layout (see chapter 3), but the potential bottleneck at the root

and the long edges there count against it. Meanwhile, constant degree rings have

a large diameter.

On the strength of these arguments the square grid, with its poorer than loga-

rithmic diameter, but good degree, layout, wire length and regularity2 is selected

as a foundation for the parallel hardware to be used in the subsequent discus-

sion on implementation. Since the relative importance of the factors considered

is open to debate, it is not suggested that this choice is the only one possible.

Instead, it is simply claimed that this model is unarguably realistic and practical.

Other networks mentioned could equally well be used.

Figure 2.1 shows a small instance (with 16 processors) of the selected hard-

ware3. Each square represents a standard sequential processor with its own mem-

ory. Lines connecting adjacent processors should be interpreted as bi-directional

communication links, capable of transmitting a single word in each direction be-

tween the local memories of neighbours in unit time. In the style of the Inmos

transputer [19], it is assumed that the processor instruction set includes “send”

2And for that matter, fault tolerance, although this is not considered here.
3For convenience, subsequent illustrations shrink the connecting links to have zero length,

and represent the hardware as a simple grid.
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Figure 2.1: A sixteen processor grid

and “receive” instructions which control the links, and that all four links may

operate concurrently. None of the assumptions affect the asymptotic results ob-

tained by more than a constant factor over those achievable with a more restricted

model. Similarly, it can be assumed that all basic word instructions (from a typ-

ically “reasonable” instruction set) take unit time.

The communication links are assumed to follow the occam model [18]. Ex-

change of a datum only takes place when sending and receiving processors are

ready to execute “send” and “receive” instructions respectively. The first proces-

sor ready is forced to wait for its neighbour. Thus, no notion of a global clock

is provided or needed. Although we would expect identical devices to proceed

at broadly the same rate, strict lock step operation is not required. Again, for

the purposes of asymptotic analysis, any such minor discrepancies in clock speed

can be glossed over since the synchronisation mechanism is sufficient to ensure

correctness4.

In summary, the selected model of parallel hardware and the basic facilities

which it provides may be seen to be entirely reasonable and realistic. There are

no concealed tricks and the cost of any overheads is independent of the size of

the machine considered, in terms of number of processors. For example, no unit

time broadcast is assumed.

4Although care must be taken to avoid deadlock, as in any parallel machine.
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2.4 Implementation Structures and Performance

Measures

2.4.1 Building Skeleton Implementations

It has been emphasised in the preceding discussion that the skeletons comprising

the overall framework are independent. Consequently, their implementations can

be considered separately, as indeed they are for the four skeletons presented in

chapters 3 to 6. This independence illustrates another useful property of this

approach. By concentrating on the efficient implementation of several distinct

and relatively simple systems, it is hoped to achieve better overall performance

than can be obtained by implementing one monolithic system designed to handle

all possibilities.

The implementation of each skeleton must ensure that the grid performs all the

work described by the abstract specification. As well as the “real” computational

tasks, this will involve dealing with the distribution of and access to non-local

data, as implied by the distributed nature of the hardware. Fortunately, the

problems associated with such a task are eased by the restricted nature of each

individual skeleton – the pattern of work is clearer than for a more general system.

Thus, each skeleton will have an associated controlling program, an appropriately

parameterised copy of which is loaded (or given sufficient space, permanently

sited) at each processor.

Execution of each skeleton can be decomposed into a sequence of phases. The

controlling program, given knowledge of its processor’s absolute location in the

grid, determines this sequence of actions required of the processor to execute that

particular skeleton. For example, at some point in a computation, data may

be expected from one direction which must be manipulated and dispatched in

another direction. The format of the data and the nature of the manipulation will

vary from problem to problem, but its arrival and departure constitute structural

properties of the skeleton, applicable in all instances.

Having loaded the controlling program, each processor must acquire a copy of

the problem specific details and procedures as provided by the user. Since these

are identical for each processor, it will be a simple task to arrange for copies of

these to enter and sweep through the network. Similarly, the instance specific

data is loaded to the local memories using the available external channels5.

5The details of what lies beyond the grid are beyond our scope. The loading process described
here is of no interest, being entirely dependent upon the external I/O systems provided, and
is comparable with the process of booting a conventional machine and loading the memory.
The crucial problems addressed here concern the control and manipulation of data required to
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At this point, the system is ready to begin execution of the skeleton by having

each processor execute the appropriate control program. Quite simply, this con-

sists of a series of calls of the user specified procedures operating sequentially on

local data, punctuated by a sequence of communications required to ensure the

correct distribution and exchange of data between processors. As will become

clear in subsequent chapters, such communications may take two forms, being

either compulsory or optional.

In the former, the arrival, manipulation and dispatch of data form an inherent

part of the skeleton’s computational requirements. They can be guaranteed to

occur in any problem instance using the skeleton. The synchronisation primitives

described in section 2.3 are sufficient to be able to ensure that data transfer takes

place only when both parties are ready and that it cannot be avoided.

In the latter example, a communication may or may not take place at some

particular point in the computation, depending upon instance specific data. How-

ever, in any such case, it will be possible to reason that if no data arrives within

a certain time period, that none will arrive during the phase. Such time periods

are measured in terms of a number of local communication pulses. To ensure syn-

chronisation, blank pulses will be filled by sending empty packets. In this way,

pulses can be counted locally and suitable action taken. Note that this technique

is only used when appropriate to a particular skeleton and not throughout the

implementation of the whole machine, as might be required for a uniform general

purpose abstraction.

Finally, the transformed data is dumped to the external system.

2.4.2 On Measuring Performance

2.4.2.1 A Note on Notation

The 0, Ω, Θ notation introduced by Knuth [21] is used throughout the text to

indicate the asymptotic magnitude of various quantities. Thus, the statement

f (n) = O (g (n))

means that there exist positive constants C and n0 with |f (n) | ≤ Cg (n) for

all n ≥ n0. Intuitively, and for our purposes more appropriately, this may be

interpreted as meaning that f (n) “grows no faster than” g (n). Similarly,

f (n) = Ω (g (n))

produce solutions efficiently.
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means that there exist positive constants C and n0 with |f (n) | ≥ Cg (n) for all

n ≥ n0, which may be interpreted as meaning that f (n) “grows at least as fast

as” g (n). Finally,

f (n) = Θ (g (n))

is true if and only if f (n) = O (g (n)) and f (n) = Ω (g (n)), with the interpreta-

tion that the two functions “grow at the same rate”.

2.4.2.2 Performance Issues

In terms of performance, our interest is focussed on the efficiency with which

a large grid of processors can implement each skeleton with respect to the per-

formance of a single processor. Since the key issue is the introduction of large

scale parallelism, it is important that more peripheral issues are not allowed to

cloud the comparison. In particular, the machines at the nodes of the square grid

should be identical to the uniprocessor machine against which their performance

will be considered. This assumption has two implications which should be borne

in mind when interpreting the performance analyses presented subsequently.

The first important point to note is the implicit assumption that the machine

has “enough” memory to implement any instance of a given skeleton. Any com-

plications introduced by a failure to meet this assumption would apply equally

to sequential and parallel cases and would therefore serve only to hide the real

issue of parallelism. Secondly, the assumption of “unit time” operations from

the basic instruction set implies the unwritten corollary that asymptotic results

obtained from the model apply only when the manipulated values can be repre-

sented within the word length of the machine. Once more, this applies equally

to parallel and sequential implementations and to include extra terms to cater

for this would again obscure the real issue. Thus, in a sequential machine it is

assumed that the retrieval of an integer from memory is a unit time operation,

rather than a Θ (log m) time operation where m is the magnitude of the integer.

Similarly, it is assumed that the transfer of an integer between neighbouring pro-

cessors is a unit time operation. Again, standard “fixes” to circumvent any real

problems in practice would apply equally to sequential and parallel machines.

This second assumption requires one final note of caution which applies uniquely

to parallel implementations. Some of the skeleton implementation algorithms to

be presented make use of unique processor identifiers. At certain points these

may be transferred between neighbours, using what is assumed to be a unit time

operation. Strictly, log2 p bits are required to distinguish unique identifiers in a

p processor machine and the unit time assumption is only valid when log2 p ≤ w,
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the word length. For larger p, multiple transfers would be required increasing the

time needed to Θ (log p) in such cases. However, a typical w of 32 or 64 allows

p ≤ 232 or p ≤ 264 before this becomes an issue. Once again, the inclusion of such

an addendum to relevant analyses would only complicate results in a way which

would have little or no significance in practice – if a 232 processor 32 bit machine

is considered feasible, then a small extension of the word length would not pose

any serious difficulty.

2.5 Related Work

As was illustrated in chapter 1, the bulk of the work in the field addresses the

problems of implementing universal languages, whether declarative or explicitly

parallel. However, we can also identify a number of approaches which are more

in the direction proposed here.

The most closely related work has focussed on the ”divide and conquer” tech-

nique and its parallel implementation as a tree of processes. In particular, [22]

characterizes a general form of “divide and conquer” as a higher order function

and reports on a parallel implementation which dynamically maps the problem

dependent process tree across a network of transputers. We will compare this

work with that of our own skeletons in more detail in chapter 3.

In similar vein, [24] describes a “generalised combinatorial search algorithm”

as a framework from which a variety of more specialized combinatorial algorithms

can be derived. Once again, the intention is that particular instances can then

be related to appropriate parallel implementations. Elsewhere, [27] reports on

practical experiments involving the parallel implementation of “problem heap”

algorithms, which are essentially another very general formulation of the divide

and conquer approach.

In the occam world, several general purpose “harnesses” have been imple-

mented. Typically, these are still at a fairly low level and require the programmer

to deal with parallel problem decomposition explicitly, but provide support for

communication and some simple distribution. Similarly, [5] reports on the imple-

mentation of a variety of “monitors” which provide machine independent support

for a variety of communication and synchronisation primitives. Again, the task

of explicit problem decomposition remains with the programmer.
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Chapter 3

The Fixed Degree Divide &
Conquer Skeleton

3.1 Introduction

The first skeleton to be considered, is a variation of the well known “divide and

conquer” technique (e.g. see [1]), which itself needs almost no introduction. In its

most general form, “divide and conquer” is applicable when a problem solution

can be defined recursively as some function of a collection of smaller instances

of the same problem, generated from the description of the original instance.

Recursion is avoided if the problem instance is “indivisible” in some sense, in

which case a direct solution is obtained by some other simpler method.

Divide and conquer algorithms clearly offer good potential for parallel eval-

uation. It is not difficult to see that recursively defined sub-problems may be

evaluated concurrently if sufficient processors are available. The whole execution

of a divide and conquer algorithm amounts to the evaluation of a dynamically

evolving tree of processes, one for each sub-problem generated. The challenge is

to ensure that the mapping of this virtual tree to the real machine is performed as

efficiently as possible. The task of parallelising the divide and conquer paradigm

in its loosest form has been considered elsewhere [28, 14, 22]. Before introducing

our own more restricted version and its implementation, we consider one of the

more recent of these approaches in more detail, since its target machine bears

some resemblance to our own.

3.2 The ZAPP Approach

ZAPP[22] (Zero Assignment Parallel Processor) is a virtual tree machine which

dynamically maps a process tree (e.g. as produced by a divide and conquer al-
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gorithm) onto any fixed network of processor-memory pairs (i.e. with no shared

memory, as in the target hardware chosen here). The fundamental principle in-

volved in producing the mapping of processes to processors is that of “stealing”,

by which a processor may obtain a new problem (process) to work on from one of

its physical neighbours. Distribution of problems is therefore “demand driven” - a

processor will attempt to solve a problem and all of its sub-problems, unless these

are stolen for evaluation elsewhere. The pattern of stealing is controlled by the

“single steal rule” which says that a “stolen” problem may not be subsequently

stolen again. Thus, such a problem is always solved on a processor physically ad-

jacent to that of its parent problem, thereby avoiding the potentially substantial

communication overheads of a less restrictive method. On the other hand, the

single steal rule means that diffusion of the whole problem through the machine

is a slower process than might otherwise be achieved. Preliminary experiments

suggest that the technique is most successful when the number of sub-problems

available is substantially larger than the number of processors[22].

The ZAPP version of divide and conquer presents the technique, in its loosest

form, as a higher order function “D C”, defined to operate as

D C indivisible split join f = F

where F P = f P, if indivisible P

= join (map F (split P )) , otherwise

Thus, if problem instances are of type “prob” and solutions are of type “sol”,

then the programmer produces a problem specific program from the higher order

function by providing definitions of

indivisible : prob → boolean

f : prob → sol

split : prob → [prob]
join : [sol] → sol

where “indivisible” is a function which inspects a problem instance and decides

whether it can be solved recursively, “f” is the straightforward function for di-

rectly solving indivisible (or “base case”) instances, “split” is the function which

decomposes a “difficult” problem into several sub-problems and “join” is the

function which describes how to combine the solved sub-instances to solve the

instance from which they originated. The higher order function DC has type

DC : (prob → bool) → (prob → [prob]) → ([sol] → sol)
→ (prob → sol) → (prob → sol)

and so the type of a full program with all of its “customising” functions specified

as required is prob → sol as we would wish.
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It is important to note that this version of divide and conquer makes no as-

sumptions about the shape of the process tree which will be produced by specific

problems or problem instances. In particular, the number of sub-problems pro-

duced upon “splitting” may vary from node to node as may the depths of different

sub-trees. Since the structure of the process tree only emerges dynamically, it is

impossible to pre-assign a distribution pattern of processes to processors. The

ZAPP “stealing” approach aims to allow a problem specific (and physical topol-

ogy specific) distribution to evolve naturally, with work generated in “heavy”

sections of the tree diffusing through the network to processors which have fin-

ished dealing with “light” branches. A variety of refinements of this basic strategy

are discussed in [22].

3.3 Fixed Degree Divide & Conquer

The ZAPP version of divide and conquer fits our description of an “algorithmic

skeleton”. It has a non-parallel specification as a problem independent higher

order function and an invisible parallel implementation. However, while the re-

sults reported are encouraging, the unpredictable nature of the process tree and

the consequent generality of the implementation technique are somewhat looser

than the rigidly pre-defined style of distribution that we have in mind for our

own skeletons. Consequently, we now propose a more restrictive formulation of

divide and conquer which will allow us to take a firmer grip of distribution at the

expense of a degree of flexibility at the programmer’s level. Such an approach is

clearly in sympathy with the original motivations discussed in chapter 2.

The restriction we add requires that for any particular divide and conquer

program, the degree of all the non-leaf nodes in the process tree is a constant

which is known before execution begins. In other words, we require that any

problem which is not solved directly will produce some constant k sub-problems

upon splitting. To use the skeleton, which we will call “fixed degree divide and

conquer” (FDDC), the programmer must specify the value of k and specify the

functions “indivisible”, “f”, “joink” and “splitk”, where the splitting and joining

functions respect the value of “k” in their operation. With this added restriction,

the structure of the skeleton as it appears to the programmer is identical to that

presented for the ZAPP machine.

The simplest and commonest FDDC algorithms have k = 2. A typical example

is the “mergesort” algorithm for sorting a list. Here, a list is indivisible if its

length is 0 or 1, the base-case function “f” simply returns its argument, the

32



“split2” function divides the list into two halves and the “join2” merges the two

recursively sorted sub-lists.

The first implementation discussed in section 3.4 considers such binary FDDC

skeletons. However, it may often be more convenient (or even essential) to de-

scribe solutions in terms of larger k. For example, problems concerning multi-

dimensional phenomena may be more suitably described with k = 4 or more.

Thus, section 3.4 proceeds to introduce an implementation technique for more

general k. The chapter is completed with an analysis of the performance which

can be achieved, some proposals as to how this may be improved and the presen-

tation of some concrete examples.

3.4 Implementing the Skeleton

3.4.1 An Idealised Implementation

The FDDC skeleton, as presented in section 3.3 has an obvious parallel imple-

mentation in which the k-ary tree of processes is mapped directly onto a k-ary

tree of processors.

The root processor is presented with the whole problem instance which it sub-

divides. Sub-instances are dispatched to its k sons and recursion proceeds down

the tree. Eventually, further sub-division is impossible and the leaf processors

compute the base-case function “f” of their respective instances, passing the

results back up the tree. Internal tree processors coalesce results using “joink”

until the root processor produces the solution to the whole problem. Subsequent

sections propose and analyse solutions to the problems involved in moulding this

idealised style of implementation to fit the grid.

3.4.2 The Two Way Split and Binary Trees

In order to simulate the idealised implementation on the grid, it is necessary to

find some suitable mapping of tree processors to grid processors. The “H-tree”

(see figure 3.1) is a well-known layout of a complete binary tree on the grid with

the advantage (for ease of implementation) of being very regular. In particular,

all paths between edges at some particular level and their parents are of the same

length. Although not all vertices of the grid are active in the embedding it can be

shown that the H-tree layout of v vertices occupies a square grid of Θ (v) vertices.

Therefore, associating each active H-tree processor with a processor from the

idealised binary tree of section 3.4.1 results in an implementation of the FDDC

skeleton for which the number of inactive processors becomes negligibly small as
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Figure 3.1: The H-tree layout.

v grows large. This is compatible with our principle of getting things right on a

large scale, with expansion in mind.

Although most readily understood pictorially, the H-tree layout can be de-

scribed quite concisely. Suppose that the vertices of the grid are labelled with

pairs of integers in the usual Euclidean fashion, with (0,0) located at the centre.

The root of the tree is mapped to grid vertex (0,0). Then, recursively, for each

tree vertex at depth d, 0 ≤ d ≤ log2

(

v+1
2

)

− 1, mapped to grid vertex (a,b), its

two sons are mapped to grid vertices

•
(

a, b + 2
1
2(log2( v+1

2 )−d−2)
)

and
(

a, b − 2
1
2(log2( v+1

2 )−d−2)
)

if log2

(

v+1
2

)

and d are both even or both odd, or

•
(

a + 2
1
2(log2( v+1

2 )−d−1), b
)

and
(

a − 2
1
2(log2( v+1

2 )−d−1), b
)

if one of log2

(

v+1
2

)

and d is even and the other odd,

with connecting edges mapped through grid processors lying directly between

those mapped to tree vertices at level d and those at level d+1. These intermediate

processors each act as unit time delay wires, forwarding information.

It is simple to show that this layout is asymptotically optimal in terms of the

size of grid used.

Theorem 1 The complete H-tree layout of v vertices occupies a minimal bound-
ing rectangle of Θ (v) grid vertices.

Proof: Consider cases in which the smallest bounding rectangle of the H-tree

is square (those in which the depth log2

(

v+1
2

)

is even). From the description of
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the layout it can be seen that the maximum y co-ordinate (and by symmetry the

maximum x co-ordinate) is

1
2

log2( v+1
2 )−1

∑

d′=0

2
1
2(log2( v+1

2 )−2d′−2) =
(

v + 1

2

)

1
2

− 1.

Therefore, since each processor occupies the square of unit side length centred on

its location, the side length of the bounding square is

1 + 2





(

v + 1

2

)

1
2

− 1





and the area of the bounding square is

4
(

v + 1

2

)

− 4
(

v + 1

2

)

1
2

+ 1 = Θ (v) .

The proof is extended to trees of odd depth dodd by the observation that the

minimal bounding rectangle of such a tree is sandwiched between those of the

trees of even depth dodd −1 and dodd +1 which have approximately half and twice

as many vertices respectively. This is sufficient to satisfy the asymptotic result. •

3.4.3 A More General Technique – k = 4

As noted in section 3.1 natural algorithms for many problems might be better

described in terms of a k = 4 (or more) FDDC skeleton. Again, the obvious

idealised implementation would be on a complete tree of processors in which each

non-leaf has k children. Clearly, with each processor requiring degree ≥ 5, no

direct counterpart of the H-tree exists. However, the layout in figure 3.2 shows

that with controlled, regular edge sharing, the k = 4 tree can be embedded into

the grid in linear area. Furthermore, it will become clear in section 3.5 that the

execution time of the new skeleton is increased by only a constant factor from

some imaginary degree 5 counterpart of the H-tree.

The layout exploits the fact that levels of the idealised processor tree are active

in strict sequence and independently (except during transfer from one level to the

next). Thus each grid processor responsible for the operations of a tree vertex

at some level is also made responsible for one of the children of that vertex at

the next level down. Having divided a problem in four, each grid processor keeps

one sub-problem and dispatches the other three. The structure of the layout is

such that two of the three receive their problems along the direct path from the

processor which was the parent (and is now a sibling), while the third receives
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All processors are marked with a · and are active as leaves. Processors also active
at higher levels are marked with increasing numbers of circles. The root is marked
with a solid circle and is active at all levels. Thus, there are four processors active
at the level below the root, sixteen at the next level down and so on, as required
by the 4-ary tree.

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

e e

e e

e e

e e

e e

e e

e e

e e

h

h

h

h

x

Figure 3.2: The 4-ary tree layout.
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Figure 3.3: Problem distribution in the 4-ary tree.

its problem in two halves, via the other two children. Figure 3.3 illustrates this

point for transfers in the upper left-hand quadrant, labelling the sub-problems

p1, p2, p3, p4 with p1 being the sub-problem which does not move. Note that the

structure of the layout ensures that the processors which forward information

along the paths from p1 to p2, p3 and p4 are not active in any other capacity

when required to do so. The situation in the other quadrants is illustrated by an

appropriate rotation of figure 3.3. Dispatching the two halves of p4 first allows

the second halves of their journeys to be overlapped in time with the distribution

of problems p2 and p3.

The regularity of the technique allows it to be used between each successive

pair of virtual levels, and in reverse with the results. It also ensures that each

processor knows independently, at all times, as a simple function of its absolute

location in the grid, whether it should be active in the computation, simply

forwarding information or inactive.

