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Abstract Mihalcea, 200k First, a graph is built representing all pos-
) i i sible interpretations of the word sequence being disam-
Word sense disambiguation/MSD) has been a biguated. Graph nodes correspond to word senses, whereas
long-standing research objective for natural lan-  edges represent dependencies between senses (e.g., syno-

guage processing. In this paper we are concerned  mymy, antonymy). Next, the graph structure is assessed to
with developing graph-based unsupervised algo-  determine the importance of each node. Here, sense dis-

rithms for alleviating the data requirements for ambiguation amounts to finding the most “important” node
large scalewSD. Under this framework, finding for each word. Similarity-based algorithms assign a sense to
the right sense for a given word amounts to iden- ~ an ambiguous word by comparing each of its senses with
tifying the most “important” node among the set of those of the words in the surrounding contfixéesk, 1986;

graph nodes representing its senses. We propose a McCarthy et al, 2004; Mohammad and Hirst, 2006The
variety of measures that analyze the connectivity of  sense whose definition has the highest similarity is assumed
graph structures, thereby identifying the most rele- o be the correct one. The algorithms differ in the type of
vant word senses. We assess their performance on  similarity measure they employ and the adopted definition
standard datasets, and show that the best measures of context which can vary from a few words to the en-
perform comparably to state-of-the-art. tire corpus. In graph-based methods word senses are deter-
minedcollectivelyby exploiting dependencies across senses,
. whereas in similarity-based approaches each sense is deter-
1 Introduction mined for each wordndividually without considering the

Word sense disambiguatiow(SD), the ability to identify the ~ Senses assigned to neighboring words. Experimental com-
intended meanings of words (word senses) in context, is Barisons between the two algorithm tydésihalcea, 2005;
central research topic in Natural Language Processing. Sen&§ody et al, 2004 indicate that graph-based algorithms out-
disambiguation is often characterized as an intermediate tasRerform similarity-based ones, often by a significant margin.
which is not an end in itself, but essential for many applica- In this paper we focus on graph-based methods for un-
tions requiring broad-coverage language understanding. ExsupervisedVSD and investigate in depth the role of graph
amples include machine translatibvickrey et al., 2009, in- structure in determiningVSD performance. Specifically, we
formation retrieval[Stokoe, 200F question answerinfRa-  compare and contrast various measures of graph connectiv-
makrishnaret al, 2003, and summarisatiofBarzilay and ity that assess the relative importance of a node within the
Elhadad, 1997 graph. Graph theory is abundant with such measures and
Recent advances WSD have benefited greatly from the €valuations have been undertaken in the context of studying
availability of corpora annotated with word senses. Mostthe structure of a hyperlinked environmdBitafogoet al,
accurateWSD systems to date exploit supervised meth-1993 and within social network analysisiage and Harary,
ods which automatically learn cues useful for disambigua1993. Our experiments attempt to establish whether some of
tion from hand-labeled data. Although supervised approachefese measures are particularly appropriate for graph-based
outperform their unsupervised alternatives (see Snyder an@SD. Such a comparative study is novel to our knowledge;
Palmer[2004 for an overview), they often require large previous work restricts itself to a single measure which is
amounts of training data to yield reliable resU@rowsky  either devised specifically folVSD [Barznay and Elhadad,
and Florian, 200R and their coverage is typically limited to 1997 or adopted from network analysf#lihalcea, 2005;
the words for which sense labeled data exist. UnfortunatelyNavigli and Velardi, 200k Our contributions are three-fold: a
creating sense tagged corpora manually is an expensive agéneral framework for graph-basédSD; an empirical com-
labor-intensive endeav@Ng, 1997 which must be repeated parison of a broad range of graph connectivity measures us-
for new domains, languages, and sense inventories. Giveig standard evaluation datasets; and an investigation of the
the data requirements for supervis&tSD and the current influence of the sense inventory on the resulting graph struc-
paucity of suitable data for many languages and text genredyre and consequently dVSD.
unsupervised approaches would seem to offer near-term hopeln the following section, we briefly introduce the graph-
for large scale sense disambiguation. basedWSD algorithm considered in this paper. Then we
Most unsupervised methods can be broadly divided in tw@resent and motivate several measures of graph connectivity
categories, namely graph-based ones and similarity-basexhd explain how they are adaptedA&tsD. Next, we describe
ones. Graph-based algorithms often consist of two stagesur evaluation methodology and present our experimental re-
[Barzilay and Elhadad, 1997; Navigli and Velardi, 2005; sults. We conclude the paper by discussing future work.