3.4.4 Completely General k

The essence of the technique used to handle the case k = 4 was to recognize that

we could sub-divide the original grid into four identical square sub-regions within

which we could recursively and independently handle the four sub-problems gen-

erated at the root. It is not difficult to see that the same technique may be

conveniently extended to deal with any k which is a perfect square. Thus, for

k = 9, we will recursively sub-divide into nine independent sub-squares, and so

on. For a tree with 9n leaves we will use a 9
n
2 × 9

n
2 square grid in a neat, regular

way.
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Figure 3.4: Partitioning with k=3

What of other values of k ? The simplest version of our technique does not

apply directly. For example, we cannot divide a square grid regularly into five

equally sized sub-squares. However, a simple arithmetic observation comes to the

rescue. For any k, we are attempting to map the kn leaves of the tree onto kn

processors. However, for any k, n note that

kn =
(

k2
)n

2

where, of course, k2 is a perfect square. Thus, if n is even, making n
2

an integer,

we can adopt a very similar approach to the case where k′ = k2 with half as

many levels in the tree. To allow for the extra levels we need for the real k, we

simply split each level in the k2 case in two, partitioning the grid first in (say) the

“vertical” direction, then horizontally. For example, with k = 3 and n = 4, we

partition first into three vertical slices and then split each of these horizontally

into three 3 × 3 single processor sub-grids, for a total of 81 processors, which is

what we want. The result is illustrated in figure 3.4 with the number of circles

indicating activity at each level of the tree, as before. Figure 3.5 illustrates the

paths followed by two typical sub-problems. The problem destined for the top

left-hand processor is passed on during every distribution phase. The one which

arrives in the lower half of the grid is the sub-problem allocated to the root for

the first two levels, before being dispatched.

Finally, for situations in which n is odd, we can initially attack the problem

as though n were one larger and leave out the final (meaningless) level of decom-

position. Thus, we actually employ kn+1 processors, of which only kn do useful

work. However, as with the analogous case for the H-tree, the factor of k is lost

in subsequent asymptotic analyses.
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3.5 Analysis of Implementations

In this section we consider the performance which can be expected of the pro-

posed implementations. The abstract specification allows complete flexibility in

the definition of the “splitk” function. This introduces the possibility that certain

instances may be decomposed in a way which leaves large portions of the idealised

processor tree unused. However, both the sorting example of section 3.1 and the

further examples of section 3.7 share an important property – the instances gen-

erated by a particular call of “splitk” are of essentially the same size, allowing

for minor discrepancies (e.g. the two “halves” of a list of odd length), and that

the resulting tree is well balanced. The analysis presented applies to any exam-

ple which shares this property. The desirability of well balanced sub-division is

familiar from study of sequential algorithms [1].

In this context, the notion of size may have two connotations. It could describe

either the quantity of data required to represent a sub-instance, or the amount of

further divisibility inherent in that sub-instance. It is important to note that these

are not necessarily identical. For example, an instance of the problem of finding

the maximum value of some function over a domain of n equally separated points

can be described by two items of a data (the first point and the separation) but can

be recursively divided into n trivial sub-instances. To avoid confusion, the term

“grain” is introduced to denote size in the latter sense. Thus, an instance of grain

n will eventually sub-divide into n base-case instances, conceptually evaluated at

the leaves of the complete k-ary tree of processors.

The detailed analysis presented below considers the implementation of such

instances of grain n, with k = 2, on a grid embedded H-tree of 2n− 1 processors.

Performance is compared with that achievable by a single processor solving the

same instance. One assumption made, that the size of the grid will always be

large enough to accommodate the instance directly, is unrealistic. In section 3.6
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the implications of a fixed size grid are considered and analysed. An associated

technique, of not fully expanding the idealised tree on the grid, is shown to

widen the range of examples for which optimal efficiency (with respect to a single

processor) is obtainable. Finally, the existence of similar results for the generalised

implementation technique of section 3.4.4 is noted.

3.5.1 The Full Binary Tree

We now consider the performance of the H-tree implementation of the binary

FDDC skeleton. To analyse any particular problem there are six parameters

which must be considered. These are

s (n) : the time to split a problem instance of grain n into two sub-problems of

grain n
2
,

p (n) : the number of constant size packets of information required to describe a

problem instance of grain n,

r (n) : as p (n), for the result of a problem of grain n,

j (n) : the time to join two sub-results of grain n
2

to form one super-result of grain

n,

f (1) : the time taken to evaluate the base case function on an indivisible instance

(i.e. an instance of grain 1),

d (i) : the number of links on the grid layout between a tree vertex at i stages

from the leaves and its sons, this being

d (i) =

{

2
1
2
(i−1) for odd i,

2
1
2
(i−2) for even i.

The assumed model for individual processors allows data to be transferred

simultaneously on all links. Thus, since the examples under consideration gen-

erate sub-instances of equal size, similar activities will occur concurrently across

successive levels of the virtual binary tree. The generality and regularity of the

layout mean that the total execution time for a problem of grain n on a tree with

n leaves is asymptotically the same as the time to execute all the instructions on

any path from root to leaf. This has three phases :

1. sub-division and distribution of the problem, taking time

log2n
∑

i=1

[

s
(

2i
)

+ p
(

2i−1
)

+ (d (i) − 1)
]
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where the last term introduces the delay encountered due to path length

between successive levels,

2. computation of the base case at the leaves, taking time denoted by f (1),

3. return and combination of results (including path delays), taking time

log2n
∑

i=1

[

j
(

2i
)

+ r
(

2i−1
)

+ (d (i) − 1)
]

.

The execution time of this parallel implementation of the skeleton, denoted

TP2 (n) is simply the sum of these phases. The d’s are independent of the al-

gorithm and can be removed from the summation and simplified, giving

TP2 (n) = 4 (
√

n − 1) + f (1) − 2 log2 n

+
log2n
∑

i=1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]

for cases in which the depth log2 n is even. When the depth is odd, the first term

is replaced by 3
√

2n − 4.

3.5.2 Optimal Efficiency

We now consider conditions under which the Θ (n) processor H-tree implemen-

tation evaluates instances of grain n with optimal efficiency. This will be judged

with respect to the performance obtainable using a single processor, by comparing

the resources used in each case, namely the product of the number of processors

and the execution time.

The following lemmas, applying to the variables as previously described, are

required in the subsequent analysis. The function h(n) may be replaced by any

of s(n), j(n), p(n) and r(n). All are proved by simple manipulations.

Lemma 1 If any of s (n), j (n), p (n) and r (n) are Ω (1), then

n
log2n
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

6= Ω



n
log2n
∑

i=1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]





Lemma 2

h (n) = O (na) , a > 0,⇒
log2n
∑

i=1

h
(

2i
)

= O (na) .

Lemma 3

h (n) = O (na) ⇒
log2n
∑

i=1

1

2i
h
(

2i
)

=











O (na−1) if a > 1,
O (log n) if a = 1,
O (1) if a < 1.
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A straightforward sequential evaluation would (ignoring constant overheads

for handling recursion) perform all the “real” operations of each vertex in the

processor tree. This excludes those associated purely with data transfer, which

are redundant. Thus, the time taken by such an implementation would be

TS2 (n) = nf (1) + n
log2n
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

.

The asymptotic efficiency of the grid tree with respect to this sequential evaluation

is now investigated.

The tree certainly cannot be more efficient, since processors are often idle and

the algorithm is the same, but it is interesting to investigate conditions which

allow it to be asymptotically of equal efficiency, i.e. for which the resources used

are asymptotically identical,

1 · TS2 (n) = Θ (nTP2 (n)) .

In such a situation the skeleton will be said to be implemented with optimal

efficiency. Obviously such an analysis will also serve to highlight those properties

which algorithms should exhibit if they are to allow good, though not necessarily

optimal implementation.

Since TS2 (n) = O (nTP2 (n)) (it executes the same operations without com-

munication overheads) it is only necessary to investigate

TS2 (n) = Ω (nTP2 (n))

i.e.

nf (1) + n
log2n
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

= Ω



n
3
2 + nf (1) + n

log2n
∑

i=1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]





The nf (1) term on the right can be removed as, by lemma 1, can the n
∑ 1

2i (. . . )

term (provided that we are not dealing with a problem in which all of the tasks

represented by s, j, p and r get easier as the grain increases! Do any such problems

exist?).

This leaves

nf (1) = Ω



n
3
2 + n

log2n
∑

i=1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]





with one of s, j, p, r at least constant, as a requirement for optimal efficiency. This

will hold only when
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• f (1) = Ω (
√

n), and

• f (1) = Ω
(

∑log2n
i=1 m (2i)

)

, in cases when s, j, p, r are all O (m (n)). Note

that if m (n) = O (na) , a > 0 then f (1) = Ω (na) is sufficient by lemma 2.

In other words, the goal of optimally efficient implementation of the skeleton

is only achievable for algorithms in which the work done in the base case is

asymptotically as large as both
√

n, and the largest of the quantities represented

by all the occurrences of s, j, p and r in the sequence of evaluation which lead

directly to the call of the base case. In terms of the tree, this means that the work

done at each of the leaves (which account for half the available processing power)

must be asymptotically as large as all the work done getting there, including

communication time. This in turn is guaranteed to be Ω (
√

n) since the leaves

are physically this number of links from the root.

It is not difficult to see that analysis of the k = 4 skeleton follows a similar

pattern to the two way split, with an additional slow-down introduced by the

sharing of edges giving

TP4 (n) = f (1) +
log4 n
∑

i=1

[

s
(

4i
)

+ j
(

4i
)

+
3

2

(

p
(

4i−1
)

+ r
(

4i−1
))

+ 4 (d (i) − 1)
]

where f (1) , s, j and p have the usual meanings and d (i) is the path length be-

tween a processor dealing with a super-problem associated with a vertex at i

stages from the leaves and its two nearest children. Noting from the layout pre-

sented in figure 3.2 that d (i) = 2i−1 for 1 ≤ i ≤ log4 n − 1 and d (log4 n) = 1 the

d’s are simplified to obtain

TP4 (n) = f (1) + 2
√

n− 4 log4 n +
log4 n
∑

i=1

[

s
(

4i
)

+ j
(

4i
)

+
3

2

(

p
(

4i−1
)

+ r
(

4i−1
))

]

By analogy with the binary tree it can be seen that

TS4 (n) = nf (1) + n

log4 n
∑

i=1

1

4i

[

s
(

4i
)

+ j
(

4i
)]

.

It is a simple exercise to show that similar results to lemmas 1-3 and their con-

sequences hold.

Turning finally to the implementation for completely general k, the only re-

maining problem in repeating the above results is to ensure that the distribution

of k−1 sub-problems by parent nodes at each level does not introduce an asymp-

totically significant slow-down. Using notation similar to that dealing with the

H-tree layout, let d(i) denote the length of the shortest path between a parent
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at i stages from the leaves and its most distant child. Since the grid is square

and no path from processor to leaf is longer than that from root to top-leftmost

processor, which does not double back on itself, the total contribution of edge

delays on any direct root to leaf path is

logk n
∑

i=1

(d (i) − 1) = O (
√

n) .

Furthermore, the observation that the layout assigns distinct sub-trees at every

level to non-overlapping areas of the grid makes it clear that there is no inter-

ference between messages transferred within distinct subtrees. It is now clear

that even the simplest procedure, in which a parent distributes its k children

sequentially, by the most direct paths, is good enough to meet the bound. In this

situation the total time lost to path-length delays will be

logk n
∑

i=1

(k − 1) (d (i) − 1) = (k − 1)
logk n
∑

i=1

(d (i) − 1) = O (
√

n) ,

remembering that k is constant with respect to n (which in practice means assum-

ing that n is sufficiently large to make k insignificant). The example of the 4-way

split shows how communications may be overlapped in some regular manner to

improve upon the constants involved. However, the asymptotic result provided

by this simplest method is good enough to ensure that our asymptotic results

extend to any k.

3.6 Partial Trees

The drawback of implementation on a complete tree was that algorithms had to be

heavily biased towards giving the leaves large amounts of work in order to achieve

optimal efficiency. Unfortunately, it seems probable that in most algorithms

designed with the recursive split skeleton, the time taken to evaluate the base

case at the leaves will be too small to outweigh the time spent getting to them.

Equally, it is unreasonable to assume that any fixed size machine will be large

enough to handle, in this straightforward way, any instance presented. For these

reasons it seems worthwhile to consider the execution of instances of arbitrary

grain on fixed size machines.

This is achieved by simulating the operations of the lower (and now physically

non-existent) levels of the process tree at higher levels of the processor tree. In

this way, instances of grain n will be evaluated on a binary tree of depth < log2 n.

Evaluation will proceed as before from the root to the physical leaves. These will
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receive problems which have not yet reached the base case. They simulate the

actions of all their virtual descendants until they have solved their sub-problems.

These results are then passed back up the physical tree and evaluation is com-

pleted as before. In terms of the preceding analysis there are two significant

changes. Firstly, the time taken to evaluate a problem will be increased by the

simulation (although the data transfers between the simulated levels are free).

Secondly of course, the number of processors used will be reduced. The trade-off

between these factors is now investigated.

In such trees, leaves deal with problems of grain 2c, (1 ≤ c ≤ log2 n − 1), by

simulating the actions of their imaginary descendants. There will be n
2c leaves

and thus n
2c−1 − 1 vertices, and the tree will be of depth log2

(

n
2c

)

. For the H-tree

implementation the execution time will be

T c
P2 (n) =

log2 n
∑

i=c+1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]

+2

log2( n
2c )

∑

i=1

[d (i) − 1] + 2c

(

f (1) +
c
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

)

where the first term represents the normal part of the tree execution and the third

term represents the simulated phase. The asymptotic efficiency of such trees with

varying c is now considered.

Simplifying the term in d, multiplying by the size of grid used and discarding

the lower order terms produced, shows that the product of processors used and

time taken is

= Θ





n

2c

log2 n
∑

i=c+1

[s, j, p, r] +
(

n

2c

) 3
2

+ nf (1) + n
c
∑

i=1

1

2i
[s, j]



 .

By the same arguments advanced for the full tree, no partial tree can ever outper-

form the sequential evaluation by this measure of efficiency. Thus, only conditions

which allow

TS2 (n) = Ω
(

n

2c
T c

P2 (n)
)

need be considered.
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Removal of redundant terms leaves

nf (1) + n
log2n
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

=

Ω





(

n

2c

) 3
2

+
n

2c

log2 n
∑

i=c+1

[

s
(

2i
)

+ j
(

2i
)

+ p
(

2i−1
)

+ r
(

2i−1
)]



 .

The simulation of only a constant number of the lowest levels can have no effect

on the asymptotic situation. Therefore the effect of simulating some constant

fraction of the levels is considered. Take c = C log2 n, with 0 < C < 1, to

indicate that the bottom fraction C of the idealised tree levels are simulated by

the leaves of the physical tree.

With c = C log2 n, the partial tree is optimally efficient when

nf (1) + n
log2n
∑

i=1

1

2i
[s, j] = Ω





(

n1−C
) 3

2 + n1−C
log2 n
∑

i=C log2 n+1

[s, j, p, r]





and thus when ,

f (1) +
log2 n
∑

i=1

1

2i
[s, j] = Ω





(

n
1
3
−C
)

3
2 + n−C

log2 n
∑

i=C log2 n+1

[s, j, p, r]



 .

It appears that C = 1
3

is an important value and the cases on either side of it are

now analysed.

Suppose C < 1
3
, and that s, j, p, and r are all O (na) for some a > 0. If a ≤ C

then analysis similar to the full tree case shows that

f (1) = Ω
(

(

n
1
3
−C
)

3
2

)

gives optimal efficiency. With a > C

f (1) = Ω
(

(

n
1
3
−C
)

3
2 + na−C

)

is required. More interestingly, suppose that C ≥ 1
3
, and that s, j, p and r are all

O (na). Then for optimal efficiency it is sufficient that

f (1) +
log2 n
∑

i=1

1

2i
[s, j] = Ω

(

na−C
)

If a > C then it may be simply shown (using lemma 3) that the second term is

never sufficient to outweigh na−C and f (1) = Ω
(

na−C
)

is required for optimal

efficiency. However, if a ≤ C all that is required is

f (1) +
log2 n
∑

i=1

1

2i

[

s
(

2i
)

+ j
(

2i
)]

= Ω (1) .
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which is true provided that f (1) 6= 0, i. e. that the idealised leaves actually

do something. In other words, activity at the idealised leaves ensures optimal

efficiency (in our asymptotic sense) whenever the exponent of the upper bound

on s, j, p and r is no larger than the fraction of levels which are executed by

simulation, when this itself is at least 1
3
. The important point is that the work

required of the idealised leaves to ensure optimal efficiency is no longer dependent

upon n, as it was for the full tree implementation.

Two of the examples presented in the next section have characteristics which

allow them to exploit this result.

3.7 Examples

3.7.1 The Discrete Fourier Transform

An algorithm to compute the discrete fourier transform (DFT) of n points, as

presented in [32] can be described very neatly with the simple k = 2 FDDC

skeleton. The crucial observation is that the DFT of an n point vector may be

computed as a simple arithmetic combination of the DFTs of two vectors of n
2

points, these instances being derived directly from the original vector.

For analysis, the important characteristics of the algorithm are that

p (n) = n, the n points to be transformed,

r (n) = n, the n transformed points,

s (n) = 0, since no computation is required to split the vector of points into two

vectors (although points must be dispatched in shuffled order), and

j (n) = 3n
2
, consisting of n

2
multiplications and n additions.

f (1) = 1, the leaf operation being a single multiplication,

Thus,

T (n) = 4 (
√

n − 1) + 1 − 2 log2 n +
log2n
∑

i=1

[

0 +
3

2

(

2i
)

+ 2i−1 + 2i−1
]

= 5n + 4
√

n − 2 log2 n − 8.

A useful method of evaluating the relative efficiency of parallel algorithms is

to compare the product of the time and number of processors involved. Such

comparisons have the re-assuring property that an optimal n processor algorithm

uses the same resources (by this measure) as an optimal one processor algorithm
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for the same problem. With the H-tree layout the FDDC skeleton algorithm uses

Θ (n) processors and thus uses Θ (n2) resources. In terms of efficiency this doesn’t

compare favourably with a straightforward single processor evaluation which can

be executed in time Θ (n log n), thus using Θ (n log n) resources. The DFT of n

points may also be computed in Θ (log n) time on n
2

processors connected into

a 2-shuffle network (with a simple adaptation of the well known algorithm in

[30]). However, [6] indicates that any grid embedding of this network without

overlapping paths requires Ω
(

n
log n

)2
processors in our model and must have at

least one edge traversing Ω
(

n

log2 n

)

processors. Since each edge of the shuffle graph

is used at each step of the algorithm any such optimally embedded implementation

would take time Θ
(

n
log n

)

thus using Θ
(

n
log n

)3
resources, which is inferior to the

FDDC discrete fourier transform method. This surprising result is produced by

the weakness of any such shuffle implementation rather than the shuffle algorithm

itself.

A different result can be obtained by considering the shuffle DFT as an al-

gorithm for an EREW shared memory machine, with each shuffle step being

simulated by two EW operations. Each step of such a machine can be sim-

ulated on the grid of Θ (n) processors in Θ (
√

n) time (e.g. by using the well

known sorting method of [34]). The whole algorithm can therefore be executed in

time Θ (
√

n log n), using Θ
(

n
3
2 log n

)

resources, which is superior to both other

methods. However, the FDDC solution is certainly the most easily specified. Fur-

thermore, it is very important to note the FDDC skeleton assumes that the input

is initially located at a single processor, thereby incurring substantial distribu-

tion costs. All the other solutions assume the input to be already distributed.

Whether or not this is significant depends upon the number and location of con-

nections to the “outside world”. Since execution time is dominated by activity at

the root, the observations on implementation by partial tree cannot be usefully

employed here.

3.7.2 Approximate Integration

The approximate integration of some continuous function y over an interval [a, b]

is an obvious candidate for evaluation using the FDD C skeleton, given the ob-

servation that

∫ b

a
y (x) dx =

∫ b−a
2

a
y (x) dx +

∫ b

b−a
2

y (x) dx.

In order to use the results obtained previously, it is necessary to consider what

is meant by the grain of such a problem. For any particular instance, this will
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depend upon the interval width δ at or below which an approximation to the

integral will suffice (thus requiring no further sub-division) i.e.

∫ c+δ

c
y (x) dx = approx (y, c, δ) .

Given a function y and its minimum interval δ, an instance of the integration

problem over interval [a, b] will be of grain n = 2⌈log2
b−a

δ ⌉.
Consider the use of Simpson’s rule for the approximate evaluation of the base-

case integrals. This requires the evaluation of y at w (an arbitrary odd constant)

equally spaced points including the end-points for each minimum interval, fol-

lowed by a simple arithmetic combination of these values involving Θ (w) opera-

tions. Using the terminology defined previously, it can be seen that

• s (n) = 2, the cost of calculating b−a
2

,

• j (n) = 1, a single addition,

• p (n) = 2, the two endpoints,

• r (n) = 1, the approximated result, and

• f (1) = Θ (w + wY ), where Y is the cost of each evaluation of y.

The results of section 3.5 show that, for the evaluation of a grain n integral

on a full grid-embedded tree with n leaves, optimal efficiency is only possible

when w + wY = Ω (
√

n). This is not very satisfactory, since it requires that the

number of points used in the Simpson approximation or worse, the complexity

of evaluating y, should depend upon the grain of the problem instance. More

realistically, suppose that f (1) is a constant. Plugging the values of s, j, p and r

into the formula for parallel run time produces

TP2 = O
(

n
1
2

)

.

Since leaf evaluations are trivial, run time is dominated by the distribution costs.

This fully parallel implementation uses O (n) processors. In contrast, using the

formula for sequential time, we obtain a one processor implementation with run

time

TS2 = O (n) .

and the inefficiency of the fully parallel version is apparent.

However, since all of s, j, p and r are O
(

n
1
3

)

, our analysis of evaluations

on partial trees indicates that optimal efficiency can be achieved provided that
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C, the the fraction of lowest levels of the virtual process tree implemented by

simulation, is at least 1
3
. Thus, beginning with a single processor implementation

(C = 1) with O (n) time and “O (1)” processors, we can progress through a

series of implementations in which more levels are implemented with physical

parallelism (decreasing C) and still maintain optimal efficiency, with O
(

nC
)

run

time on O
(

n1−C
)

processors. This progression ends when C = 1
3
, when the run

time is O
(

n
1
3

)

on O
(

n
2
3

)

processors.

Curiously, decreasing C further results in increases in both run time (which is

now O
(

n
1−C

2

)

) and processors used (still O
(

n1−C
)

! The increasing run time in

this final phase of expansion is explained by the fact that the overall run time is

now dominated by the cost of distributing small parcels of work to many distant

processors.

3.7.3 Matrix Multiplication

The third example, matrix multiplication, uses the generalised FDDC skeleton.

The algorithm presented here is adapted from [14].

Consider the problem of multiplying two square, m element matrices A and

B to produce a third, C. By partitioning each matrix into four quadrants, we

have
∣

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

B11 B12

B21 B22

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

C11 C12

C21 C22

∣

∣

∣

∣

∣

and it can be seen that Cij = Ai1 · B1j + Ai2 · B2j , for i and j ∈ {1, 2}. Thus,

the problem of computing C can be described in terms of eight m
4

element matrix

multiplications and four m
4

element matrix additions. This is just an FDDC

skeleton algorithm with k = 8. The base case occurs when m = 1 and is a simple

scalar multiplication.

It is important to note that an instance of grain n, by the definition of sec-

tion 3.5, does not involve n element matrices. Consider an instance which does

decompose into n base case instances (and which is therefore of grain n). At each

combination of sub-results, the solutions to the eight sub-instances are combined

to solve a single instance involving a matrix with four times as many elements.

In this way, n base case results eventually combine to produce a final matrix

with nlog8 4, which is n
2
3 , elements. In terms of the measures of section 3.5 this

gives, p (n) = 2n
2
3 , the two input matrices, r (n) = n

2
3 , s (n) = 0, j (n) = n

2
3 and

f (1) = 1. Note that since s (n), j (n), p (n) and r (n) are all O
(

n
2
3

)

, the “optimal

efficiency” result for partial trees will be applicable.

First we consider the execution time for a full tree implementation. Using
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the simplest problem distribution method, by which a processor at one level

distributes sub-instances sequentially, the time for m element matrices is

= 2
[

8
(

m

4

)

+ 8
(

m

42

)

+ ... + 8 + m
3
4

]

+ 1

+4 + 16 + ... +
m

16
+

m

4
+ m

= O (m) .

The terms preceded by 8’s represent the transfer of information, the m
3
4 is the

delay across the m
3
2 processor grid, the 1 is the base case calculation and the other

terms represent the additions involved in combining sub-results. Reformulating

in terms of the grain of problem instances produces the result that the parallel

run time for the k = 8 skeleton is

TP8 = O
(

n
2
3

)

For a sequential implementation, the time taken for instances involving size

m matrices, S (m), is described by the recurrence relation

S (m) = 8S
(

m
4

)

+ m,

S (1) = 1.

which has solution S (m) = O
(

m
3
2

)

, the same as the standard sequential matrix

multiplication algorithm. Thus, since these matrices are actually of grain n = m
2
3 ,

the sequential run time for matrices of grain n is

TS8 (n) = O (n) .

Thus, for instances of grain n, the full parallel implementation achieves an O
(

n
1
3

)

speed up at the expense of using O (n) processors. This is not optimally efficient.

However, the fact that s (n), j (n), p (n) and r (n) are all O
(

n
2
3

)

, indicates that

a partial tree implementation can achieve optimal efficiency provided that C ≥
max

{

1
3
, 2

3

}

. In other words, if we choose to simulate at least the lower 2
3

of the

virtual process tree at the leaves of the grid-embedded physical tree, then the

execution will be optimally efficient.

Thus, starting with a one processor implementation (simulating the the whole

tree in O (n) time with “O (1)” processors), we can, up to a point, add real

processors at successively deeper levels to give an asymptotically optimal speed

up. More precisely, if we still simulate the lower C log8 n levels (thereby using

O
(

n
8C log8 n

)

= O
(

n(1−C)
)

processors) we obtain a run time of O
(

nC
)

. This

approach reaches its limit when C = 2
3
, at which point the run time is O

(

n
2
3

)

with O
(

n
1
3

)

processors. Implementing levels below this with real parallelism

simply uses more processors without affecting the run time asymptotically.

51



Chapter 4

The Iterative Combination
Skeleton

4.1 Abstract Specification

4.1.1 Introduction

Many problems may be solved by algorithms which progressively impose struc-

ture onto an initially uncoordinated collection of objects. Typically, an instance

of such a problem is described by a set of homogeneous objects, together with

details of any relevant internal structure of each and of any relationships existing

between them. Given a rule for combining or in some way relating two objects,

and a measure of the value of the combination, one style of algorithm iterates

through a loop in which each object is combined with the most suitable remain-

ing other object, if such exists. The loop is repeated until either all objects have

been combined into one (i.e. the complete required structure has been imposed),

or no further acceptable combinations exist. Such algorithms are often classed

together as “greedy”, by virtue of the locally rather than globally optimal nature

of decisions made. This policy may or may not lead to globally optimal results,

depending upon other features of the specific problem in hand.

As a concrete example of this approach, consider Sollin’s algorithm [33] to

compute the minimum spanning tree of an undirected graph. The objects de-

scribing an instance are all subtrees of the graph under consideration. Initially

there is one single vertex sub-tree for each vertex. Two objects are combined by

finding the shortest edge which joins them - the cost of such a combination is

simply the cost of this edge (or infinitely large if no such edge exists). The best

partner for an object is that with which it may be combined at lowest cost, i.e.

the remaining sub-tree to which it may be joined by an edge of lowest cost.

At each iteration, for each remaining sub-tree, the algorithm finds the edge
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WHILE |S|<>1 AND NOT failure to find any combinations DO BEGIN

FOR each s in S

find s’ in S such that s’ is the "best" partner for s

by considering all possible partners in turn;

combine ‘‘best partners’’ to reduce |S|

END

Figure 4.1: Imperative Specification

of lowest cost which joins the sub-tree to some other sub-tree. These trees are

replaced by a new tree representing the old trees joined by the short edge. The

process is repeated until only one tree remains (the minimum cost spanning tree of

the original graph), or until the remaining sub-trees have no edges between them.

In this case, no combinations can be found and the trees represent a spanning

forest of the original, unconnected graph.

The “iterative combination” (IC) skeleton models this style of solution. Its

abstract specification and possible parallel implementation on the grid machine

are presented in this chapter.

4.1.2 Specification

It is a question of personal taste as to whether the IC skeleton is most natu-

rally specified in an imperative style, as a sequential program “template”, or in

a declarative style as a higher order function. To give as much insight into its

meaning as possible, both approaches are presented here. We begin with the

looser, more operational imperative specification, before presenting the more for-

mal declarative version.

To the imperative programmer, the IC skeleton may be seen to implement the

“pseudo-code” presented in figure 4.1, where S represents a set of homogeneous

objects describing a problem instance.

In order to tailor the skeleton to a particular problem, the user must provide a

type specification of an “object”, details of a procedure which allows two objects

to be combined and returns a measure of the cost of such a combination and

finally, a method of discriminating between two such costs to select the more

desirable.

More formally, if the objects involved are of type “obj”, then the programmer

must provide functions

combine : obj → obj → obj

value : obj → obj → val

accept : val → val → bool
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where combine describes how two objects are merged, “value” measures the utility

(of type “val”) to the overall solution of such a merger and accept discriminates

between two such values, to select the most suitable (i.e. should the first value be

selected in preference to the second). Given these functions, the IC higher order

function is specified so that

IC combine value accept = F

where F S = F (merge (partners S) S), if continue S

= S, otherwise
merge = ....combine....

partners = ....combine....value...accept

continue = ....accept....value

The functions merge, partners and continue are part of the imaginary im-

plementation, with continue using the programmer’s functions accept and value

to decide whether recursion should continue, partners using combine, value and

accept to determine the set of “best partner” pairs for the given set of objects,

and “merge” using “combine” to update the set of objects on the basis of these

pairings. Using the notation {a} to denote a “set of a” (where a fully executable

specification might have to use lists)1, the types of the internal functions are

merge : {(obj, obj)} → {obj} → {obj}
partners : {obj} → {(obj, obj)}
continue : {obj} → bool

It is not difficult to conceive of examples in which the best partner relationship

is not necessarily symmetric i.e. in which, at some iteration, an object s1 may

be the best partner for s2 but have s3 as its own best partner. Indeed, this is

the case with the minimum spanning tree algorithm. In such examples, all three

objects involved in the “group” must be combined and replaced by a single object.

Furthermore, it is essential that the process of combining such a group of objects

follows a “valid” order in performing the combinations. For example, if tree t1

has best partner t2 via edge e, while t2 has best partner t3 via edge e′, then any

implementation must avoid combining t1 directly to t3 by some other spurious

edge e′′, before including t2. In other words, objects must only be combined if

they are directly best partners or have already subsumed other objects which

imply a best partner link between them. The parallel implementation introduced

subsequently respects this property.

1An executable sequential version of the skeleton also requires some further details, such as
the labelling of objects, which do not serve to aid clarity and have consequently been omitted
from this presentation. However, the author has successfully constructed such fully operational
version in (sequential) Miranda[35]. Miranda is a trademark of Research Software Ltd.
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4.2 Parallel Implementation Issues

The parallel implementation discussed in this chapter attempts to exploit the

most obvious sources of parallelism in the imperative specification, namely the

“for each s in S” loop and the “combine” phase. A sequential implementation

would have to deal with objects in S one at a time in both cases. Given as many

processors as objects, a parallel implementation could, at each iteration, find all

best partners concurrently then proceed to perform all appropriate combinations

concurrently. The grid implementation proposed in this chapter takes such an

approach.

The remainder of this section introduces the issues to be addressed in design-

ing such an implementation. In subsequent sections we outline an actual grid

implementation which addresses the problems raised.

4.2.1 Distribution of Valid Information

The composition of the set of objects changes from one iteration to the next -

some objects disappear while other new ones are created. Any processor involved

in finding and combining best partners during some iteration must only deal with

up to date descriptions of the objects. Trying to combine with an object which

should no longer exist would contradict the specification of the skeleton. Thus,

after each iteration there must be some consistent and accessible representation

of the objects currently in the set.

4.2.2 Testing and Selecting Partners

For a particular iteration it will be necessary to test all possible pairings of objects

which involve at least one new member (i.e. created during the previous iteration).

In the most extreme case this will involve comparing all pairs of remaining objects.

Thus, each object may be the subject of many concurrent tests. Any parallel

implementation must attempt to minimise the problems caused by this sharing

of information, possibly by careful scheduling of access or by replication of data.

Similarly the selection of a best partner will require a consensus to be reached

between any processors which are sharing the workload.

4.2.3 Combining, Updating and Checking for Termina-

tion

Once the best partners have been selected for each object the appropriate combi-

nations must be executed and the set of remaining objects adjusted accordingly.
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The possibility that many-object “group” combinations may occur complicates

the situation. The implementation must ensure that only one new object is cre-

ated, replacing all its components and that any essential sequencing is obeyed

within the construction of each new object. After the combinations, a check

must be made as to whether the algorithm should terminate. The most obvious

solution involves noting how many objects remain and comparing this number

with the number which remained after the previous iteration. The result must

be known to all processors.

4.2.4 Balancing the Load

Each iteration alters the number of remaining objects and their respective sizes.

Thus, the quantity (with respect to particular objects) and location of work (for

some particular implementation) to be done during the next iteration will be af-

fected. A parallel implementation should take into account the way in which this

changing workload can affect performance. It may have to make dynamic adjust-

ments to the balance of work across the machine in order to preserve efficiency.

4.3 Implementation on an Idealised Grid

This section presents techniques which could be used to implement each iteration

of the “test and select” loop and the combine” phase. These make the unreal-

istic assumptions that the number of objects present at the start of the current

iteration exactly matches the number of grid processors, and that the side length

of the grid (or, as will become clear, the appropriate sub-grid) is even. Sec-

tion 4.4 considers the modifications necessary to move to a completely practical

implementation on a fixed size grid where these assumptions do not necessarily

hold.

The implementation is founded on the idea of assigning each object to a unique

“home” processor for the duration of the current iteration. This processor is

responsible for finding the object’s most suitable partner and is the only one

which keeps a record of the object’s description throughout the iteration. In

order to select the best partner it must see details of all the other remaining

objects and test the desirability of combining with each of them. Thus, each

processor is supplied with a local copy of the user specified functions implementing

object combination, costing and cost discrimination. Having selected the “best

partner” it must co-operate with that object’s home processor (and with any

others involved in a group of combinations) in combining the objects and passing
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exactly one copy of the resulting object into the next iteration. The technique

described below allows these functions to be carried out in a well-structured

fashion, for which the required pattern of communication is independent of any

particular problem instance, and can therefore be implemented once and for all

as part of the skeleton’s underlying structure.

It will be assumed that each object is assigned a unique integer identifier

before execution of the skeleton. An object formed by combining a collection of

others inherits the lowest identifier among those of its components. Note that

these identifiers are generated and inspected by the implementation system only,

and are entirely independent of any identification introduced by the programmer.

4.3.1 The “Test and Select” Phases

Suppose that processors are connected only by a point-to-point ring. A very

simple technique allows such a ring to implement the “test and select” phases of

the skeleton. We will present such a technique and then show how the ring (and

therefore the implementation) can easily be embedded in the grid machine.

Each processor makes a copy of the description of its home object, including

all the information required to test combinations with it. These copies are passed

round the ring in a pre-defined direction. Upon receipt of such a copy, a processor

simulates the result of combining the new arrival with the static copy of its home

object. Each processor keeps a note of the best combination it has tested so far

in the current iteration. Once the copies have been passed right round the ring,

each processor knows the identity of the best partner (if such exists) for its own

object.

Assuming for the moment that all objects are of the same size, it can be seen

that this method gives speed up to within a factor of two of optimal for the test

and select phase. There are Θ (|S|) pairs and these are being tested |S| at a

time. Thus, provided that the time taken to test an object is at least as large

(asymptotically) as the time taken to transmit its details from point to point,

communication will take up at most a constant fraction of the total time round

the ring and so only restrict optimal speed up by this constant factor.

However, the goal of the exercise is to implement the skeleton on a grid of

processors. The task of moving from ring to grid is now considered. Theorem 2

shows that the assumption that the grid side length is even is both necessary

and sufficient to ensure that the move can be made efficiently. In such cases,

ring processors may be mapped one-to-one to grid processors in such a way that

neighbours in the ring are neighbours on the grid (i.e. that the ring follows a
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Figure 4.2: Hamiltonian circuit of an even-sided grid

Hamiltonian circuit of the grid). Thus, there will be no time penalty associated

with the simulation.

Theorem 2 A Hamiltonian circuit of a square grid exists ⇐⇒ the side length of
the grid is even.

Proof: (i) side length even =⇒ tour exists

In such cases, a tour of the grid is easily described. Start in the top left hand

corner. Go up and down adjacent columns, avoiding the top row. Since there are

an even number of columns, the tour has progressed to the top right hand corner

and can be completed along the top row. Figure 4.2 illustrates the instance with

side length six.

(ii) side length odd =⇒ no tour exists

Imagine rows and columns to be numbered from 1 to
√

n along and down,

starting at the top left hand corner. When following a path through the grid,

it is possible to keep a two bit state, where the bits note whether the current

processor is in even or odd numbered rows and columns respectively. Any move

between directly connected processors flips exactly one bit of the state. Since a

circuit must start and finish in the same processor and hence the same state, this

implies an even number of moves. However, if the side length is odd then so is

the total number of grid processors. A Hamiltonian circuit involves moving into

each processor exactly once, implying an odd number of moves. The resulting

contradiction proves that no such circuit exists in this case. •

4.3.2 Combining Objects

To complete the manipulations involved in a particular iteration it remains to

combine objects as required by the choice of best partners. Only one copy of each

new object should be kept for the next iteration, and all copies of its components
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in their original form must be removed from circulation. We must also be care-

ful to combine groups of objects in a way which respects the underlying “best

partner” structure.

Before combination begins each processor has explicit knowledge of its object’s

direct best partner. It has no knowledge of any groups of combination with

which it may be involved. Any implementation of the phase must allow for such

situations. Two techniques are now presented which deal with the problem in

a completely general way, making no attempt to tailor activity to suit specific

patterns of combination. It is argued in section 4.6 that the simplicity of these

approaches will lead to superiority over other methods, in all but the most trivial

(and unlikely) of examples.

4.3.2.1 The Single Tour Algorithm

This method involves one further tour of the grid embedded processor circuit.

Again, each processor places a copy of its home object onto the circuit. This

copy is placed in a packet tagged with two extra fields. As the packet progresses,

the first field notes the identifiers of objects which have been combined with the

original object, during the tour. The second field notes the identifiers of objects

with which the packet is aware that it must still combine. These are simply the

“best partners” (except for those already incorporated into the packet) of the

objects noted in the first field. A copy of the original packet is kept by the home

processor.

On receipt of an incoming packet, a processor cross checks the fields to see

if a combination should take place (on the strength of the available information)

between the packets. If so it creates a new packet subsuming the two old packets

with tag fields set accordingly. It replaces its old stored packet with the new one,

before passing a copy of the new packet on round the ring. If no combination is

discovered, the old incoming packet is passed on.

Theorem 3 proves that this scheme produces the required result - that on

completion of the tour each processor has a copy of the packet representing the

object into which its old object has been merged (just the old packet itself if

no combinations were made). Furthermore, the scheme clearly respects the re-

strictions upon the ordering of combinations implied by the need to respect best

partnerships. This is because combinations only take place on the basis of a

direct “best partners” relationship between two objects or between two of their

already subsumed members (by virtue of information in the second field of the

packets). Thus, in terms of the simple minimum spanning tree example presented
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Figure 4.3: Combining object o1 and o6.

in section 4.1.2, there is no way that t1 will be (incorrectly) combined directly

with t3 since packets containing these trees will only “recognise” each other if one

of them also contains t2 already.

However, there will now be c copies of each new object which subsumed c old

ones. All but one of these must be removed. The surviving copy is arbitrarily

chosen to be that resident in the home processor of the component with the

smallest identifier (which the new packet inherits in preparation for the next

iteration). Since all processors know the identity of their original object, and those

of all the components of the new resident packet (by inspecting the first field),

redundant copies can be deleted concurrently, without further inter-processor

consultation.

Theorem 3 The single tour algorithm ensures that all packets are transformed
to represent the merged set of all objects with which their original object has been
combined.

Proof: Consider any object and label it o1 and its original home location h1.

Imagine the loop to be cut “behind” h1 and stretched out to the right with all

packets moving right and “wrapping round” from the end to h1.

Consider any object ox with which o1 (and hence its travelling packet) must be

merged. Then there must always be a sequence of objects o1, o2, ..., ox such that

oi+1 is the “best partner” of oi for 1 ≤ i ≤ x (otherwise we wouldn’t be combining

o1 and ox). Objects in the sequence have original locations h1, h2, ..., hx. Suppose

that hk is the rightmost of these in the cut loop. It is now proved that the static

packet in hk accumulates o2, ..., ox before the copied packet containing o1 arrives

there and hence merges them with o1 on its arrival. Figure 4.3 illustrates such a

situation where x = 6 and k = 4.
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This is achieved in two parts, by proving that

1. hk accumulates o2, ..., ok, and

2. hk accumulates ok+1, ..., ox.

(and that all this happens before o1 has passed). Both parts may be proved

inductively. A proof of part 1 is presented here and may be simply adapted to

prove part 2.

As a base case for induction it is noted that hk accumulates ok−1. The packet

originating in hk−1 must pass hk, and will be recognised by the fact that its second

field contains the identifier of ok. Since hk−1 is to the right of h1 this will happen

before the packet originating in h1 arrives at hk.

Given the inductive hypothesis that oj is accumulated at hk, it is now proved

that oj−1 is also accumulated. This will hold for 3 ≤ j ≤ k − 1. In conjunction

with the base case, proof of part 1 follows by induction on j from k − 1 down to

3.

Suppose that hj−1 is to the right of hj in the cut loop. Then the packet which

successfully took oj to hk must recognise and pick up oj−1 as it passes hj−1 before

arriving at hk.

On the other hand, hj−1 may be to the left of hj . In this case, the packet

originating in hj will be recognised and accumulated at hj−1, and the resulting

packet will also be recognised upon reaching hk, by virtue of containing oj (and

consequently by the inductive hypothesis). This completes the proof of part 1.The

proof of part 2 is entirely analogous, with the induction being from k +1 up to x.

The theorem is proved by the observation that the original choice of o1 was

arbitrary. Consequently, the argument applies to any packet. •

The algorithm has the useful property that it requires only one further tour of

the grid to implement the combination of objects, in any instance. However, the

way in which multiple near-copies of increasingly large objects are moved around

while under construction appears costly. An alternative combination algorithm

is now presented. This algorithm involves three tours of the grid by constant size

packets followed by one tour involving only objects present at the start of the

iteration. New objects are constructed uniquely by the processor which will be

responsible for them during the next iteration.
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Figure 4.4: Savage’s Systolic Array

4.3.2.2 The Four Tour Algorithm

This algorithm proceeds in two phases. In the first phase, each processor is made

aware of the lowest numbered object in the group with which its own object must

be combined. In the second phase processors dispatch their object to the home

of the identified object. The processor there combines all arrivals together with

its own object to create the single copy of the new object required in the next

iteration.