2 Graph-based WSD d

In order to isolate the impact of graph connectivity measures
on WSD, we devised a fairly general disambiguation algo- e i
rithm that has very few parameters and relies almost exclu-

sively on graph structure for inferring word senses. In com-

mon with much current work inWSD, we are assuming b h

that meaning distinctions are provided by a reference lexi-
con, which encodes for each word a discrete set of senses.
Although our experiments will use the WordNet sense inven- Figure 1: An example of a graph.
tory [Fellbaum, 1998 neither our graph-based algorithm nor

the proposed connectivity measures are limited to this par3 Connectivity Measures

ticular lexicon. Resources with alternative sense distinction? thi i d ibe th f h i
and structure could also serve as input to our method. n ng cszggslic:jne\rlvf% . 3rs1§rdp2rvi§ e%%asuﬁfhgugﬁagurcr%gg?c V-

We can view WordNet as a graph whose nodes are concepg%res can be applied to both directed and undirected graphs,
(represented bgynsetgi.e., synonym sets)) and whose edgesfor WSD purposes we are assuming that we are dealing with
‘;]rgr Osr?r?na;tl':%rrg:éfgzn?gmgweck?u?&egtsr (dnﬁg:o%r/r?yEn;y undirected graphs (we view an undirected edge as a pair of
which 3{3 induced from the araph of the ?e?earence,lexicon directed edges). This is motivated by the fact that semantic

grap relations often have an inverse counterpart (e.g., hypernymy

is the inverse relation of hyponymy).

wi is a word, we perform the following steps to constrGct We next introduce the distance functid(u; v), which is

N 8 . used by some of the measures discussed below:
1. Initially, V. = lSenses(wi), whereSenses(w;) is d(uiv) = length of shortest path  if ~ v
i= ’ = R
the set of senses @f; in WordNet; in other wordsy K- . otherwise
represents all possible interpretations of sentend&e ~ Whereu ~» v indicates the existence of a path franto v,
setV :=V andE :=:; andK is a conversion constafBotafogoet al,, 1994, which

. replaces thel distance with an integer whenis not reach-

2. For each node 2 V , we perform a depth-first search aple fromu (we choosdk = jV j, as the length of any simple
of the WordNet graph: every time we encounter a nodepath is< jV j). As an example consider the graph in Figure 1
v,2V (v'&v)alongapatly ¥ v, ¥ ¢t ¥ v I whered(a;i) = 5, d(c;g) = 4, and so on,

v, we add all intermediate nodes and edges on the path
fromvtov:V =V [fvy;:::;wwgandE := E[ 3.1 Local Measures

F(v;v1); 121 (vii; vV)g. For efficiency reasons, we allow | gcal measures of graph connectivity determine the degree of
paths of limited length< 6 edges). relevance of a single vertexin a graphG. They can thus be

: ; ; .. - vViewed as measures of the influence of a node over the spread
We thus obtain a subgraph of the entire lexicon which in-" " ; .
cludes vertices reasonably useful for disambiguation: eac fcgfgqrgae;tlljorg égrough the network. Formally, we define a

vertex is at distance 3 edges from some vertex in the orig-
inal setV of word senses. Given a sentenceour aim is 1:V ¥ [0;1]

to select for each worevi 2 the most appropriate sense I~ : . .
Sw. 2 Senses(w;). The latter is determined by ranking each A value close to 1 indicates that a vertex is relatively impor-
i e tant, whereas a value close to O indicates that the vertex is

vertex in the grapks according to its importance. In Section 3 i“heral
we discuss several measures that operationalize importanf&"'PNera’. .

in graph-theoretic terms. Here, we will briefly note that these S¢veral local measures of graph connectivity have been
measures can be eithiecal or global. Local measures cap- Proposed in the literature (see Wasserman and Ha0sd

ture the degree of connectivity conveyed by a single vertex ifCf & cOmprehensive overview). A large number rely on the
the graph towards all other vertices, whereas global measurd&@tion ofcentrality a node is central if it is maximally con-

estimate the overall degree of connectivity of the entire graphected to all other nodes. In the following, we consider three
The choice of connectivity measure influences the sele est-known measures of centrality, namely degree, closeness,

o g
. : . and betweened&reeman, 19719 and variations thereof. We
tion process for the highest-ranked sense. Giviecal mea- ! e

surerl), and the set of v%rtice\vs , we induce a ranking of the also show how graph connectivity can be computed by solv-

verticesrank, such thatrank;(v) = rank;(V%) iff 1(v) , ing a max-flow Pf‘?b'em- )