The proposed first phase is motivated by the observation that the problem

of identifying the objects of lowest identifier in “combination groups” is a simple

instance of the problem of finding the vertex of lowest identifier among each con-

nected component of an undirected graph. Quite simply, objects correspond to

vertices and “best partner” pairs to undirected edges. Thus, a direct implemen-

tation of any connected components algorithm will also solve the “lowest object

identifier” problem.

Savage [31] presents a suitable, systolic connected components algorithm. This

involves a linear array of processing elements, where processor i is responsible for

vertex i of the input graph. Each processor calculates the identifier of the smallest

numbered vertex in the component to which its own vertex belongs. This is

achieved as depicted in figure 4.4, by pipelining constant sized packets containing

descriptions of edges along the array and back, before being discarded.

As packets progress, their contents, and the information stored by processors,

are updated, but their size remains constant. The edges are initially stored in

an off-chip “pool”. Each edge passes along the array and back exactly once,

with constant time between each pulse which moves them between neighbouring

processors. Thus, the whole algorithm takes time Θ (v + e), where v is the number

of vertices in the graph and e the number of edges. Clearly the existing tour of

the grid allows direct simulation of the linear array, with no more than constant
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Figure 4.5: Embedding the pool in the tour

overheads2. To complete implementation, it is necessary to simulate the behaviour

of the edge pool. This is required to feed edges into the simulated array at every

second systolic “pulse”. To achieve this, we note that each processor in the tour

is initially responsible for one “edge”. Thus the “edge pool” is already distributed

around the tour. Furthermore, by virtue of the fact that the array is embedded

in a circuit, the nth processor of the array is physically adjacent to the first. Thus

the edges can be pipelined round the tour “entering” the simulated array over the

link which joins the first processor to the nth, as suggested in figure 4.5. Since

each processor is now responsible for both part of the array and part of the pool,

simulation of movement in these two structures is interleaved. In total, each “edge

packet” makes up to three tours of the grid: at most one to “get out” of the edge

pool, one along the “processor array” and one back to its originating processor

in the “edge pool”.

A further tour of the grid is now invoked to allow each processor to send its

object to the home of that into which it has to be combined before the next itera-

tion. Finally, new objects are produced by direct sequential combination at these

destination processors. The cost of this last operation is crucial in determining

whether this approach is superior to the first algorithm presented. This was vul-

nerable to iterations in which multiple copies of large objects were transported

2Although Savage’s algorithm depicts the processors as being numbered in increasing order
away from the “edge pool” it may easily be verified that this is not a necessary condition for
the correctness of the algorithm. Thus, no re-numbering of objects need be implemented to
produce this situation.
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around the tour while under construction. This has been alleviated at the ex-

pense of introducing three additional tours by constant size packets. On the other

hand, the second algorithm requires large objects to be constructed sequentially

by the processors responsible for them at the next iteration. A sensible decision

as to the relative effectiveness of the two algorithms could only be made on the

evidence of real examples on a real machine.

4.3.3 Checking for Termination

At this point the implementation of an iteration is complete. It now remains

to check whether a further iteration is required, which involves counting the re-

maining objects. If the total number has either fallen to one, or has remained

unchanged from the previous iteration, then execution is complete. Otherwise,

another iteration must be initiated. The sum and broadcast algorithm of sec-

tion 6.2.1.3 is suitable for generating and distributing the count and takes in-

significant time in comparison with the tours involved in the rest of the iteration.

4.4 Fixed Size Grids and Redistribution

The preceding sections presented an implementation for iterations in which the

number of objects present is exactly equal to the number of processors in an

even sided grid. Unfortunately, this match will occur only rarely in practice,

and a realistic system must be able to handle the problems associated with its

absence. There are two ways in which such a mismatch can occur. We will

consider these separately. In the first (and given the fixed size of any real machine

almost inevitable) case, the number of objects present initially is much larger than

the number of processors. The system has to distribute the workload between

processors both initially and dynamically, as the the number of objects falls. A

second possibility, considered in section 4.5, is that the number of processors

is as large as the initial number of objects. As the number of objects falls, the

system may be able to improve performance by regrouping remaining objects into

increasingly smaller sub-regions of the grid. This situation will also occur in the

final iterations of instances which initially fell into the first category.

4.4.1 Large Problems on Fixed Size Grids

In these problem instances the initial size of the set of objects, S0 say, is assumed

to be much larger than the size of the grid. For a square grid of n processors,

S0 may be arbitrarily large with respect to n. Since n is now fixed (for any
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particular machine) it is not unreasonable to assume that
√

n is even (simply

by ensuring that our grid machines are physically constructed this way). A very

simple implementation which deals with this situation is now presented, and

its performance for certain examples is analysed. Although it is impossible to

predict the “typical” use of the skeleton, these examples give helpful insight into

the seriousness of difficulties which may arise.

4.4.2 A Simple Implementation

For an iteration involving |S| objects, the implementation involves a simple sim-

ulation of the required |S| long circuit of processors by the n processors actually

available. Before the first iteration each processor takes responsibility for S0

n
(as

nearly as possible) objects. These are assigned to adjacent homes in the length

S0 virtual circuit, and blocks of such homes are assigned to adjacent real pro-

cessors in an order following the real circuit around the grid. The iteration is

implemented by having each processor simulate one instruction from each of its

resident virtual processors in turn. In this way, communication will only ever

be required between real processors which are physically adjacent and therefore

introduces no more than constant overheads for each message passed.

After each iteration, each processor may lose some of its objects. If this

happens then it simply proceeds as before during the next iteration, now sharing

its time between a smaller number of virtual processors. Should a processor lose

all its objects before the final iteration, it will simply act as a buffer, forwarding

messages between its neighbours.

4.4.3 Examples and Analysis

The scheme proposed amounts to a fixed size pipeline simulating a variably longer

pipeline. It is well known [17] that, in general, the significant factors which act

to reduce pipeline efficiency are gaps in the flow of data and uneven length (in

time) of stages. Where do these feature in our simple implementation ?

Since the real processors are always ready to adapt to a new smaller number

of resident objects, the only way in which gaps can occur is for some processor

to lose all its objects while some other processors are still active. This would

introduce a single time step delay into the pipeline. While isolated instances

will not be significant, efficiency could be adversely affected if large numbers of

processors quickly become idle.

The dangers of unbalanced stages appear more pressing and may appear in

two ways. Firstly, as objects disappear from one iteration to the next, it seems
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probable that some processors will be left with more resident objects (and hence

virtual processors) than others. These physical processors will tend to become

bottlenecks in the physical pipeline. Secondly, as objects are combined (in an

unpredictable and problem dependent way) it seems likely that certain of the

remaining objects will grow larger than others. This will probably involve them

in longer testing and combination time, and will certainly involve longer transfer

time, leading to imbalance between stages of the virtual pipeline, and conse-

quently to bottlenecks.

We now present a summary of some examples which illustrate the way in

which these issues can affect performance. While it is impossible to predict what

constitutes a “typical” example, the situations discussed nevertheless provide a

useful insight into the way in which such problems may interact.

Several assumptions have been made throughout the examples to ease analysis.

Firstly, it is assumed that all objects in the initial set have descriptions of uniform

size. The time taken to transfer or examine such a chunk of data is taken as the

basic unit of time in the analyses. The combination of two objects of sizes x and

y is assumed to produce an object of size x + y. Similarly, it is assumed that

the time taken to combine two objects and test the cost (by whatever measure is

interesting) of the new object is proportional to its size.

Each example represents a possible pattern of combinations for a complete

execution, with different examples varying the speed with which the number of

objects falls (thereby varying the number of iterations) and the way in which

discrepancy in size between remaining objects occurs (thereby varying the time

taken for particular iterations). The best and worst possible scenarios (in terms

of the balance of object distribution at each iteration) are compared. The best

scenario models the situation in which all remaining objects at each iteration

are evenly balanced (in number) between processors. The worst scenario rep-

resents the case in which the balance is as uneven as possible, given the initial

distribution. Comparison of the two gives some insight into the improvements

which might be achieved by the introduction of an object redistribution algorithm

between phases, which would ideally be able to turn potentially worst case dis-

tributions into best cases. Of course, to be useful, such an algorithm would have

to take less time than the saving produced!

The characteristics of the selected examples are presented below, with a sum-

mary of the best and worst case behaviour for each listed in figure 4.4.3.

We will be particularly interested in behaviour when the initial number of

objects present, S0, greatly outnumbers the number of processors available. There
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are two reasons for this. Firstly, a large number of objects ensures that sufficient

work is involved to allow any serious inefficiencies to become apparent. Secondly,

these cases reflect the realistic situation in which the size of an actual machine is

constant, but the sizes of the problems are not. To capture this characteristic and

to simplify results for convenient presentation, the results presented in figure 4.4.3

refer to situations in which S0 = Ω (n2).

Example 1

In this example it is assumed that the initial S0 objects, all of size 1, are dis-

tributed evenly S0

n
per processor. In the first iteration these collapse “dramat-

ically” to form S0

n
objects, each of size n. For a further log2

S0

n
iterations, the

number of objects is repeatedly halved in such a way that one increasingly large

object is formed, while all other remaining objects stay at size n. In the worst

distribution all the objects will be located in a single processor after the first

iteration, with a gap of length n − 1 in the pipeline. In the best, the number of

objects is kept well balanced between processors until only n remain.

After this point, the number of active processors will be reduced by halves for

the remaining log2 n iterations, creating gaps in the pipeline.

Example 2

As in example 1 except that the first dramatic iteration in which the number

of objects fell from S0 to S0

n
, has been replaced by a more gradual process, over

log2 n iterations, with the number of objects falling by half in each of these. After

this, execution proceeds as in example 1.

Example 3

The number of objects falls as in example 1. However, the combinations occur

more evenly - all objects gradually increase in size and no single object becomes

much larger than all the others.

Example 4

Completing the logical quartet of examples, the number of objects falls as in

example 2, but without the build-up of an anomalously large object.

Examples 1-4 deal with instances in which the number of objects is halved

between iterations (with the possible exception of the first iteration). The next

example considers an instance in which the number of objects present falls much

less rapidly.
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Example 5

The number of objects falls by n between each iteration, resulting in the creation

of n increasingly large objects, and giving S0

n
iterations in all. In the best case the

n large objects are distributed one per processor. Each processor loses one small

object at each iteration, until only the n large objects remain, to be combined in

the final iteration. In the worst case the embryonic large objects are all located in

the same processor and will be built up there. This processor will lose no objects

until all other processors are empty. Then it will lose its objects n at a time for

each of the remaining iterations.

In Examples 1-5 it was assumed that initial set of objects was evenly dis-

tributed between the real processors. The final two examples give some insight

into the significance of this assumption, by considering an alternative extreme,

in which all objects are initially located in one processor. Consequently, the dis-

tinction between best and worst distributions no longer exists. It also turns out

that the analyses for these examples are the same whether or not we introduce

a “dramatic” first iteration. Thus the only variable factor left is the presence or

absence of an anomalously large object.
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Example Best Case Time Worst Case Time

1 O
(

S0
3

n3 + S0n log n
)

Ω
(

S0
3

n2

)

2 O
(

S0
3

n3 + S0n log n
)

Ω
(

S0
3

n2

)

3 O
(

S0
2

n
+ S0n log n

)

Ω (S0n)

4 O
(

S0
2

n
+ S0n log n

)

Ω
(

S0
2

n
log n

)

5 O
(

S0
4

n3

)

Ω
(

S0
4

n3

)

6 Θ
(

S0
3

n2

)

7 Θ
(

S0
2
)

Figure 4.6: Summary of Results

Example 6

All objects are located in the same processor throughout. The pattern of examples

1 and 2 is followed with respect to the appearance of a large object (i.e. there is

one).

Example 7

As in example 6, except that the combinations are assumed to be more even, with

no single large object appearing.

4.4.4 Summary and Discussion of Examples

Any conclusions drawn from the preceding analyses must be prefaced by two

qualifications, noting the relatively small number of examples and the dangers

of placing too much emphasis on asymptotic comparisons (especially when these

appear to show “no significant difference” between quantities). Nevertheless, it

would be taking such scepticism too far to dismiss completely the emergence of

certain trends which should have a bearing on implementation decisions relating

to the distribution of objects.

In this spirit, the following points are noted :

• a well balanced initial distribution of objects is essential (consider example

6 and compare with the best cases of examples 1 and 2, or example 7 and

compare with the best cases of examples 3 and 4);

• without the appearance of large objects redistribution cannot guarantee to

offer dramatic savings (consider the difference between best and worst cases

in examples 3 and 4)3;

3In example 3, the performance appears to be so similar that our analysis couldn’t force any
gap between best and worst cases.
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• the slower the rate of appearance of large objects, the less effect they have

(compare the difference between best and worst cases of example 5 with

those of examples 1 and 2), presumably since more work is done in the

early stages when objects are still reasonably distributed;

To summarise, the analysed examples suggest that a good initial distribution

is essential and that the value of dynamic redistribution increases with both the

likelihood and speed of the appearance of a significant imbalance in the sizes of

remaining objects.

Detailed analysis reveals that the most important factor in redistribution is

the balancing of the number of objects per processor, independent of size. This

is a direct result of the simple implementation method proposed - the presence of

one large object on a processor introduces a bottleneck into the pipeline of virtual

processors simulated by that processor, to the extent that all other objects present

there might as well be equally large.

In practice, information about the procedure for merging objects is available

before execution, and it would be possible to use this to decide whether to employ

redistribution on a problem by problem basis. However, such decisions would

only be meaningful in the context of a particular implementation on a particular

machine.

4.4.5 Implementing Redistribution

The examples presented above demonstrate the existence of problem instances

for which the absence of some redistribution technique allows the possibility of

as bad as Θ (n) fold deterioration in performance. The remaining question is

whether such a scheme can be implemented at justifiable cost, with respect to

the time saved. We now present a scheme which shows this to be possible.

At the end of each iteration, processors execute the sum and broadcast algo-

rithm to ascertain the total number of objects remaining (this is already necessary

for termination checking). From this information, each processor decides whether

it has a local surplus or shortage of objects. Processors having a surplus send

unwanted packets off on another tour of the physical ring. These will be grabbed

by processors with a shortage. All processors can determine that the phase has

finished by putting an extra “marker” packet on the ring after any surplus ob-

jects have been dispatched. When this packet returns (it is simply passed round

the ring), the phase is known to be complete. This is essential since none of the

surplus objects will themselves return.
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Although this appears a rather costly exercise (which it is), the crucial obser-

vation is that the time taken will be no larger than that spent dealing with the

next iteration. In fact, in most cases it will be somewhat smaller. Therefore, it

will only have the effect of increasing the total time by a factor of ≤ 2 (indepen-

dent of n and |S|). This is obviously justifiable when considered in the light of

the potentially Θ (n) fold saving produced.

The result is a clear illustration of an important point in the ubiquitous

computation-communication trade-off. The fact that a large amount of time

has been spent doing essential work efficiently (i.e. the “real” work of each it-

eration), allows a generous amount of time to spent on invisible (in terms of

the abstract skeleton specification) house-keeping, without dramatically affecting

overall performance or scalability.

4.5 Redistribution with a Shortage of Objects

The issue of redistribution can appear in a complementary way to that discussed

above. Instead of a having a surplus, consider the situation which occurs when

the number of remaining objects falls below the number of processors. Clearly an

increasingly large number of processors will become idle and, if the implementa-

tion continues to use the full tour of the grid, the time wasted simply passing the

few remaining objects between idle processors may become significant (i.e. there

will be a gap in the pipeline). Some form of redistribution of objects would appear

to be called for. Ideally, remaining objects would be assigned to home processors

after each iteration of the “test, select, combine” phase, in such a way that all

new homes are connected by a Hamiltonian circuit of length equal to the number

of remaining objects. An easy way to ensure this would be, whenever possible, to

select a suitably sized square sub-grid of processors as the new homes. This is the

approach we will take. Equally, it is important that the cost of performing this re-

location is not so large as to nullify any associated gain in performance. It would

appear sensible to implement redistribution only when the number of objects has

fallen substantially with respect to the number of processors still involved in the

tour. Accordingly, an algorithm is now presented which implements redistribu-

tion every time the number of objects falls to half the number of currently active

processors.
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4.5.1 The Goal

A crucial iteration is one in which, as a result of combinations, the number of

remaining objects has fallen to half (or less) the number of processors responsible

for its implementation. In general, suppose that the processors implementing the

iteration occupied a k × k sub-grid, where k is guaranteed4 to be a power of

2, and that the number of remaining objects (calculated during the termination

checking phase) has fallen to be no more than k
2i × k

2i , for some positive integer

i, but more than k
2i+1 × k

2i+1 . In such situations, the goal of the redistribution

algorithm is to relocate the remaining objects to new homes occupying some sub-

grid of processors of dimension k
2i × k

2i . Arbitrarily, the sub-grid at the centre of

the original is chosen, as illustrated in figure 4.7.

Some of the remaining objects will already be located at homes in this inner

sub-grid, where they may remain. Others will currently have homes in the outer

belt of processors, which are all now to become idle. These “free” objects must

be relocated to processors within the inner grid which currently have no home

object. Such free processors will be referred to as “holes”. It should be noted

that the number of holes is as least as large as the number of free objects, by

virtue of the size of the selected sub-grid. A processor may immediately determine

whether it has a free object or is a hole (or neither) as a direct consequence of

its absolute location in the grid and the total number of objects remaining. The

task of the redistribution algorithm is to move each free object to a unique hole

as quickly as possible. The algorithm presented below achieves this goal within

time guaranteed to be Θ (k log k). This comes close to matching the trivial lower

bound on worst case performance obtained by considering an instance with one

free object and one hole, which may be located k links apart, even by the shortest

route.

4.5.2 A Suitable Algorithm

The algorithm presented here is more general than is actually required, in that it

will allow holes to be located anywhere in the original k × k grid . The situation

here, with holes restricted to the selected k
2i × k

2i sub-grid is just a particular case.

Thus, any choice of location for the new sub-grid would be handled equally well.

The essence of the algorithm is to repeatedly partition the k × k grid into

smaller and smaller pieces, while correcting the distribution of free objects be-

4Note that this is not a serious restriction. It simply requires that the original hardware
be manufactured with the number of processors being a power of 2, which seems plausible. It
places no restrictions on the use of the skeleton.
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Figure 4.7: Redistributing to a smaller grid

tween each division as appropriate to the number of holes therein. Partitioning

of each area is always into two halves, with any two successive partitions being

orthogonal. Thus, the first level of partition splits the k × k grid into two halves

and balances free objects between them. The second level concurrently splits each

half in two, producing two pairs of k
2
× k

2
square sub-grids. The crucial observa-

tion is that it is now only necessary to balance within each pair, since balance

between pairs has been ensured at the previous level. Redistribution within each

pair proceeds entirely independently and concurrently. As the level of partition

increases, so does the number of such concurrent activities and their locality. At

the (log2 k2)
th

level of partition the redistribution takes place between adjacent

pairs of processors, at which point overall redistribution is complete.

It remains to describe the process by which some group of processors is par-

titioned and the free objects present are balanced between the two halves.

Consider the ith level of partition. An initial group of k2

2i−1 processors is di-

vided5 into two groups of k2

2i . Suppose that these contain f1 and f2 free objects

and h1 and h2 holes respectively. Then, since f1 + f2 ≤ h1 + h2 is guaranteed

(otherwise the redistribution process would not have been instigated), it may be

5By partitioning a square into two equal rectangles or a rectangle into two equal squares, as
i is odd or even respectively.
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the case that either f1 > h1 or f2 > h2 but certainly not both (i.e. at most

one half may contain more free objects than holes). All that is required of the

redistribution algorithm is that it should detect and rectify such occurrences at

each level of partition, by moving an appropriate number of free objects from the

overloaded group to its “partner”.

Suppose that the original area was rectangular and that the partition therefore

produces two squares. The algorithm proceeds in three phases, as follows:

1. Concurrently, in each square, processors run a localised copy of the sum

and broadcast algorithm of section 6.2.1.3 to determine the number of free

objects, f∗ and free holes, h∗ in their square. Comparison of these allows

each square to determine whether it should be exporting free objects. As

we have seen, at most one member of any newly created pair of groups will

be an “exporter”.

2. Processors in an exporting square determine precisely which f∗−h∗ objects

will be sent across the boundary to their partner group. Arbitrarily, these

are chosen to be those residing in processors of lowest identifier, assuming

a row major ordering. To achieve this, processors in each row cooperate

to count the total number of free objects in the row. Then, processors

in the first row subtract their row total from (f∗ − h∗) before passing the

result to their neighbour in the row below. If the result is positive then

all processors in the row having free objects must send them across the

partition. If the result is negative, then only as many objects as would

have made the result zero must be dispatched. Again, these are chosen by

smallest home processor identifier. Such processors can identify themselves

by sending a count along the row from lowest to highest identifier. The

process ripples down the rows until, upon completion in the bottom row,

those processors which will send their free objects across the boundary have

been identified.

3. The selected free objects are shunted across the boundary. An object orig-

inating in the ith row and jth column of the exporting square moves to the

corresponding processor in the importing square. Since the whole shunt is

effectively pipelined across rows (or down columns), this operation takes

k − 1 time steps between squares of side k. The receiving processor is not

guaranteed to be a hole, and may already be responsible for an object. At

the next level of partition it may be required to shunt both of these objects

elsewhere (more locally). In general, at the ith level of partition a processor
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may become responsible for as many as 2i objects. Thus the shunting at

the next level will be executed as a sequence of 2i single object (for each

processor) shunts.

At this point, it is certain that f1 ≤ h1 and f2 ≤ h2 and that more localised

redistribution can continue independently in each square, with concurrent instan-

tiations of the algorithm just described. Cases where the original grid is square

and the partition produces two rectangles require only a trivial adaption of the

sum and broadcast algorithm. We now consider the execution time of the whole

redistribution operation.

Theorem 4 The entire algorithm executes in Θ (k log k) time.

Proof: There are log2 k2 = 2 log2 k levels of partition. It is now shown that the

operations at each level are performed in Θ (k) time, thus producing the required

result.

The first phase involves the simple sum and broadcast on a square (or rect-

angular) grid of side length no more than k, and hence Θ (k) time . The second

phase involves a rippling of information down columns of length no more than k,

with only constant delay between rows, and possibly one ripple along a similarly

sized row. This again takes Θ (k) time. Finally, the third phase involves the

shunting of objects between adjacent sub-grids. As noted above, there are 2i−1

such shunts at the ith level. However, the decreasing size of the sub-grids involved

means that each such shunt is only of distance k
2i−1 , if i is even and k

2i if i is odd.

Thus, the total time taken for the phase is just Θ (k), the product of these, irre-

spective of level. Overall, each phase, and therefore the whole operation, takes

Θ (k) time at every level, and the whole 2 log2 k level algorithm takes Θ (k log k)

time. •

4.5.3 Evaluating the Algorithm

The examples presented in section 4.4.3 , dealing with the performance of the

proposed redistribution algorithm for |S| >> n, illustrated the difficulties in-

volved in trying to gain a useful insight into such a general problem. Analysis

of the algorithm for |S| ≤ n is further complicated by the fact that the sizes of

the “initial” objects can no longer reasonably be assumed to be equal. These

objects may actually be inherited from previous iterations (i.e. from an initial

|S0| >> n), and so may be of arbitrarily large and varied size with respect to
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n. Consequently, it appears that any analyses of examples along the lines used

previously would carry very little weight.

At this stage, the only safe conclusion is that a reasonable decision on whether

to implement the |S| ≤ n redistribution scheme could only be taken in the context

of a particular machine, on the basis of experience with real examples. However,

our analysis has shown that the scheme is to within a factor of O (log n) of op-

timal for any such algorithm, with its O (
√

n log
√

n) execution time. Bearing

in mind the substantial discrepancies in performance which could be avoided by

redistribution in the situations considered previously, it seems quite likely that

similar savings could be made here.

4.6 Alternative Approaches

A possible implementation of the iterative combination skeleton has been pre-

sented. The techniques employed were shown to tackle their respective problems

in a straightforward, efficient manner. Nevertheless it would be rash to claim that

these necessarily represent either the only or the best such methods. In this sec-

tion some other possibilities and their inherent difficulties are briefly considered.

The most obvious criticism which can be made of the proposed testing phase

is that it calculates the cost of merging every possible pair of remaining objects,

even those for which neither member has been altered from the previous itera-

tion. There are clearly instances in which such repeated work will constitute a

significant proportion of all the work done during the phase. An alternative ap-

proach might try to ensure that only pairs involving at least one new object are

tested. Only details of new objects would need to be routed to other processors,

and this could possibly be performed in a more direct way than the simple, case-

independent tour. However, there are two obvious drawbacks to such a system.

In the first place it would require processors to store details of all previous tests

and all old objects. Results of previous tests would have to be maintained in

some ordered fashion, and both sets of data would have to be carefully updated

to preserve correctness. This would involve substantial cost in both space and

time at each processor. Secondly, if the rigid routing scheme of the tour was to be

abandoned in favour of something more case sensitive, then the familiar problems

of contention for links and the resulting bottlenecks would have to be considered,

especially for cases in which most objects were new and had to be distributed

globally. Similar arguments apply to the merging phase, in which selected objects

are actually combined. For example, it would be possible to route objects more
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directly to their partners. Once again the usual dynamic congestion problems

would appear, compounded by the activity introduced by any grouping of object

combinations. A further problem shared by such alternative schemes concerns

the detection of the end of the phase. In the tour implementation this is implied

by the return of a processor’s own object (in the test phase) or marker (in the

merge phase). Processors in the alternative schemes would presumably have to

co-operate in some kind of global polling to detect completion. This would allow

the method to be general enough to quickly complete iterations requiring little

work, while still catering for longer examples. Such a mechanism could involve

substantial work, especially in cases where several polls were initiated before the

end of the phase actually occurred. These considerations tentatively suggest that

while no all embracing proof can be offered as to the superiority of the proposed

method, its combination of simplicity and reasonable efficiency make it a good

pragmatic choice.

4.7 Examples

4.7.1 Minimum Spanning Tree and Connected Compo-
nents

Sollin’s algorithm [33] to find a minimum weight spanning tree of a weighted graph

was presented in section 4.1.1 as an introduction to the iterative combination

skeleton. The details required to adapt the skeleton to this algorithm for a v

vertex graph would be

• a type definition of a tree, including its component vertices and edges and

the set of edges leading from component to non-component vertices. Each

edge should include a note of its weight,

• a function “combine”, which combines two such trees by their shortest join-

ing edge and returns a description of the resulting tree, and a function

“value”, which returns the weight of the joining edge. If no such edge exists

then “value” can return “infinitely” high weight,

• a function “accept” which compares the costs returned by two possible

combinations, returning “true” if the first is preferable to the second and

“false” otherwise.

• a collection of v trees, one for each vertex of the graph, consisting of the

vertex identifier, an empty set of component edges and a set containing a
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description of each edge adjacent to the vertex.

Execution of the skeleton could terminate in two ways. If there is only one

object remaining then this will contain a description of a minimum weight span-

ning tree of the original graph. Alternatively, execution may terminate with a

collection of objects remaining, between which no edges exist. In these cases, the

original graph is not connected (and consequently has no spanning tree). How-

ever, the objects remaining each represent a maximal connected component of

the original graph. Thus, a similar implementation can also be used (if somewhat

inefficiently) specifically to locate the connected components of a given graph.

Now consider the efficiency with which the skeleton will execute the MST

algorithm given a v vertex graph. A straightforward implementation might rep-

resent a tree by a length v array of records, with the ith entry noting the length

and end-points of the shortest edge which joins vertex i to any vertex present in

the tree (this will be 0 if i is already in the tree and ∞ if i is not adjacent to the

tree), and a linked list of edges which make up the MST of the vertices present

in the tree.

The function to combine two such trees creates the shortest edge array of the

combined tree by setting its ith entry to the minimum of the ith entries of the two

existing arrays. While constructing this, it keeps note of the smallest difference

found between any two ith entries, where one was zero. This corresponds to

the shortest edge between the two trees. If this is finite, then the process is

completed by linking together the two lists of component edges and adding the

newly found edge, to represent the edge list of the new tree. If the shortest edge

was of “infinite” length, then the trees are not directly adjacent and cannot be

combined at this stage. The whole operation will take Θ (v) time in all cases. The

function to compare two combinations selects that of lower cost. This requires

only constant time.

Considering the example in which the number of trees is halved at each iter-

ation, we see that the sequential implementation will take time

v

(

v2 +
(

v

2

)2

+ ... + 22

)

= Θ
(

v3
)

.

Analysis of the parallel implementation follows a pattern similar to that presented

in example 4 of section 4.4.3. For the MST example it must be noted that the

size of “objects” is now Θ (v) throughout (because of the array). The overall

time taken turns out to be Θ
(

v3

n
+ v2n log n

)

for v = Ω (n2). Thus the skeleton

implements the algorithm very efficiently with respect to the sequential method

described. However, it is not difficult to see that the sequential method can be
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substantially improved. For example, if the description of a tree is augmented to

include a list of member vertices, then the shortest edge leaving each tree can be

found by inspecting only against these vertices. The run time of the sequential

algorithm is then reduced to Θ (v2 log v). Unfortunately, this improvement has

no effect on the skeleton implementation. It is still necessary to move objects of

size Θ (v) around the ring and the overall time is unchanged, making the parallel

implementation highly inefficient ! This is because the new sequential algorithm

no longer makes use of the full capacity presented by the skeleton specification.

The cost of combining two objects is now found without actually testing the result

of the combination and therefore without having to combine the objects at all.

The efficiency of the skeleton is based on performing these test combinations in

parallel (and relies on them to hide its communication overheads). Therefore, it

is not surprising that in making them redundant, the efficiency of the skeleton is

destroyed. The lesson to be drawn from this example is that skeletons should only

be adapted to examples which exploit the full problem solving power presented

in the abstract specification.

4.7.2 Partitioning Programmable Logic Arrays

The programmable logic array (PLA) is one of the most commonly used building

blocks in the design of VLSI systems. A PLA provides a simple, automatable

means of implementing a collection of combinational functions which may share

common inputs and minterms. The main problem associated with their very reg-

ular structure is that without careful (and time consuming) design large internal

areas may be effectively wasted, thus using up valuable chip area. The partition-

ing approach attempts to overcome this by dividing the initial, crude PLA into

several smaller ones which collectively implement the same functions but which

require a smaller total area. Unfortunately, the problem of finding a guaranteed

optimal partition is too computationally demanding to be feasible in practice.

Consequently, heuristic approaches to the problem have been considered. One

of these proceeds in a manner which closely resembles the iterative combination

skeleton.

The original PLA is divided up into a large collection of smaller PLAs (a

typical choice is to have one for each original minterm). These are then combined

on the strength of a cost function which calculates the area required by a PLA. A

combination is acceptable if it requires less area than its components (a reduction

in area arises from the sharing of common inputs and minterms). Eventually

the process will stop with either a collection of PLAs representing a successful
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partition of the original, or a single PLA (exactly the original) indicating that no

partition was found (but not necessarily that none exists).

In terms of the skeleton, the details required are

• a type definition of a PLA including details of inputs, outputs and minterms,

• a combine function which can merge two such descriptions (taking possible

sharing into account) and return the resultant decrease (or increase) in area,

• a compare function which compares two such costs and accepts the larger,

provided that this is positive, and

• descriptions of the initial PLAs, constructed by dividing up the original.

A typical implementation represents a PLA as a boolean array indexed by input,

product and output nodes, where elements indicate the presence or absence of

nodes. The size of such an object is therefore v, the total number of nodes in

the original PLA, and the cost of merging two of them (by OR-ing together

arrays) is Θ (v) independent of their internal details. Realistic PLAs tend to have

|products| = Θ (|inputs| + |outputs|) and so the initial problem size is also Θ (v).

From these assumptions, the analysis is identical to that of the simplistic

MST algorithm of the previous example, resulting in Θ
(

n
log n

)

growing to Θ (n)

fold speed-up for n processors, when the problem is suitably large. Most impor-

tantly, for the PLA problem there is now no short-cut available to the sequential

algorithm at the expense of the skeleton. Any improvement in representation

would apply equally to both implementations. This is because it is now strictly

necessary to examine the result of a combination of two PLAs in order to calcu-

late the resultant saving. Consequently, the communication time in the skeleton

implementation cannot be exposed as it was in the spanning tree example. PLA

partitioning provides an example of an application which can exploit the iterative

combination skeleton with high efficiency.
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Chapter 5

The Cluster Skeleton

5.1 An Alternative Approach to Skeleton Con-

struction

The skeletons discussed in chapters 3,4 and 6 share a similar pattern of develop-

ment. Each was initially motivated by the isolation of a particular algorithmic

technique, apparently possessing some scope for parallel execution. Having tied

down the abstract specification of the skeleton, it only remained to describe an

implementation which could exploit the inherent parallelism in the context of the

realistic machine. Skeletons were designed for the convenience of the user, rather

than that of the implementor who is responsible for extracting a reasonable level

of efficiency.

The skeleton presented in this chapter is the result of an experiment in the

reversal of this approach. Here, we begin with an attempt to quantify some

interesting pattern of decomposition and distribution for which the structure of

the grid seems especially suited. Then, from the bottom up, we construct an

abstract specification with its implementation based on this pattern.

5.2 Motivating a New Skeleton

The most obvious way to use a grid of processors efficiently is to handle problems

whose structures directly match the neighbour-neighbour communication pattern

presented by the machine. Much real computing time is spent doing just this.

However, the observation that “two dimensional grids are good at simulating two

dimensional grids” hardly seems likely to be the source of an interesting skeleton.

Instead, the construction of the new skeleton begins with another simple ob-

servation about the structure of the square grid, inherited from its more general
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role as a rectangular grid. We note that rectangular grids are highly amenable

to partitioning into sets of smaller, mutually independent rectangular grids. Fur-

thermore, for any particular initial grid, there is a very large number of such

partitions, exhibiting a wide variation in the relative sizes of the sub-grids pro-

duced.

Our interest in this property is strengthened by the observation that it doesn’t

appear to hold for the constant degree graphs with logarithmic diameter often

discussed in the context of parallel computation, such as the degree 2 de-Bruijn

graphs (the “2-shuffle” [6]). Essentially, while the edges in the logarithmic di-

ameter networks are distributed to diverge quickly (in order to produce the low

diameter), those in the grid are more localised.

Building on the observation, we note that theorem 2 is easily adapted to

show that any rectangular grid with at least one side of even length contains

a Hamiltonian circuit. Thus, the square grid is well suited for partitioning into

independent sub-grids, each containing a Hamiltonian circuit. Of course, the sub-

grids themselves will share this property. The remainder of this chapter discusses

the specification and grid implementation of a skeleton which can exploit this

property.

5.2.1 Building a Skeleton

We have noted that the grid is suitable for partitioning into more or less arbitrarily

sized pieces, and that this can be done in such a way as to ensure that each

contains a Hamiltonian circuit.

Turning to the issue of problem specification, these properties echo important

features of the two skeletons discussed previously. Specification of the FDDC

skeleton centred on the partitioning of a problem into similar sub-problems.

Meanwhile, the iterative combination skeleton made much use of a Hamiltonian

circuit of the grid and in particular its suitability for the “pipelining” of certain

operations. We now expand upon these observations to specify a new skeleton.

The FDDC skeleton required its problems to be split into some specified num-

ber of sub-problems. This division of problems and the subsequent combination

of results was initiated centrally before spreading across the machine. The unre-

stricted nature of the division of the grid now under consideration, suggests that

the requirement that sub-problem generation be restricted to a specific constant

should be discarded. Equally, the co-operative style of solution promoted by the

use of Hamiltonian circuits seems to point away from the centralised division and

combination found in the FDDC skeleton towards a more distributed implemen-
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tation of these functions. This suggests that the description of problems should

follow the more disjoint style of the iterative combination skeleton.

Considered together, these ideas point towards the notion of “clustering” to-

gether of component parts of whole problem into groups whose independent so-

lution contributes in some way to the global solution. We may wish to deal with

each cluster in a different way depending upon the property describing each. More

precisely, we propose that the new skeleton will deal with problems for which data

sets of instances can be described as a collection of homogeneous objects whose

individual descriptions may include information which relates them to each other.

This is identical to the type of specification required by the iterative combination

skeleton.

Solutions to such problems will proceed by dividing the objects into inde-

pendent subsets and recursively dividing these subsets as often as is possible (or

suitable). The process of sub-division will be referred to as “clustering” since

it will involve partitioning sets into subsets representing clusters of the original

objects where all members of such a cluster share some property or are “close”

in some sense. The clustering process imposes a hierarchical structure of clusters

onto the set of objects with the original complete set at the root.

As the recursion unwinds, members of clusters will be considered together

with all other members of their parent cluster and operated upon in some way

with respect to each of these. In this way each object is manipulated as a member

of a succession of increasingly general clusters. As with the iterative combination

skeleton the procedures used to divide and recombine clusters will be designed to

take advantage of the Hamiltonian circuits of processors present in the underlying

machine. Thus, to divide a cluster of objects into a set of sub-clusters, each

object will be compared with each other. A sub-cluster will be constructed for

every maximal subset of objects which are connected directly or transitively by

the specified notion of “closeness” (i.e. two objects will appear in the same sub-

cluster if they are “close” or are connected by a sequence of “close” objects). The

measure or property used to judge “closeness” may be parameterised by the depth

of the current cluster in the hierarchy. Similarly, in recombining clusters, all pairs

of objects present will be considered and manipulated appropriately. Again, the

procedure used may vary in some way with the cluster’s depth in the hierarchy,

or with some other characteristic.
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5.2.2 Cluster Skeleton Specification

The preceding discussion has produced a loose description of a new skeleton aris-

ing from consideration of a particular property of the grid. It is now appropriate

to specify the user’s view of the skeleton precisely.

Suppose that the data objects which describe a problem instance are of type

“obj” and that the level of recursion in the cluster hierarchy is of type “depth”.

To produce a problem specific “Cluster” program, the programmer must specify

three functions
match : depth → obj → obj → bool

reshape : depth → obj → obj → obj

continue : depth → obj → bool

where match determines whether two objects should be clustered together at the

given depth, reshape describes how to update the first object to take account of

the presence of the second in its cluster at the given depth and continue decides

whether recursion should proceed for a particular cluster beyond the current depth

by inspecting any of that cluster’s members.

Given these definitions, the system constructs two new functions

decompose : depth → {obj} → {{obj}}
amend : depth → {obj} → {obj}

such that decompose applies match (parameterized by the current depth) to ev-

ery pair of objects in the cluster, returning the set of clusters implied by the

resulting partition. Similarly, amend applies reshape to every pair of objects in

its argument cluster.

Assuming that “union” is a function which returns a cluster representing the

union of a set of clusters

union : {{obj}} → {obj}

and that “map” operates over sets as it does over lists, then a full specification

of the cluster skeleton as a higher order function would have the form

cluster match reshape continue = C 0
where C d set = amend d union((map (C d+1) (decompose d set)),

if continue d+1 s

= amend d set, otherwise

where s represents any element of set. Thus, the skeleton has type

cluster : (depth → obj → obj → bool) → (depth → obj → obj → obj) →
(depth → obj → bool) → {obj} → {obj}
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5.3 Implementing the Skeleton

In this section we discuss a possible grid implementation of the cluster skeleton

based on the properties considered in the introduction. We begin by giving an

outline of the whole procedure before investigating the components in more detail.

5.3.1 Structure of the Implementation

The specification of the skeleton is founded upon the use of recursion to build

up a hierarchy of clusters of objects. This principle is reflected in the proposed

implementation. Each processor is involved with a particular cluster at every level

of the hierarchy in such a way that its cluster at some particular level is a sub-

cluster of its cluster at the next higher level. This allows operations on objects

at lower levels of the grid to be kept entirely independent of activity involving

unrelated clusters. At a particular level l a processor will co-operate with the

other processors sharing the same cluster to implement the decomposition into

sub-clusters. It will then push details of its neighbours at that level onto a local

stack before sharing responsibility for one of these sub-clusters at the next level

of recursion, with a subset of the original group of processors Upon returning

from the recursive call of “cluster” it pops the information from the stack and

co-operates with its former partners at level l to implement the work required by

“amend”.

Using a grid partitioning of the type discussed in the introduction we can

ensure that at each level processors involved with the same cluster are always

connected by a circuit, and can therefore efficiently implement the “all possible

pairs” pattern required by both “decompose” and “amend”.

5.3.2 Dealing With One Level

We now consider the actions required of a group of processors to deal with a

cluster S at some level i of the hierarchy. We can assume that each processor in

the group already knows the number of objects in the cluster and the number of

processors in the group. We can also assume that :

• the descriptions of the objects in S are distributed evenly (or as nearly as

possible) between the processors in the group;

• there exists a circuit of physical links connecting the processors;

• each processor has copies of all the user defined functions
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These conditions are obviously satisfiable at the level 0, when the “cluster” con-

tains all the objects and the “group” encompasses the whole grid. Section 5.3.3

will show how they may be maintained from one level to the next.

Execution begins with evaluation of the function “continue”. Since we have

already required that it should be decidable upon examination of any member

of S it can be evaluated independently and concurrently by all processors in the

group, with each being guaranteed to reach the same conclusion.

If the decision is to continue, the processors move on to execute the decompo-

sition of the cluster. Each virtual processor creates and maintains the “partner

set” for its object, using the specified type definition. Processors co-operate to

apply “match” to all pairs of objects in the cluster in identical fashion to the

all-pairs merge testing of the iterative combination skeleton. Each virtual pro-

cessor sends a copy of its object around the circuit. On receipt of such a copy

t, a virtual processor executes “match l s t” with its own resident object s. As

before, instances in which processors are responsible for a number of objects are

dealt with by having each real processor simulate several virtual processors. The

loop terminates upon the return of each object to its own processor.

Continuing the analogy with the iterative combination skeleton, each processor

now knows the identifiers of at least some of the objects with which its own object

will share a cluster at the next level. The next step is to calculate the identifier

of that cluster. Adopting the convention that clusters share the lowest identifier

of their members it is clear that we can borrow directly the implementation

of Savage’s connected components algorithm from section 4.3.2.2 to allow this

information to be gathered. Here, each member of each partner set contributes

an edge to the pool. This completes execution of the procedure “decompose” for

cluster S at level i.

Processors in the group now execute the algorithm discussed in section 5.3.3

which re-organizes the grid in preparation for the recursive call of “cluster”.

On return from the call, each processor resumes its role as a member of the

group at level i. As a result of activities at the lower levels the processor may

now be responsible for objects different from those which it held before recursion.

However, the operations introduced in section 5.3.3 ensure that these are still

members of the same cluster. Thus, “union” is implemented at no cost by simply

forgetting about the lower level cluster structure from which the objects were

returned.

It only remains to perform the work associated with “amend”. Again, this

involves passing copies of objects around the circuit at level i, with each processor
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executing procedure “reshape l s t” for its own object s and every other object

in the cluster t, as it receives them.