I(v"). Then, for each wordy; 2, we select the best-ranking In-degree Centrality ~ The simplest way to measure ver-
sense irBenses(w;) according tarank;. A global measurg ~ tex importance is by its degree, i.e., the number of edges ter-
characterizes the overall graph struct@eand is thus not minating in a given vertex:

particularly helpful in selecting a unigue sense for ambigu- ; — iE(1) . ;

ous words -G collectively represents all interpretations of indeg(v) =jf(u;v) 2 E-u2 Vg

We get around this problem, by applyipgteratively to each A vertexis central, if it has a high degree. In-degree centrality
interpretation of and selecting the highest scoring one. Anis the degree of a vertex normalized by the maximum degree:
interpretation is a subgrap®’ G such thatG’ includes indeg(v)

one and only one sense of each word in sentenead all Co(V) = Fvi;1

their corresponding intermediate nodes (see step (2) abov%. . - 1
So if our sentence has five interpretations, we will measure0. according to the graph in Figuredp (a) = 3, Cp(d) =
the connectivity of the resulting subgraphs five times. Cp(e) =Cp(h) = %, andCp(c) = %.




Eigenvector Centrality A more sophisticated version of
degree centrality is eigenvector centrality. Whereas the for-
mer gives a simple count of the number of connections a
vertex has, the latter acknowledges that not all connections
are equal. It assigns relative scores to all nodes in the graph
based on the principle that connections to nodes having a
high score contribute more to the score of the node in ques-
tion [Bonacich, 197R PageRankBrin and Page, 1998nd
HITS [Kleinberg, 1998 are popular variants of the eigenvec-
tor centrality measure and have been almost exclusively usgtigyre 2: The maximum flow between nodeandg (edges
in gg]aph—basedNSD [Mihalcea, 2005; Navigli and Velardi, zre |abeled with the pair flow/capacity).
2004.

PageRank determines the relevance of a nogeursively  For example, the KPP for nodes and f in Figure 1 is
based on a Markov chain model. All nodes that linkvto Tl lelylylylyl
contribute towards determining its relevance. Each contribul<PP (&) = —*—=2—=5*—=—=—=5 = 0:40 andKP P (f) =
tion is given by the page rank value of the respective nodé*1*3*3*3+35+35+3 _ (.53 respectively.
(P R(u)) divided by the number of its neighbors: 8 ’

> Betweenness Centrality ~ The betweenness of vertexs
PR(v) = &if) 4 PR(u) calculated as the fraction of shortest paths between node pairs
Vi outdegree (u) that pass through [Freeman, 1979 Formally, betweenness
(uv)2E is defined as:
The overall contribution is weighted with a damping factor X st(V)
fi, which implements the so-called random surfer model: with betweenness(v) =
probabilityl j fi, the random surfer is expected to discontinue St2V s&vet St

the chain and select a random node (i.e., page), each wiwhere «t is the number of shortest paths fraarto t, and

1
relevance;. . . st(v) the number of shortest paths frosto t that pass
In contrast, HITS (Hypertext Induced Topic Selection) de-through vertex. We normalize by dividingetweenness(v)
termines two values for each nodgthe authority &(v)) and by the maximum number of node pairs excluding
the hub valuelf(v)). These are defined in terms of one an-

. e __ betweenness(v)
otherina mutugl(recursmn. > Ce(V) = ®™iinaviid
h(v) = a(u) ; a(v)= h(u) The intuition behind betweenness is that a node is important
u:(u;v)2E u:(v;u)2E if it is involved in a large number of paths compared to the

total set of paths. With reference to Figure 1, the pairs of ver-

Intuitively, a good hub is a node that points to many good;; es(x; g) and(g: x), with x 2 fa: b; c; d: eg, are connected
authorities, whereas a good authority is a node that is pointeg,, 1o ,possible shortest paths i'ncllu,dihg eitlfienr h as an
to by many good hubs. A major difference between HITS anqiarmediate vertex. Thus » - ox = 2and xq(F) =

PageRank is that the former is computed dynamically on a _ _
subgraph of relevant pages, whereas the latter takes the entiréxq) = 1. We can nsow ca;lculatdaetweenness(f) -
graph structure into account. 10¢3 =5andCg(f) = 57 = 55-

lowing authority valuesa(d) = 0:484; a(e) = 0:435;a(b) = andletc: E ¥ R be a capacity function such that every edge
0:404;:::;a(a) = 0:163; a(i) = 0:132. The PageRank val- (y;v) 2 E is associated with capacityu;v). We further

ues arePR(d) = PR(e) = PR(b) = PR(d) = 0:15,  gistinguish two vertices, the sourseand the sink. Finally,
PR(f) = PR(g) = PR(c) = 0:1, andPR(i) = PR(@) = |etf :V £V I R be a function called flow.