5.3.3 Moving Between Levels

In this section we discuss one method by which a group of processors dealing with

a cluster at some level of the hierarchy can reorganize themselves to deal with the

subclusters formed at the next level of recursion. By emphasising locality (in the

sense of grouping by Hamiltonian Circuits) we ensure that these activities and

associated transfers may be performed entirely independently of other groups of

processors dealing with other clusters. Thus, the details apply equally to moves

between any two levels.

The initial situation is that we have a group of p processors which are respon-

sible for a cluster of c objects at some level of the hierarchy. The descriptions of

the objects are distributed evenly between the processors and all include a note of

the identifier of the sub-cluster to which they will belong at the next level down.

The processors are physically connected by a Hamiltonian Circuit of links. The

goal is to re-assign objects to processors within the group such that these condi-

tions are retained by all sub-clusters and associated groups of processors at the

next level. Furthermore, this must be done in such a way that the relative sizes

of the sub-clusters are reflected by the relative sizes of the groups of processors

handling them.

The presentation is divided into two sections. In the first we describe an

idealised implementation which assumes the processors to be connected into two

chains of equal length with additional links between the chains, connecting cor-

responding processors. In the second section, we show how this structure can

be conveniently embedded into the grid with only constant overheads, thereby

achieving an efficient practical implementation.

5.3.3.1 An Idealised Solution

In the idealised solution we will make two extra assumptions, firstly that p is

even and secondly that the processors may be numbered from 1 to p such that

Pi is always physically adjacent to P(i−1) mod p, P(i+1) mod p, (both by virtue of the

links which form the circuit) and Pp−i+1. These additional links (which give the

“chain of pairs” effect) are shown as vertical dotted lines in figure 5.1 and two

processors so joined will be referred to as a “pair”. This section will show how the

first assumption can be satisfied, while the subsequent section on “practicalities”

will deal with the second.
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Figure 5.1: Processor Identifiers and Links
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Figure 5.2: Allocation of the first two clusters

Suppose that the c objects are to be partitioned into k sub-clusters of sizes

c1, c2, ..., ck. Then the best possible reorganisation would assign these to groups

of c1
c
p, c2

c
p, ..., ck

c
p processors respectively (to the nearest integers). Our solution

will approximate this by assigning to groups of d1, d2, ..., dk processors, where di

is the largest even number no larger than ci

c
p when ci

c
p is at least 2, and 1 when

ci

c
p is less than 2. It has three phases, each of which is completed in Θ (c + p)

time. This is small enough to be hidden in an asymptotic analysis by the similar

Θ (c + p) time spent on the ”real” work of the decompose procedure.

In the first phase, processors gather information about the sizes of clusters to

be re-assigned. For every object, one copy of the identifier of its new cluster is

passed around the circuit. By inspecting these, each processor can accumulate

the sizes of all the clusters.

In the second phase processors calculate the re-assignment of clusters. With

the exception of those only entitled to a single processor (i.e. those for which
ci

c
p < 2) clusters are assigned to groups of processors from left to right along

figure 5.1, in increasing order of cluster identifier.

Consider an example in which c = 70 and p = 20. Suppose that the first two

clusters are of size c1 = 22 and c2 = 13. Then the approximation requires that

these be allocated to groups of 6 and 2 processors respectively, as illustrated in

figure 5.2.

This procedure is followed to allocate all clusters entitled to two or more
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processors, before the remaining clusters (each entitled to only one processor)

are assigned to the remaining processors. Since we have tended to underallocate

processors until this point, we would usually expect at least as many processors

to remain as there are unassigned single processor clusters. In such a situation

we can simply allocate remaining clusters to distinct processors in increasing

order of both cluster and processor identifier (as occurs in the completion of

the example). As a special case, we must be prepared for a situation in which

there are more single processor clusters than free processors. The simple solution

is to allocate more than one cluster per processor, making individual physical

processors simulate the operations of several virtual processors.

To complete the example, suppose that the remaining clusters are of sizes c3 =

1, c4 = 33, c5 = 1. The resulting complete allocation is illustrated in figure 5.3.
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Figure 5.3: The complete allocation

There are two important points to note about the allocation procedure. Firstly,

it is completely deterministic for given c, c1, ..., ck and p. Consequently, given the

accumulated information about the sizes and identifiers of clusters, each proces-

sor can independently ascertain the identifier of the cluster for which it will share

responsibility at the next level and its position within the appropriate group.

This is achievable in O (c) time since it involves a sequence of at most c unit cost

arithmetic operations and checks.

Secondly, the allocation ensures that each cluster is shared between a group of

processors connected by a circuit of physical links. Thus clusters at the next level

of the example will be handled by the circuits illustrated in figure 5.4, allowing

the whole procedure to be repeated at the next level.

It only remains to move the descriptions of objects to processors in the ap-

propriate groups. Since each processor now knows the identifier and size of its

cluster at the next level it can easily calculate the number of objects for which

it will be responsible. Once again, passing one copy of each object description

around the higher level tour allows each processor to collect the right number of
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Figure 5.4: Circuits at the next level
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Figure 5.5: A useful Hamiltonian circuit

new objects (the choice between particular processors in the group for particular

objects within a cluster is irrelevant).

5.3.3.2 Practicalities

The idealised solution above assumed that the links shown as dotted lines in

figure 5.1 were present as direct physical connections, in addition to those forming

the circuit. It is not difficult to see that there is no mapping of identifiers to

square grid processors which satisfies this condition except for the trivial p = 1

and p = 4. However, the general mapping technique illustrated in figure 5.5

comes close enough to make a simple adaptation of the abstract solution practical.

Almost all of the extra links required by our idealised solution are present as

physical links, as illustrated. The regularity of the abstract circuit is broken at

positions where the real circuit turns a corner. At these points the processor

on the “outside” of the bend has no obvious partner, while that on the inside

has two possible partners (e.g. consider the top right-hand processor). This has

the effect of introducing “unsuitable” breaks into the re-allocation process, these

being points at which allocation of one group of processors may not be terminated.

Figure 5.6 illustrates such a situation. It is unsuitable to break the circuit portion

of part (a) as illustrated in part (b), since this would leave processors x and x+1
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Figure 5.6: An illegal break

with no suitable partners, and therefore wasted1. Instead, the allocation must

move one pair back as shown in part (c), with the next allocation beginning

satisfactorily.

The revised, practical algorithm must take such points into account and will

therefore allocate the greatest even number of processors which is no larger than

that to which the cluster is entitled, and which does not introduce an unsuit-

able break. Fortunately, the locations of unsuitable break points remain static

throughout computation (being a structural property of the original full tour, in-

dependent of the level of hierarchy) and this additional consideration introduces

no technical problems and only constant additional time.

5.4 Exploiting the Cluster Skeleton

We have presented the cluster skeleton as an example of an experiment in skeleton

design “from the machine out” rather than “from the algorithms in”. It is not

difficult to see that the implementation proposed is very efficient. In similar style

to the iterative combination skeleton, the implementation of the cluster skeleton

derives its efficiency from phases involving the repetition of some operation across

all pairs of objects from some set. Given n such objects, the n2 possible pairings

are examined p at a time by p ≤ n processors, thus achieving optimal speed

up for these operations. The work required to re-assign objects to new groups

of processors is sufficiently concise to affect only the constant in the asymptotic

execution time.

Unfortunately, the evolution of the skeleton’s definition and in particular its

lack of a pool of motivating algorithms means that we have no immediate selection

of existing problems from which to draw examples. The true utility of the skeleton

1Although the loss of several processors may be acceptable at the end of allocation, it is not
possible to allow wastage during allocation since this may result in a shortage later on.
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will only emerge when it can be presented as a real tool. However, in order to

give the feel of the type of situation in which it might prove appropriate, we now

sketch a possible application.

Consider a problem which may occur when analysing some large body of data

describing some scene or event. For example these may be digitised portions of

some overall image. There may be a large number of such observations, originat-

ing from a variety of viewpoints and possibly “blurred” in some way. In order to

make sense of such a mass of information, it may be sensible to ascertain (or at

least to speculate) which observations actually describe the same real object and

to coalesce each such group into a clearer and hopefully more accurate description,

eventually distilling a coherent picture of the whole scene.

A wide variety of techniques may be used in comparing and coalescing such

images, with varying degrees of complexity. In deciding which portions of data

refer to the same entity it would be clumsy to apply the most complex test to every

pair, when a much simpler procedure may be able to discriminate satisfactorily

in most cases. A suitable approach to the problem could be expressed in terms

of the cluster skeleton. At the top level, the initial set contains representations

of all the observations. This is partitioned by some quick, simple test, powerful

enough to distinguish between those which are obviously disparate. At subsequent

levels, increasingly subtle (but time consuming) tests are applied to observation

clusters of decreasing cardinality. At the lowest level, each remaining cluster

is assumed (on the basis of the tests used) to contain objects representing the

same “real world” entity. In order to obtain what is hopefully a more accurate

representation of the entity, the observations are coalesced in some appropriate

way. Returning similarly through the hierarchy, we emerge at the top level with

a coherent (and hopefully more accurate) representation of the observed scene,

with multiple observations of the same entity now matching in terms of description

while maintaining their own observer location information and so on.
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Chapter 6

The Task Queue Skeleton

Our final skeleton differs most significantly from the other three in having an

explicitly parallel specification. It is interesting to note that the isolation of indi-

vidual skeletons within the overall framework means that parallelism can be intro-

duced at this level in a restricted way, as appropriate. There are no interactions

with other constructs to be considered, either for programmer or implementor,

as there would be in a conventional “universal” language. Section 6.1 motivates

and introduces this specification. Section 6.2 introduces the overall structure of a

proposed implementation which is discussed in detail in sections 6.3 and 6.4 and

summarised in section 6.5. Finally, section 6.6 presents some problems for which

solutions may be derived from this “task queue” skeleton.

6.1 The Abstract Specification

6.1.1 Motivation

The class of algorithms from which the task queue skeleton has been distilled are

explicitly parallel and share two properties. Firstly, they all deal with problems

for which both instances and solutions may be represented in terms of some large,

shared data structure. Secondly, they all proceed from problem to solution by

repeated concurrent execution of many instances of a procedure (or “task”) which

manipulates some part of the data structure with respect to certain others. Exe-

cution of each such task results in the contents of the data structure progressing

towards a description of a solution to the problem. In executing some instance of

the task, the algorithm may generate details of further task instances. These are

added to a pool of such instances, the “task queue”, according to some selected

queuing discipline. The flavour of the skeleton is probably best illustrated by an

example.

The one-to-all shortest paths problem for an arbitrary weighted graph in-
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volves finding the shortest paths (in terms of weight of edges traversed) from one

specified “central” vertex to each of the others. Deo et al. [30] present a paral-

lel algorithm which solves this problem for graphs containing no negative cycles

(otherwise the problem has no solution and the algorithm fails to terminate).

In a task queue solution, the graph is represented by an array (situated in the

shared data structure) of records indexed by vertex identifiers, one per vertex,

with a field to record the shortest known path to the central vertex, and another

field giving details of the connectivity of the indexed vertex (eg. a boolean array

or a linked list). Each shortest path field is initialized to ∞ except that of the

chosen vertex which is initialized to zero. The task procedure is parameterised

by a vertex identifier. This denotes a vertex to which an improved (i.e. shorter)

path has been found. The procedure looks at all the neighbours of the vertex to

see if new shortest paths to them are implied by this discovery, by checking edge

weights. The shortest path fields of any such vertices are updated and new tasks

instances are created by adding a copy of the identifier of the updated vertex to

the queue of waiting tasks. The task queue is initialized to contain a single task

parameter, the identifier of the selected central node, to which a “shortest path”

of length zero has been “discovered”. The ordering on the queue is not important

for correctness, but a Last-In-First-Out discipline may tend to produce results

faster on average, since it immediately follows up the newest paths found.

The obvious source of parallelism in the execution of the skeleton underpinning

such algorithms is the concurrent execution of large numbers of task instances.

Processors can repeatedly grab parameters from the task queue and execute cor-

responding instantiations of the task procedure. The task queue skeleton has a

similar feel to the “ask-for” monitor of [5].

6.1.2 Specification

A more precise abstract specification of the task queue skeleton can now be pre-

sented. Although we have now introduced explicit parallelism, we still wish to

maintain a high degree of machine independence. Thus, the user must consider

the skeleton to be executed on an unspecified number of parallel processors, each

independently executing the loop shown in figure 6.1. All processors have read

and write access to the task queue and to the shared data structure describing

the problem instance. Additionally, the processors may perform simple indivisible

arithmetic operations on the data structure. For example, the operation “add c

to location x” is performed as a single operation, rather than as a fetch followed

by add and write back. Clashes between such operations will be discussed shortly.
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REPEAT

IF tasks are available THEN try to grab a task;

IF successful THEN BEGIN

execute the task;

place any tasks created on the queue;

END;

UNTIL no tasks available AND all processors are inactive;

Figure 6.1: Idealised processor code

At any point of a computation an abstract processor will be involved in exe-

cuting one of four types of instruction :

• adding a task to the queue,

• removing a task from the queue,

• accessing the data structure,

• a “local” instruction involving neither queue nor data.

The user may assume that each instruction takes the same time and therefore

that processors proceed synchronously, but independently in terms of operations

performed. Thus at each time step, p ≤ n attempts are made to place tasks

on the queue and r ≤ n attempts made to remove tasks from the queue. The

imaginary machine of the abstract specification is capable of performing these

operations with no overhead. In a single time step, the p new tasks are placed on

the queue and the requests are served with the r most appropriate tasks available

(according to the queuing discipline). These may include some of the p tasks just

placed on the queue.

It is important to emphasise that the user may make no assumptions about the

number of processors executing the skeleton. This introduces an element of non-

determinism into the overall pattern of abstract execution. Depending upon the

number of processors actually involved, certain tasks may or may not be activated

simultaneously. Consequently, the task instances which they generate may be

added to the queue in different positions, as circumstances dictate (consider using

a first-in first-out discipline, for example). This in turn affects the order in which

tasks are subsequently executed, and so on.

It also has implications for the shared data structure. Since the user cannot,

in general, be certain about the number of tasks executed simultaneously, no

assumptions can be made about concurrency between instructions within different
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tasks. For different numbers of processors, a certain instruction from one task

may or may not be executed before some other instruction from another task.

The only guarantee is that all instructions from one task will be executed before

any from its direct descendants (since the addition of new descriptors to the task

queue is the last operation of a task). Thus, a user can make no assumptions

(beyond the above) about the ordering of two independent accesses to the same

shared location. As a result, the concept of clashing accesses has no meaning at

the user’s abstract level, since its occurrence can never be determined without

knowledge of the implementation (which, of course, should not be available). It is

simply guaranteed that all accesses will be made eventually, in an order subject

only to the previous guarantee. Although this initially appears awkward, the

examples of section 6.6 suggest that it poses no practical difficulties.

In summary, to describe a task queue solution to some problem, the user must

provide four items:

• a “type” specification of the data structure to be used to describe the evolv-

ing solution,

• a “variable” of this data structure type with contents describing the initial

problem instance,

• a parameterized “task” procedure describing the operations by which some

part of the data structure may be adjusted to lead towards the solution,

where the parameter specifies the part of the data structure upon which

operations are centered. As a result of the operations performed, the proce-

dure may (as its final action) choose to create arbitrarily many new instances

of the task to be executed later, by adding details of their parameters to

the task queue. The procedure may also reserve local variables. These are

not accessible by any other task instantiation.

• an initial collection of parameters describing specific instances of the generic

task, together with a queuing discipline (selected from some set of options)

controlling maintenance of the task queue.

Subsequent sections in this chapter discuss techniques which could be used to

implement the abstract “task queue machine” on the grid.

6.2 The Structure of an Implementation

The abstract specification of the skeleton was interwoven with a description of an

idealised parallel machine which could execute it. The processors of the idealised
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machine were capable of unit time access to a shared queue of task descriptors

and shared access to a common data structure. It is the task of the grid im-

plementation to mimic the behaviour of this idealised machine as efficiently as

possible.

The implementation proposed in this chapter adopts a straightforward ap-

proach. The absence of any form of real shared storage in out target hardware

forces elements of the queue and data structure to be distributed across the grid

processors’ local memories. Each grid processor has a copy of the generic task

code and performs the role of one idealised processor1. Thus, it simulates a

sequence of idealised steps involving execution of accesses to the queue, to the

shared data and of local instructions. Clearly execution of instructions of the first

two types may involve references to objects stored non-locally thereby requiring

the cooperation of other processors. In order to avoid the unpredictable pattern

of events which this might imply, the implementation places some structure on

the way in which this cooperation takes place.

At each idealised time step a selection of accesses, at most one per processor,

to queue and data will be required. In the proposed implementation these are sep-

arated into three categories, write access to the queue, read access from the queue

and any access to the shared data structure. All grid processors (whether directly

involved or not) are required to cooperate in the simulation of these accesses, be-

fore proceeding to the next idealised time step. Each category is simulated in a

distinct phase, in the order listed. Ensuing sections present algorithms which can

implement the requirements of each phase.

The central operation in all three phases involves the routing of data objects

around the grid. For the algorithms proposed, it is easy to calculate an exact

bound on the number of processor to processor “pulses” of information required

for their completion. Therefore, by counting the number of pulses (including

empty “dummies” if necessary) processors can maintain synchronisation within

and between phases without any explicit central control. In this way the sim-

ulation of each idealised step incurs a uniform slow down over the behaviour of

the idealised machine. Section 6.3 discusses algorithms which could be used to

implement the two phases involving access to the task descriptor queue, while

section 6.4 deals with simulation of accesses to the shared data structure. A
√

n ×√
n processor square grid is assumed throughout.

Firstly, several useful algorithms are noted, which will subsequently be used

1Since the user is unaware of the number of processors in operation, there is nothing to be
gained by considering a many-to-one mapping of idealised to real processors.
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as building blocks.

6.2.1 Some Useful Algorithms

6.2.1.1 Sorting

Theorem 5 There exist grid algorithms which allow n fixed size items, initially
distributed one per grid processor, to be sorted into row-major order across the
grid in O (

√
n) time.

Proof:

One such algorithm is presented by Thompson & Kung [34]. •

6.2.1.2 Routing

Theorem 6 There exist grid algorithms which can route up to n fixed size packets
across the grid, from unique sources to unique destinations (i. e. at most one
per processor) in no more than 3

√
n − 3 routing steps with only constant time

computation between steps.

Proof: Such an algorithm is presented. It uses the strict “row then column”

routing strategy described by Valiant & Brebner [37]. Packets are tagged with

the unique identifier of the receiving processor. Since this identifier is unchanged

throughout operation each processor may determine the relative grid location

(row, column) of any other simply by inspecting its identifier. A packet is routed

to its destination along a two branch path, first moving it along its original row

to its final column and then up or down that column to the correct row. Any

such path is of length at most 2
√

n − 2. Each processor maintains queues for

tasks requiring to be output on each of its four links and executes a copy of the

code shown in figure 6.2. The justification for the 3
√

n−3 iterations results from

lemma 4, which shows that at most
√

n − 1 more steps are sufficient on top of

the 2
√

n − 2 possible path length steps to ensure that each packet reaches its

destination. •

Note that no explicit synchronisation is necessary to ensure that all processors

know that the phase has terminated. It is sufficient to simply wait until 3
√

n− 3

pulses on the links have elapsed.

Lemma 4 No packet suffers delays of more than
√

n − 1 steps on its route.

Proof : A packet will only be delayed if it has to join a non-empty queue waiting

to leave a processor on a particular link. No such queue can be encountered when
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BEGIN

place own packet on appropriate queue

FOR 3(n**1/2) - 3 iterations DO BEGIN

PAR output one packet from each queue

{possibly including dummy packets for synchronisation}

PAR receive <=1 packet on each link

WITH each packet received DO BEGIN

IF arrived at destination THEN write to task queue

ELSE add to appropriate link queue

END

END

END

Figure 6.2: A Routing Algorithm

travelling along the row, since routing in each direction along any particular row

will be completely pipelined. Thus a packet may only be delayed when moving

to its correct position in the destination column.

For any particular column, there are at most
√

n packets which will arrive

in it requiring to travel in one particular direction. In entering the “pipeline”

in a particular direction, each such arrival may hold up the flow through the

column of all subsequent packets travelling in the same direction by at most one

time step. Thus, the last arrival may be held up for at most
√

n−1 time steps. •

6.2.1.2.1 Augmented Routing

Theorem 7 The routing algorithm described above will successfully route up to n

packets from unique sources to destinations shared by no more than k (constant)
packets in (k + 2)

√
n − 3 steps.

Proof: As above, noting that there may now be up to k
√

n packets per column

producing the possibility of a correspondingly longer delay moving up or down

columns. •

6.2.1.3 Sum & Broadcast

Theorem 8 There exist algorithms which, given an n processor grid with each
processor storing some fixed size numerical value, sum the values and notify each
processor of the resultant total in 4 (

√
n − 1) steps.
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Proof: One such algorithm is presented. Row totals are summed concurrently –

the leftmost processor passes its value to its right hand neighbour which adds its

own value and passes the result on. This is repeated along the row until the right-

most processor stores the row total. Obviously this is completed in
√

n− 1 steps.

A similar operation is performed up the rightmost column, leaving the overall

total stored in the upper rightmost processor. This total is then distributed back

down the rightmost column and simultaneously back along the rows. Again each

of these phases involves
√

n − 1 steps, producing the required result. •

6.3 Implementing the Queue

In this section we consider the implementation of a task queue controlled by a

variety of disciplines.

6.3.1 The Stack Discipline

In the first discipline to be considered, the queue is operated as a stack (i.e. on a

Last-In First-Out basis). At each idealised step the p new tasks are placed at the

head of the stack (in arbitrary order amongst themselves) and the r requests are

then served from the new head of the stack backwards. Thus if r ≤ p then the

requests will all be served with tasks just placed on the stack. Otherwise, some

processors will receive tasks inserted at previous steps. There is no guarantee as

to which processors will be allocated the newer tasks, but it is essential that the

set of allocated tasks is the newest possible. We will refer to processors which

require to interact with the stack at a particular idealised time step as being

“active”.

Implementation requires some algorithm which can effect this idealised be-

haviour. This algorithm will be executed at every idealised step and its run time

will contribute to the slow down factor incurred by the grid over the idealised

skeleton. Thus, it is important to make it as efficient as possible. One such algo-

rithm is now presented. Its performance is shown to be asymptotically optimal

for the n processor grid.

6.3.1.1 Implementing the Stack on the Grid

A simple way to implement the stack of available tasks would be to make one

processor responsible for its contents and for the handling of any accesses to it re-

quired by active processors. Unfortunately, the performance of such a centralised
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approach would be very vulnerable to idealised time steps in which many pro-

cessors are active, since their requests would have to be serviced sequentially. In

contrast, our proposed implementation is based upon a grid-wide distribution of

the stack, in which the task descriptors involved in any particular idealised time

step will be handled concurrently by distinct processors.

Given such a distribution, there are two remaining problems. Firstly we must

describe the means by which an active processor can determine the the proces-

sor with which it should interact to access an appropriate element of the stack.

Secondly we must show how a set of such interactions can proceed concurrently

with good performance.

6.3.1.2 Distributing the Stack

The task stack contains a number of descriptors which varies over time. Our goal

is to define a mapping of these descriptors to the grid such that at any time,

any active processor can easily determine the location of any particular “stack”

element. The solution proposed here is very simple. Firstly, we assume the

existence of some pre-defined ordering on processors, known to all in advance2.

The first processor in the ordering is nominated as the initial location of the

“stack head” and is allocated the descriptor of the top task on the initial stack.

Successive descriptors are allocated to successive processors in the underlying

ordering, with wrap around from last to first. Thus the ith processor’s memory

will initially contain the ith, (i + n)th, etc. descriptors, and any processor can

immediately determine the location of the jth descriptor provided that it knows

the location of the “stack head”.

As execution proceeds, the size of the stack will vary. Our mapping allows us

to cater for this conveniently. Suppose that p new tasks are to be added to the

stack. Our mapping assigns these to the p processors preceding the current “stack

head” processor in the underlying ordering. Then, every processor is made aware

that the stack head has now moved from its previous location to the processor

p places away in the underlying ordering. Similarly if r tasks are to be removed

from the stack, then these must be taken from the current “stack head” processor

and its r−1 successors in the ordering. Again, all processors must be made aware

that the “stack head” has moved.

2There is no need for adjacent processors in the ordering to be physically adjacent in the
grid. The ordering may be completely arbitrary, the only important point being that it remains
fixed throughout.
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6.3.1.3 Managing the Stack

The algorithm required to manage stack accesses (for any particular idealised

time step) has two distinct phases which deal with addition and removal of tasks

respectively. The overall structures of the two phases are almost identical. In

the first, each of the p processors requiring to add new tasks to the stack must

determine which processor will be responsible for storing the newly generated

descriptor. It then sends the descriptor to this processor. Finally all processors

are made aware of the new location of the stack head. The second phase proceeds

similarly, with processors requiring new tasks identifying and interacting with the

processors storing these tasks.

In both cases, the success of the algorithm depends upon ensuring that each

active processor identifies a distinct “stack location” processor with which to

interact. For example, in the first phase, exactly one active processor should

send its new descriptor to processor “stack head - 1”, exactly one to “stack head

- 2”, and so on. Thus, the problem boils down to being able to make each

active processor generate a unique “offset” in the range 1 to p (or 1 to r in

the second phase). We can note immediately that any such generation will do,

since the abstract specification gives no particular active processor the right to

any particular element within the appropriate range. Therefore, we can safely

make the arbitrary decision that offsets 1 to p will be allocated to processors in

ascending order of their position in the underlying ordering on processors. For

example, if processor 1 in the ordering is active, then it will always generate an

offset of 1. Theorem 9 proves that this scheme has the desirable property that for

any particular idealised phase, no two active processors will ever try to interact

with the same “stack” processor.

Theorem 9 Each processor will be responsible for at most one accessed stack
location in each phase.

Proof : The locations have been distributed cyclically across all n processors,

and so the first n stack locations from the head up (in the case of adding new

tasks) or down (when removing elements) are all located in different processors.

Since no more than n accesses can occur in any phase, and will always refer to

locations within n of the current stack head, these must always be located in

distinct processor memories. •
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Figure 6.5: Appropriate offsets.

6.3.1.4 Generating Offsets

We assume that the underlying ordering of processors assigns identifiers in “row-

major” order, as illustrated in figure 6.3. At the beginning of each phase, every

processor generates an initial offset value of 1 if it is to be active during the phase,

or 0 otherwise. From this position, an appropriate offset for each active processor

is then the sum of the offset values in all processors with smaller identifiers (in

the underlying ordering) than its own, together with its own offset of 1.

For example, if the active processors are as indicated in figure 6.4, then ap-

propriate set of offsets is shown in figure 6.5. Thus, to calculate its own unique

offset, an active processor must sum the offsets generated to its left in its own row,

together with its own offset and the offsets of all processors in the rows above.

This summation can be achieved in O (
√

n) time with a simple adaptation of the

two stage sum and broadcast algorithm of section 6.2.1.3.

In the first phase, a single packet is created in the leftmost processor of each

row. This contains the initial offset (i.e. 0 or 1) for that processor. Each packet is

passed along its row. On receipt of such a packet, a processor adds the contents

to its own initial offset and overwrites the packet with this new value. Thus, in
√

n − 1 steps every processor has accumulated its offset within its own row and

the rightmost processor in each row knows the total offset introduced by that

103



row.

In the second phase these row totals are distributed appropriately. A single

packet is created in the top right hand processor and passed all the way down

the right hand column. Each processor handling the packet (including the top

right hand processor) adds its own row total to the packet, before passing it on

down the column. It then creates a new packet, containing the original contents

of the packet received down the column (which is just the sum of offsets from the

rows above), and passes this to its left neighbour. This new packet is passed back

along the row and added to each processor’s offset.

The total time taken by the new offset algorithm is simply that necessary for

a packet to move from the top left processor to the top right then to the bottom

right and finally to the bottom left. This involves 3
√

n− 3 links. Since there will

be no collisions to cause delays and no more than constant computation at each

node, the total time for the new offset algorithm is Θ (
√

n).

The algorithm has the side effect that processor n − 1 becomes aware of the

total number of active processors, irrespective of its own state. Since this is the

number by which the “stack head” has moved, it can be broadcast to all processors

at the end of the phase, enabling them to update their copy of the “stack head”

location appropriately.

6.3.1.5 Accessing the Queue

Suppose the current phase involves adding tasks to the stack. Then, with each

active processor having located its target processor, the problem reduces to that of

routing a collection of packets across the grid. Since each processor can generate

(or in the second phase, request) at most one packet, it is known in advance

that all sources are unique and, by theorem 9, so are all destinations. Thus, the

algorithm of section 6.2.1.2 can be used to achieve the routing in no more than

3
√

n − 3 moves. Finally, the new “stack head” pointer is generated by processor

n − 1 and is broadcast to the other processors using the broadcast phase of the

sum and broadcast algorithm of section 6.2.1.3.

As before, the procedure for simulating a phase in which elements are removed

from the stack is very similar. Here, two runs of the routing algorithm are em-

ployed. The first distributes requests for tasks and the second routes these tasks

back to the processors requiring them.

It has already been shown that the offset generation can be performed in

Θ (
√

n) time on the grid. Thus, complete simulation of each idealised step can be

performed in Θ (
√

n) time. By lemma 5, this is asymptotically optimal.
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Lemma 5 There is a lower bound of Ω (
√

n) on the slow down introduced by any
algorithm for the n processor grid which correctly simulates the behaviour of an n

processor idealised machine using the stack discipline task queue.

Proof : Consider two consecutive idealised time steps. In the first, exactly one

processor writes a new task to the stack and no processors remove tasks. In the

second no processors add tasks and exactly one processor removes a task. If the

stack discipline is to be maintained correctly, then this must be the task added

during the previous step. Such a sequence can occur between any two processors.

In particular, it can occur in the grid between two processors which are Θ (
√

n)

apart and will thus require Ω (
√

n) time simply to route the task across the grid.

•

6.3.2 A FIFO Queue

The algorithm implementing the stack discipline may be easily adapted to provide

a first-in first-out queue. Here, new tasks are added to the end of the queue,

while requests are served from the head. Thus, pointers to both ends must be

maintained. The existing offset algorithm can still be used during task addition

and removal, now referring to the appropriate end of the queue.

6.3.3 An Unordered Heap

In this queuing discipline no importance is attached to the order in which tasks

are executed. New tasks may be placed anywhere and requests may be served

with any available task descriptor. As with the stack discipline, the problem with

grid implementation is the likelihood that tasks will not be produced where they

are needed. With a grid of n processors a task produced during one step may be

required by a processor Θ (
√

n) links away in the next step. Thus, if it must be

ensured that every request is served before computation may proceed, a Θ (
√

n)

slow-down must be expected for simulation of each idealized step. This is just

the simulation penalty incurred by the stack algorithm described above, which

could once again be used to implement this specification of the queue.

6.3.4 The Strictly Ordered Queue

In the fourth queuing discipline to be considered it is assumed that the task

descriptions contain some key field by which they must be sorted. Thus, r requests

for new tasks must be served with tasks having the r most significant (according to
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the definition of order) keys currently in the queue. In the abstract specification

such an operation is performed in unit time. The problem of simulating its

behaviour on the grid is now investigated.

It is immediately obvious that any implementation of the strict queue on the

grid (or in fact any other realistic machine) cannot match the performance of the

abstract specification. The crucial feature of the idealised machine which produces

this result is best illustrated by considering the single processor version. By the

abstract specification, this would be able to extract the most significant element

(i.e. task descriptor) from an arbitrarily large set, in constant time. Clearly this

is unrealistic, and it can be concluded that any implementation must have a slow

down at each step (with respect to the idealised machine) which is dependent

upon the length of the task queue at the time. Thus, a general result relating

implementation slow down purely to n, the size of the grid, is not obtainable since

the queue may become arbitrarily long.

However, for certain problems, it may be possible to argue that the length

of the queue is bounded in some way and it is interesting to ask how well the n

processor grid could handle such cases. For example, it might be possible to show

that the length of the queue is always O (n). An algorithm is now sketched which

implements the strictly ordered queue on the grid. The algorithm can handle

arbitrarily long queues but its performance will be considered for cases in which

the length of the queue is bounded to be Θ (n).

The algorithm uses the grid sorting algorithm of section 6.2.1.1 as a sub-

routine. Rather than maintaining sorted order by insertion and deletion using

some conventional technique based on the manipulation of pointers, the algorithm

simply re-sorts the entire queue from scratch. As in previous implementations,

the queue will be distributed across the grid so that any n consecutive elements

in it are located in the local memories of different processors. This allows easy

task removal, given that the order on processors in the queue may be pre-defined

(as is discussed in section 6.3.1. The algorithm has four phases:

1. Each processor is made aware of the total number of elements now on

the queue by applying the sum and broadcast algorithm of section 6.2.1.3.

These are not necessarily located evenly across the grid. Since each pro-

cessor knows beforehand its own number of elements, this phase is Θ (
√

n)

irrespective of queue length.

2. A redistribution technique (e.g. that presented in section 4.5.2) is used to

balance the queue elements evenly between processors. Since each processor

can have at most one surplus element, a single run of this Θ (
√

n log (
√

n))
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algorithm is sufficient. The number of elements, cn say (for the cases in

which we are interested), is augmented with dummy elements (of “infinitely”

low significance) to make it up to kn where k is the least perfect square

with k ≥ c. Each processor will know independently whether or not it

should introduce any such elements. This phase takes O (
√

n log (
√

n)) time

(assuming the Θ (n) bound on queue length). Each processor now has

exactly kn queue elements.

3. Next, each processor imagines itself to be responsible for k virtual proces-

sors, each of which contains one queue element. The physical grid simulates

the grid sorting technique of section 6.2.1.1 on this virtual grid . This may

be performed with only constant overheads using a simple simulation, since

the choice of k ensures that the larger grid fits neatly onto the smaller grid.

The time for this phase is O
(√

kn
)

which is just O (
√

n) assuming a queue

length bounded as before. Elements have now been sorted in “row-major”

order on the virtual grid. However, the first n elements in the queue will

typically not be distributed one per physical processor as is required.

4. Processors forget about the virtual grid and re-arrange the (already sorted)

elements into the required order around the loop. For the bounded queue

each processor has only k elements. These may be redistributed by means

of k calls of the augmented packet routing algorithm of section 6.2.1.2. In

successive calls, each processor sends its most significant remaining packet

(from the sorted queue) to its correct processor with a note of its position in

the queue (thus giving unique sources and up to k-way shared destinations

in the restricted queues under consideration). Once again, this takes time

O (
√

n).

The whole algorithm executes in Θ (
√

n log (
√

n)) given the restrictions on

queue size. It is interesting to note that this discipline represents a generalisation

of which the previous three are special cases. The heap may be interpreted as an

ordered queue with all keys identical. LIFO and FIFO queues are ordered queues

with keys simply noting the time of insertion and with significance increasing and

decreasing with key value, respectively.
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6.3.5 A Note on Termination

The abstract specification defines execution of the skeleton to have concluded

once all idealised processors are idle and the task queue is empty. Such a check

can easily be implemented with the addition of a final Θ (
√

n) time step phase

after simulation of accesses to the queue, using the standard sum and broadcast

algorithm presented in section 6.5. Since the simulation already includes Θ (
√

n)

slow down, such an addition would only increase overall run time by a constant

factor.

6.4 Implementing the Data Structure

In this section, some solutions to the problems surrounding the shared data struc-

ture component of the skeleton are considered. Section 6.1 presented the data

structure from the user’s point of view. The structure may be accessed by any

task instantiation without restriction and every operation upon it is guaranteed

to be executed eventually. At every time step, the idealised machine may generate

up to n accesses to arbitrary locations. In the realistic machine these locations

must be distributed in some fashion across the local memories of the grid proces-

sors. The simplest solution is taken here, distributing idealised memory locations

evenly across the local memory locations, one-to-one. At face value this appears

to run into a problem familiar from the discussion on shared memory simulation

of chapter 1. All processors may simultaneously wish to access locations in the

same local memory. In a strictly synchronised machine this implies a worst case

Θ (n) time slow down. Fortunately, we can exploit a feature of the skeleton’s

specification to avoid this problem.

In a conventional shared memory simulation (e.g. [37]) all idealized updates

from one step must be performed before the next step may begin. This property

is guaranteed to the user of the idealistic machine and will usually be necessary

to preserve correctness of an algorithm. With the task queue skeleton, we have

already noted the non-determinism introduced into the task execution sequence

by the unknown number of processors. It is impossible to determine the precise

order of task execution without knowing the number of processors (with this

and knowledge of the clash arbitration scheme we could predict the exact order).

Thus, the contents of the data structure found by a particular task is dependent

upon the number of processors in use, and is consequently unpredictable from the

user’s point of view. The only ordering of tasks which can be guaranteed is that

a task t’ produced by a task t will not begin execution until t has completed its
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accesses to the data structure (simply by keeping all additions to the queue until

the end of task execution).

Therefore, to correctly model the idealised machine, it is sufficient to ensure

that all accesses are eventually performed. Only ordering between each task and

its descendants, and between instructions within the same task need be main-

tained. This allows the consideration of implementation algorithms in which cer-

tain processors are not immediately successful with attempted accesses. An un-

successful processor can simply repeat the attempt during the next idealised time

step, while successful processors proceed immediately with the next instruction.

As noted above, this is in contrast to tightly synchronised abstract machines in

which successful processors must wait until all are ready for the next virtual step.

As a result, the more relaxed task queue scheme has two advantages. Firstly, for

virtual steps in which all processors require to access the same memory, the Θ (n)

step slow-down encountered by all processors in strictly synchronised schemes is

replaced by a scale of delays, ranging from zero for the first successful processor

to Θ (n) for that which is successful last.

More importantly, this has the side effect that the commencement of the next

virtual instruction is staggered across the processors of the physical machine.

Typical statistics on the locality of reference in programs suggest that the most

likely place for such a clash to occur is immediately after or close to another. In

a strictly synchronised scheme, the same problems would then be repeated. On

the other hand, the staggered start produced in the task queue processors would

destroy this symmetry before it became an issue. Processors successful quickly for

one instruction will move on to quick success at the next, thus reducing congestion

for those processors “following behind”. Thus, in complete contrast to the strictly

synchronised approach, clashes during one instruction will reduce the likelihood

of subsequent clashes. This behaviour would be enhanced by the use of a low

order interleaving scheme for the virtual to physical memory mapping, resulting

in adjacent virtual addresses being located in independent physical memories.

Section 6.4.1 now considers the structure of a suitable implementation algo-

rithm and properties required of it, while section 6.4.2 presents some variations

on its internal details.

6.4.1 The Structure of a Suitable Algorithm

The situation is similar to that of implementing the task queue. At any step

of the idealised abstract machine up to n processors may wish to access data

structure locations. Thus, a similar type of algorithm is suitable. However, it
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is no longer guaranteed that these accesses will target unique locations, or even

unique processors

Fortunately, the situation also differs from the task queue in that it is no

longer necessary for all packets to be routed successfully before proceeding. In

the approach presented here, processors will execute a routing algorithm for a

pre-determined number of transfer steps (sending dummy packets to maintain

synchronisation if necessary). Thus, unsuccessful processors can simply try again

at the next idealised time step. However, in such a situation it will be necessary

to ensure that each processor is aware of its packet’s fate.

A suitable routing algorithm proceeds in two phases. In the first, packets are

dispatched from the source processors (executing the tasks) towards the desti-

nation processors (responsible for the relevant data items) – there may be any

amount of overlap between these two sets. Routing of packets proceeds for a

specified time t1 known to all processors (some simple function of n). Some pack-

ets will arrive successfully at their destinations within the time limit. In fact any

useful first phase must guarantee that at least one attempted access is successful,

otherwise the whole machine could stick trying to execute the same idealized step

indefinitely. Thus algorithms will be required to exhibit property 1.

Property 1 For any access step, at least one access packet arrives successfully.

In the second phase, destination processors which have received successful

packets dispatch “acknowledge” packets to the successful sending processors. In

the case of “read” access, the acknowledgement packet contains the requested

datum. Again this phase has a precise time limit t2. Thus any sending processor

which has not received an acknowledgement within time t1 + t2 knows itself to be

unsuccessful and must attempt the data structure access again. Senders receiving

an “acknowledge” packet know that their attempt was successful and continue

with their next idealised instruction. In the first phase it was not important that

all attempted accesses were successful, but only that at least one was. Similarly, in

the second phase it is essential that at least one successful access is acknowledged

successfully. However this rather weak guarantee would result in much work being

unnecessarily duplicated – accesses which were successful, but unacknowledged,

would be repeated. Therefore, we require that useful algorithms should exhibit a

stronger property :

Property 2 Every acknowledge packet arrives successfully.

It will be shown that this stronger property can be guaranteed without signifi-

cantly affecting the time needed for the second phase, t2.
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6.4.2 Implementing the Phases

Some possible variations in the implementation of the two routing phases are

now considered. One course of action dictates that only the first arrival at each

destination should be successful3. This would guarantee that the second phase

(sending acknowledgements) involved unique sources and unique destinations.

Using the routing algorithm of section 6.2.1.2, it is therefore possible to execute

such a second phase in 3
√

n − 3 steps while maintaining property 2.

Taking this course, it is noted that the best performance now achievable is

that the whole algorithm should successfully implement as many accesses as there

are unique destinations in a particular step. As noted, the standard algorithm

successfully completes the second phase and we now consider the first phase.

Lemma 6 Any first phase algorithm which guarantees property 1 must have t1 ≥
2
√

n − 2

Proof: Consider a step which involves only one access, for which the packet must

traverse the whole grid. Then the shortest possible route involves using 2
√

n− 2

links. •

It seems obvious to ask how suitable the standard algorithm (with time 3
√

n−
3) is for use in the first phase. Suppose that for a particular step there are d

distinct destinations. Then,

Theorem 10 The standard routing algorithm cannot guarantee d successful ar-
rivals given d distinct destinations in the first phase.

Proof: Consider an instance in which the bottom left hand processor has a

packet destined for the top right hand corner processor and all other processors

have packets destined for the second top processor in the right hand column.

Then there are two distinct destinations but the packet from the bottom left pro-

cessor will not arrive within the time limit, since it will be held up by the Θ (n)

length queue heading for the processor beneath its destination. •

This example is easily adjusted to provide a counter example to any Θ (
√

n)

algorithm in which “hopeless” packets (i.e. those which will not be successful) are

not removed en route to their destination. However,

Theorem 11 Use of the standard routing algorithm in the first phase does main-
tain property 1.

3In any case, it seems that the number of successes per destination should be kept low since
entry to each processor is restricted to four channels.
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Proof: Because of the pipelining effect along rows, every packet arrives in its

final column in time ≤ √
n− 1. Consider any such column and the packets wish-

ing to travel up (down) it. These are distributed across a subset of the column

processors. Within this subset there is one processor which is the uppermost

(lowermost). The first packet to leave this processor (during routing step
√

n)

cannot therefore be delayed and so must arrive at its destination within a further
√

n− 1 steps, giving it a total successful journey length of at most 2
√

n− 2 time

steps, the minimum time needed by any suitable first phase. •

It is interesting to ask if the standard algorithm can be adjusted to guarantee

d successes (given d distinct destinations) within a reasonable time. One solution

is to allow processors to remove obviously hopeless packets (i.e. those which have

destinations towards which the processor has already forwarded a packet). It is

easily seen that it will not be good enough just to check against the destination

which the processor originally used itself – the example from the proof of the-

orem 10 may be adjusted to provide a counter example. An alternative would

have each processor keep note of all destinations to which it has already forwarded

packets during the current phase. Now,

Theorem 12 The new scheme, updated to keep note of all destinations seen
by each processor, guarantees d successes given d distinct destinations in time
≤ 3

√
n − 4.