0:05. While HITS yields a fine-grained ranking, PageRank - Gjven ans-t-cut(S; T), i.e., a partition oV into two dis-
delivers only three different ranks, ranging from central t0;4int setsS andT, such thas 2 S andt 2 T, thes-t-flow of
peripheral. Notice that, since our graphs are undirected, thjfhe cut represents the amount of information that can be con-
authority and hub values coincide. veyed froms to t through the cut while obeying all capacity
Key Player Problem (KPP) KPP is similar to the better constraints. It is defined as:

known closeness centrality measulEreeman, 1979 Here,

a vertex is considered important if it is relatively close to all S T) = F(uv)
other verticegBorgatti, 2003: uz2s;,v2T
< 1 The maximums-t-flow of a graphG has the highest value
d(u; v) among alls-t-cuts. For example, if we fix as the source
KPP (V) = u2viugv andg as the sink (or viceversa) in the graph in Figure 2, the
- iViil maximum flow that can be conveyed equals to the sum of the

where the numerator is the sum of the inverse shortest dign@ximum flowsf(f; g) + f(e;h) = 1+ 1 = 2. This EOW
tances betweew and all other nodes and the denomina-'S deteimmeg by taking into account the pa¢hd f ¥ g
tor is the number of nodes in the graph (excludimy 2ande ¥ h ¥ g.In fact, Menger's theorem states that the
maximums-t-flow in undirected graphs corresponds to the
ICloseness centrality is defined as the total geodesic distanddumber of independent paths between a pair of vertices.
from a given node to all other nodes. We consider only KPP since it In the context ofWSD, maximums-t-flows provide a
outperformed closeness centrality in our experiments. relevance ranking on the set of vertices: the more flow is



conveyed froms to t, the more relevant the sink is. Ini- ED(G) = LE©)

tially, the capacity of each edg@;Vv) 2 E is set to 1 and (")
its flow f(u;v) to 0. To compute an overall score for each For example, the graph in Figure 1 has edge density
vertex, we execute the following steps: ED(G) = - = % — 0:138.

8v 2V score(v) ;=0 2(2)

8s;t2V,s&t,do .
score(t) := score(t) + max s-t-flow 4 Experimental Setup
8v2V,do

Sense inventory  The graph connectivity measures just
score(v) :=

described were incorporated in the disambiguation algorithm

introduced in Section 2. As explained earlier, disambigua-
The resulting score for each vertex2 V is the sum of the 0N Proceeds on a sentence-by-sentence basis. Each sentence

maximum flows having as a sink normalized by the max- 1S fepresented by a graph corresponding to meaning distinc-

imum score. IfG is disconnected, we do not need to app_lyt'onznﬁ’r?(‘)"%%d tvt% Zufgelfx?ggnfx%cr?g'filrgtOigrvsgﬁjel\rllcra?ezng

the algorithm separately to each connected component, sm:‘[%e b ploy ' | d W :

the maximum flow betwees andt is O if t is not reach-  L-elbaum, 1998 a resource commonly used WSD re-

able froms. We calculate the maximum flow with the Ford- S€arch (see Snyder and Palrf2004). We also used an ex-

Fulkerson 1963 algorithm based on the notion of augment- ténded version of WordNet created by Navif#00g. The

i = latter contains additionaemantic relatednegsiges (approx-
:%gp%?;gsﬁtg}/i%r?dopted Edmonds and Kai$77 efficient imately 60,000) that relate associated concepts across parts

of speech (e.gdog andbark drink andglasg. These were
3.2 Global Measures automatically extracted from collocation resources (e.g., Ox-

Global connectivity measures are concerned with the stru ford Collocations, Longman Language Activator) and semi-

ture of the graph as a whole rather than with individual nodeggutomatlcally disambiguated.