Proof: Again due to pipelining it is clear that after
√

n − 1 steps all packets

(remaining) will have arrived in their destination column. Consider any such

column. As before, operations in the two directions are independent. For either

direction there are at most
√

n packets in each processor. Call the exact number

p0. Then pt will be the number present at time t after this point. At each

subsequent step the processor outputs at most one packet and reads in at most

one (since there will be no more arrivals from along the row). The new packet

will be kept only if it has a previously unseen destination.

In order that pt does not fall at a particular step (unless it is already zero) it is

necessary that the new packet has a previously unseen destination. Initially p0 of

the
√

n−1 destinations in the column are seen, and there are at most
√

n−1−p0

unseen destinations left to which the processor may be asked to route packets.

Therefore, of the next
√

n − 2 steps only
√

n − 1 − p0 may be such that pt does

not fall. Thus p will fall in p0 − 1 of them (unless it is already zero) and after the
√

n − 2 steps, pt ≤ 1,(i.e. there will be at most one packet in the processor).

This argument applies equally to all processors so that over the whole grid
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each processor will contain at most one packet. These may complete their jour-

neys, in pipeline through the columns, in a further
√

n − 1 steps giving a total

journey time of 3
√

n − 4 steps. •

The above proof assumed that checking whether a destination has already

been seen is a constant time operation (i.e. independent of n). Any scheme which

makes this realistic would obviously involve substantial space overheads. For

example, a straightforward look-up table would require n entries to note whether

each possible destination had already been seen. This significant space overhead

could be reduced at the expense of an increase in execution time. For example,

noting that no more than 2
√

n − 2 destinations will actually be seen by each

processor in a particular phase, it would be possible to use only Θ (
√

n) space per

processor and employ some standard technique with time overhead Θ (log n) to

access these.

Alternative implementations must note that any scheme employing en route

packet removal must use deterministic routing. Without this, all packets for

some destination could be removed by a processor which had seen the destination

before.

6.5 Summary

Sections 6.2, 6.3 and 6.4 discuss grid implementation of the abstract task queue

skeleton specified in section 6.1. At any time step of the “idealised machine”,

processors executing tasks may require access to the task descriptor queue or

to the shared data structure. The algorithms presented show how n processor

grids can co-operate to achieve simulation of such an idealised step. In the first

two phases, accesses to the task queue are satisfied and in the third, processors

attempt to deal with outstanding references to the data structure.

Four queuing disciplines were considered, of which three (FIFO, LIFO and

“heap”) were shown to be achievable with Θ (
√

n) slow down at each idealised

time step. The rigid discipline of the strictly ordered queue makes it less suitable

for practical implementation although a possible algorithm was sketched. This

would produce Θ (
√

n log (
√

n)) slow down for queues with length bounded by

Θ (n).

A Θ (
√

n) time algorithm implementing access to the data structure was pro-

posed, together with some variations on the details of its implementation. A

choice exists between the simple variant guaranteeing at least one success per
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time step, and that guaranteeing d successes given d distinct destinations at the

cost of an increase in space. A realistic choice between the two could only be

made on the evidence of experiments with real examples on a real machine.

In general, the simplicity and brevity of the algorithms described (with the

possible exception of that sketched for the strictly ordered queue) suggest that the

behaviour obtainable in practice would not incur serious constant time penalties

with respect to the asymptotic results described.

6.6 Examples

We now present a selection of applications which can be specified in terms of

the task queue skeleton. The flexibility of the implementation, in particular

with respect to shared data structure access, and the fact that such behaviour

is very dependent upon details of problem instances make general estimates of

performance impossible. However, for each example we can note the relative

magnitudes of task instances and consider any limits which might restrict the

number of tasks in operation concurrently.

6.6.1 One to All Shortest Paths

This may be implemented directly from the algorithm presented in section 6.1,

with one alteration. The idealistic model of Deo’s algorithm allowed variables in

the shared memory to be “locked” by any processor (i.e. all other processors were

denied access until the variable was “unlocked” by the same processor). This

allowed processors inspecting a shortest path variable to lock it while deciding

whether or not to update it. Any update could be completed before unlocking.

The proposed implementation does not provide this facility. Thus, it is possible

to conceive of a situation in which two processors, inspecting some vertex from

tasks centred on different neighbours, both decide to update its shortest path

with with values v1 and v2 say, with v1 > v2. If the processor submitting value v2

is successful first, then the other processor will subsequently overwrite this value

with the (by now) incorrect v1.

Fortunately a simple amendment to the algorithm solves this problem. In

addition to checking whether new shortest paths exist from the vertex passed by

parameter to each of the neighbours, the task procedure must also check whether

the neighbours themselves offer even shorter paths to the “central” vertex (i.e.

because the central vertex has been incorrectly updated). If so, then the central

vertex must be updated and a new task generated to check it again. However,
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this new task is certain not to become available until its “parent” has completed

access to the data structure and the correct value for the “central vertex” will be

written when the appropriate neighbour is inspected in this “extra” task instance.

With this addition, the algorithm presented in [30] provides a good example

of the task queue skeleton in use. It also illustrates the importance of taking fully

into account the non-deterministic properties of the skeleton.

For this example, the length of a task instance is clearly proportional to the

degree of the vertex under consideration, while the number of tasks executing

concurrently is entirely dependent upon the internal details of the graph under

consideration.

6.6.2 LU Matrix Decomposition

A set of n linear equations in x1, ..., xn may be described by the equation

Ax = b

where A is an n×n coefficient matrix, x is the vector (x1, ..., xn) and b is a vector

of constants. One method of solution requires that A be expressed as the product

of two n × n matrices L and U , where L is unit lower triangular and U is upper

triangular (see [38] for a thorough discussion). Overall solution is then simplified

to the task of solving

Ly = b

to obtain an intermediate vector y, then solving

Ux = y

to obtain the overall solution x. Since L and U are triangular, both intermediate

and final solutions can be obtained by simple back-substitution. This technique

has the useful property that once found, L and U can be repeatedly used (without

re-calculation) to solve

Ax = b′

for other constant vectors b′. We now present a task queue implementation of an

algorithm which generates L and U for a given A.

The algorithm follows the method of [38]. The first r−1 equations of figure 6.6

specify the interesting (i.e. not automatically 0 by triangularity) elements of the

rth rows of L uniquely, given the elements of the first r − 1 rows of L and U .

To generate lrc, r < c, subtract all the appropriate product terms from arc and

divide by ucc.
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lr1u11 = ar1

lr1u12 + lr2u22 = ar2

. . . .

lr1u1r + lr2u2r + ... + lrrurr = arr

lr1u1,r+1 + lr2u2,r+1 + ... + lrrur,r+1 = ar,r+1

. . . .

lr1u1n + lr2u2n + ... + lrrurn = arn

Figure 6.6: Producing the rth row of L and U

Similarly, the remaining n− r equations specify urr, ..., urn uniquely given the

first r − 1 rows of U and the first r rows of L. To generate urc, r ≥ c, subtract

the appropriate product terms from arc. Division by lrr is not necessary, since

this is 1 by definition.

The simple induction which shows the method to be correct is based on the

observation that l11 = 1 and that u1i = a1i, (1 ≤ i ≤ n) as a consequence. These

define the first row of L and R.

The task queue implementation generates r tasks during the calculation of the

rth row of L and U . The ith task calculates lri by division then performs all the

products and subtractions involving this final value. The first task of the (r+1)st

row is generated once the final task of the rth has completed. A possible coding

of the generic task is illustrated in figure 6.7.
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TASK generateL (r,c : integer)

VAR temp : real; {a local variable}

BEGIN

WHILE mark[r,c] <> c-1 DO ; {wait for relevant subtractions}

A[r,c] := A[r,c]/A[c,c]; {i.e. L[r,c] := A[r,c]/U[c,c]}

temp := A[r,c] * A[c,c+1]; {i.e. L[r,c]*U[c,c+1], to be}

{subtracted from A[r,c]}

A[r,c+1] SUB temp; {indivisible subtraction}

mark[r,c+1]ADD 1; {indivisible addition}

IF c+1 < r THEN put_task(r,c+1); {task generating L[r,c+1]}

FOR i := c+2 TO n DO BEGIN {subtract appropriate products}

temp := A[r,c]*A[c,i]; {i.e. L[r,c]*U[c,i] to be subtracted}

{from A[r,i]}

A[r,i] SUB temp;

IF (i<r) OR (i=n) THEN mark[r,i] ADD 1;

END;

IF c=r-1 THEN BEGIN

WHILE mark[r,i] <> r-1 DO ; {wait for completion of row r}

IF r+1 < n THEN put_task(r+1,1); {start generation of row r+1}

END;

END;

Figure 6.7: Code for the LU decomposition task
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Noting that the location initially storing arc can be directly transformed (by

subtraction and division) into lrc (if r > c) or urc (otherwise), it is clear that no

extra memory space need be set aside for L and U . Strict progression through the

operations associated with each row ensures that arc will have been transformed

into lrc or urc before it is accessed as such. Thus the shared data structure

required is a two dimensional array, initially storing the elements of A accessed

by row and column number. Additionally, an n×n element integer array “mark”

will be required and is introduced below.

The task queue stores pairs of integers. The pair (r,c) specifies the task which

calculates lrc by dividing arc by acc (which is now equal to ucc). Elements of

two dimensional array “mark” are initialised to zero and indicate the number

of subtractions which have been performed upon the corresponding element of

A. This is used to schedule division and the generation of the first task of the

next row. The tasks here are more substantial than those in the two preceding

examples. However, as we have noted, generation of the rth row produces a

maximum concurrency of r tasks, and all tasks from one row must terminate

before any from the next may begin. This suggests that this implementation will

be most effective when n (and hence many values of r) is much larger than the

number of processors available.

6.6.3 Solving a Band Matrix System of Linear Equations

McKeown [23] discusses a parallel implementation of an asynchronous iterative

scheme for solving systems of linear equations where the co-efficient matrix is a

band matrix. The method is easily formulated as a task queue algorithm.

A succession of approximations to the n element solution vector x are gener-

ated with each element of each approximation computed as a function of previous

approximations and the constant elements of A and b. The crucial feature is that

eventual success (i.e. convergence of the approximations to the actual solution)

does not require the generation of successive approximations to each element of

x to proceed synchronously. It is sufficient to use the most recent available ap-

proximation to the other elements, provided that these also progress eventually.

Thus, the lack of a guaranteed ordering of updates of the shared data present in

the task queue skeleton is acceptable.

The shared data structure is simply a vector of real numbers, one for each

element of x. Depending upon space available, the constants A and b could be

either shared or copied locally to each processor. Items on the task queue will be

integers in the range 1..n and a task given parameter i generates a new value for
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x(i) using the current elements of x in its calculation. On completion it writes

the new value of x(i) and generates a new task descriptor i. Use of a FIFO

queuing discipline will ensure that generation of new values proceeds reasonably

evenly across x, thereby aiding convergence. The queue initially contains one

descriptor for each element of x. A limit to the number of iterations could be set

by an additional task parameter, noting the number of times that a particular

element has been recomputed. Generation of a new task descriptor for that i

would depend upon the new parameter not having exceeded the limit.

Again, the average task length is substantial (involving inspection of all b

elements in the current solution). Maximum concurrency is bounded by b, but

synchronisation of the kind encountered in the preceding example is not required.
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Chapter 7

Conclusions

As the computational power afforded by highly parallel computers becomes in-

dispensable to its users, so the problem of building useful and usable systems to

harness it becomes more pressing. The designer of such a system is required to

find an acceptable balance between two conflicting objectives. On the one hand,

users of the system require it to present a programming model which allows clear

and easy specification of solutions to their problems. In particular, the model

should be independent of the details of the underlying parallel hardware. Tra-

ditional problems of non-portability caused by the inclusion of machine specific

characteristics at higher levels must not be repeated. On the other hand, the ab-

solute performance of the system will be expected to match that obtainable (at

least in the manufacturer’s imagination) by grappling directly with the problems

of communication, synchronisation and distributed memory. “Why did I spend

x on ten thousand processors if they only solve my problems a hundred times

faster?” wonders the irate user. The fact that identical performance would be

deemed quite acceptable if the black box purchased for the same price contained

only one hundred processors is overlooked.

In chapter 1, we considered the principle characteristics of a spectrum of

systems which address the problem. This led, in chapter 2, to the proposal of a

new style of abstraction, based on the notion of algorithmic skeletons. Subsequent

chapters centred on the specification and implementation of one such system,

consisting of four skeletons, on a particular model of parallel hardware. By way

of conclusion, this chapter presents a discussion on the merits of the “skeletal

machine” with respect to existing systems. Finally, some possible paths for the

future evolution of the new approach are mapped out.
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7.1 The Case for Skeletons

The concept of the skeletal machine has been proposed as an alternative to those

discussed in the first chapter. We now attempt to throw some light upon its merits

and failings in the context of these systems, concentrating on general principles

rather than the minutiae of particular implementations.

As was noted in chapter 2, the key feature dividing the “skeletal machine”

from all the others is the fragmented nature of its programming model. Whereas

all the systems discussed in chapter 1 present some general purpose programming

language, possibly in conjunction with a machine model, skeletons are entirely

independent of each other. In effect, each defines its own special purpose “ma-

chine” designed to execute some particular style of algorithm. This divergence

from the mainstream of existing work has both strengths and weaknesses. By

their very existence, skeletons serve to highlight “good” algorithmic style at a

high level, encouraging the user to describe solutions well suited to parallel im-

plementation and, perhaps, suggesting previously unconsidered approaches. The

system is helpful advisor, repeatedly asking “Can you visualise a solution to your

problem looking like this, or this, or this ...”. In contrast, existing systems at

the higher levels of abstraction (those discussed in section 1.2.1) present some

language suitable for solving any problem, but give no suggestion as to how to

construct specific solutions. At the other end of the spectrum, systems with a low

level of abstraction based on explicit fixed networks seem to say “If your problem

looks like a grid (or whatever) then you’ve cracked it, otherwise too bad” ! Of

course, the choice of multiple specialisation over complete generality introduces

its own problems. More precisely, what happens when the “helpful advisor” runs

out of ideas ? In short, the answer is that the user must abandon the skeletal

abstraction and try some other package. Since the four skeletons presented are

in no way assumed to be exhaustive, it is to be hoped that this will not occur

frequently with a full system. Future studies of existing algorithms and attempts

to use the model by a wide base of users would no doubt result in the construction

of a much wider range of skeletons.

In this context, the independence of the various skeletons with respect to

one another is very important. New skeletons can be added without affecting

the behaviour of those already present. Eventually, it is possible to envisage a

situation in which the absence of a suitable skeleton for some problem strongly

suggests that the problem itself is unsuitable for efficient parallel evaluation.

At the abstract specification level, the major issue dividing existing systems

concerns the degree to which explicit parallelism is allowed or enforced. The purer
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versions of the highly abstract machines of section 1.2.1 prohibit any reference to

it. While this has the undoubted benefit of sheltering users from the less pleasant

aspects of parallel programming, it also precludes the possibility of expressing a

range of solutions most naturally described in terms of simple concurrency. In

contrast, the systems discussed in sections 1.2.2 and 1.2.3 force the user to adopt

explicit parallelism whether suitable or not.

In this area the skeletal approach has a definite advantage. For the most

part (e.g. three of the four skeletons presented here) skeletons represent purely

sequential (or declarative, according to taste) abstractions from the realms of

conventional computing. However, it is easy to include explicitly parallel skele-

tons, where these seem relevant, without extending the parallelism across the

whole abstract machine. The user can just as easily be guided towards good

parallel solutions as towards sequential solutions with good parallel implementa-

tions. Independence between skeletons allows these styles to co-exist safely and

conveniently within the same overall abstract machine.

In common with the systems of sections 1.2.1 and 1.2.2 the abstract spec-

ification of the skeletal machine is pitched at a level which makes it entirely

independent of the hardware. Thus, complete portability of “programs” (i.e. the

user specified procedures required to customise skeletons) is ensured from one

underlying architecture to another. The only requirement is that the language

used to specify such procedures be catered for on the processors comprising the

physical machine. This is a purely sequential problem. Thus, from the user’s

viewpoint, only performance may vary from machine to machine, with the logical

behaviour of programs guaranteed to be consistent.

Continuing with the subject of implementation on a variety of architectures,

it seems likely that the fragmented nature of the skeletal machine will again

prove advantageous. The implementation of a monolithic programming language

must handle a large range of possible eventualities and program structures. In

producing such a system, many concessions must be made in terms of efficiency in

order to guarantee universality. Furthermore, the flexibility of such abstractions

permits the specification of programs having no efficient parallel implementation.

In contrast, the independence of the individual skeletons breaks the implemen-

tation task into several more restricted parts, each dealing with only a particular

pattern of execution. The system designer may concentrate on implementing each

in isolation, without having to consider a full range of awkward possibilities. Sim-

ilarly, the user is prohibited from describing completely unsuitable computations.

A final yardstick against which we may assess the skeletal machine is the pop-
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ular notion of the “grain” of a parallel machine or algorithm. Essentially, this is a

rough measure of the ratio of computational steps to communications to which a

machine is best suited or to which an algorithm is most prone. A “coarse grain”

indicates that this ratio is high, in contrast to “fine grain” at the other extreme.

To a certain extent the skeletal machine in its abstract form is independent of

this notion - the “grain” is provided by the programmer who specifies the prob-

lem specific functions. The resulting algorithm is coarse or fine just as these are.

However, with an eye to good practical performance, it seems that the implemen-

tation overhead constants which have disappeared into our asymptotic analyses

would be best hidden by “coarse” customising functions. This will be especially

true while the relative costs of real computation and communication remain as

unbalanced (in favour of computation) as they are at present. Certainly, the

complexity of the hardware which we would require at each node to implement

the skeletons is coarse grain by today’s standards. However, the implementation

algorithms proposed here have a “systolic” feel which might be well suited to

direct realisation in hardware at some point in the future.

7.2 Future Directions

The whole notion of an abstract machine based on algorithmic skeletons is clearly

in its infancy. Looking to the future, there are two obvious directions in which

to diversify. At the abstract level there is scope for a wider selection of skeletons

than those presented here. As we have seen, these may be extracted either from

existing sequential algorithms or from the rapidly expanding field of explicitly

parallel algorithms. In this area, the contributions of experienced practitioners

should be invaluable. An obvious example is “dynamic programming”. The

systolic algorithm presented in [13] seems to present a suitable foundation for

such a skeleton.

Similarly, at the implementation level, it seems desirable to extend the range of

hardware upon which the skeletal abstractions can be executed. The new model’s

independence of any particular architecture is an important feature which should

be exploited. In chapter 2, the square grid of processor-memory pairs was selected

as a particular model of parallel hardware upon which to consider implementation

of the system. The primary concern in making the choice was that the hardware

chosen should be unarguably realistic and that asymptotic results concerning the

efficiency of implementation be reflected in practice, with acceptable constant

factors. These conditions are certainly satisfied by the grid. In progressing from
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paper studies to actual implementation it would be foolish to be needlessly bound

by restrictions more applicable in theory than practice. For example, the emerging

popularity of the hypercube family as a practical communications network linking

substantial numbers of processors should not be dismissed casually. To ignore a

network capable of efficiently connecting 28 (for example) elements on the grounds

that it will struggle with 216 (or whatever) seems over cautious in practice. For

such a machine we would hope and expect to see the ubiquitous Θ (
√

n) time

factor improved to Θ (log n), or a small function thereof.

It would be quite possible to advance independently in these two directions

without producing any inconsistency. However, this “ad hoc” direct implementa-

tion of each skeleton from scratch on each new architecture would result in much

wasted effort. The possibility of creating some standard level of interface between

abstract specification and implementation levels appears inviting.

A suitable format for such a level becomes apparent upon consideration of the

four implementations presented previously. Here, a set of underlying operations

and patterns of data manipulation emerge. For example, the ability to efficiently

simulate the behaviour of complete trees of processes (for a variety of fixed de-

grees) was of central importance in chapter 3, while the operations of sorting and

routing across the network were much in evidence in chapter 6. Global and local

coalescence and broadcasting of information appeared in several contexts. The

implementations presented in chapters 4 and 5 were founded upon the existence

of Hamiltonian circuits linking all processors.

The construction of a new intermediate level with a specification providing

such structures and operations would provide a convenient rendezvous between

implementor and abstract skeleton designer. New skeletons would be described in

terms of facilities provided at the intermediate level. Similarly, implementations

on new hardware would only address the problems involved in providing them,

rather than dealing directly with the skeletons. Of course, as with the concept of

skeletons itself, there would be no barriers to the extension of the intermediate

level, either from above or below.

It was noted in chapter 2 that the introduction of a new level of abstraction

to a system tends to pay its price in terms of efficiency. The success or failure

of such an intermediate level in the skeletal machine would obviously depend

upon the suitability of the facilities provided. An inappropriate or incomplete

intermediate level could become more of an obstacle than an aid. On the other

hand, a good choice would free those involved in designing the higher levels from

architectural considerations, while providing a less esoteric target for the “low-
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level” architectural experts. In this way, the wide range of issues which require

investigation would be conveniently partitioned for concurrent consideration!
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