Here we discuss three well-known measures, namely conpata ~ We selected two standard data sets for evaluat-
pactness, graph entropy, and edge density. ing our connectlvgf/ measures, namely the SemCor corpus

Compactness  This measure represents the extent Of[M|Iler et al, 1993 and the Senseval-3 English all-words

cross referencing in a gragBotafogoet al, 1994: when Egst set{Snyder and Palmer, 20p4SemCor is a subset of
0
W

score(V)
max score(u)
u2v

compactness is high, each vertex can be easily reached fr e Brown corpus, and includes more than 200,000 content

. ; ; . rds manually tagged with WordNet senses. Senseval-3 is a
other vertices. The measure g(degged as: subset of the Penn Treebank corpus and contains 2,081 con-

Max d(u; v) tent words, again labeled with WordNet senses. We exhaus-
oV oV ' tively tested our measures on the SemCor dataset. The best
CO(G) = M ST performing one was also evaluated on Senseval-3 and com-

R, . i pared with state-of-the-art.
whereMax = KtjV j(jVj i 1) is the maximum compactness

(i.e., for a disconnected graph) aMiin = jVj(Vj i 1) is Graph construction In order to speed up the graph con-

the minimum compactness (i.e., for a fully connected graphyStruction process, all paths connecting pairs of senses in
The compactness of the graph in Figure 1G0D(G) = both versions of WordNet were exhaustively enumerated and

i e L stored in a database which was consulted at run-time durin
% = &7 = 0:819 (in this exampleK = jVj = 9). disambiguation. Unfortunately, the use of global connectivityg
Graph Entropy Entropy measures the amount of infor- Meéasures makes oW SD algorithm susceptible to combina-
mation (or alternatively uncertainty) in a random variable. Intorial explosion, since all possible interpretations of a given
graph-theoretic terms, high entropy indicates that many vers€ntence must be ranked (see Section 2). We used simulated
tices are equally important, whereas low entropy indicate;anneal'”g to heuristically explore the entire space of interpre-
that only a few vertices are relevant. We define a simple med@tions for a given senten¢€owieet al, 1993.

sure of graph entropy as: Baseline and Upper Bound  Our graph-based algorithm
> was compared against a naive baseline that selects a sense
HG)=1i  pW)log(p(v)) for each word at random. As an upper bound, we used the
V2V first-sense heuristic which assigns all instances of an am-

biguous word its most frequent sense according to the man-

. ually annotated SemCaor. It is important to note that current

gree distribution indeg(v) . To obtain a measure with a unsupervised WSD approaches—and also many supervised
V

2JEj e >

—rarel tperf th le h McCarthy et
[0; 1] range, we dividdH (G) by the maximum entropy given g{?eﬁooﬂf‘_re y outperform this simple heurisiidcCarthy e
by logjV j. For example, the distribution associated with the

H H H 1.3.2.3.3.2.2.3.1
graph in Figure 1 is(55; 55 55 36 36 26+ 26+ 30+ 30) €@d-

ing to an overall graph entrogyt (G) = %579 = 0:969.

where the vertgx probahjjitp(v) is determined by the de-

5 Results

Our results on SemCor are summarized in Table 1. We report

Edge Density  Finally, we propose the use of edge den- performance solely on polysemous words, i.e., words with
sity as a simple global connectivity measure. Edge densitynore than one WordNet sense.

is calculated as the ratio of edges in a graph over the num- | et ys first concentrate on the results we obtained with
beri of gdges of a complete graph wjthj vertices (given by  the standard WordNet inventory. As can be seen, almost all
2¢ J\;J ). Formally: measures perform better than the random sense baseline. The



WordNet EnWordNet 100

Measure Prec| Rec| F1 | Prec| Rec| F1 %ol
Baseline 7 T 7 g 7 7 __sof
InDegree 35.3[ 24.0] 28.6] 44.2] 37.0] 40.3 S L
< Betweenness 38.4| 15.5| 22.1| 45.0| 31.1| 36.8 et
S Kpp 31.8| 31.8 31.8| 40.5| 40.5 40.5 g oo
— HITS 31.7| 17.2] 22.3| 39.4| 31.1| 34.8 E so-
PageRank 35.3| 24.0| 28.6| 44.0| 36.8| 40.0 Lol
Maxflow 33.0| 24.3| 28.0| 41.8| 35.2| 38.2 ol
E Compactness 29.8] 27.9] 28.8] 36.3] 35.5] 35.9 C
GraphEntropy 30.3| 28.4| 29.4| 30.9| 30.2| 30.5 20
o EdggDensep) 29.9| 27.9| 28.9| 35.6| 34.6| 35.1 0% 10D B e P 10119 W 1 29000

Number of edges in enriched WordNet

UpperBnd 68.8] 68.8] 68.8] 68.8] 68.8] 68.8

Table 1: Performance of connectivity measures on SemcCor.

Figure 3: Performance of KPP by number of edges.

differences are significant both in terms of precision and re- Measure | Part of speech Prec] Rec| F1

call (using a” 2 test). HITS and Betweenness yield signifi- Nouns 61.9]/61.9]61.9
cantly better precision but worse recall. The best performing KPP Adjectives 62.8| 62.8| 62.8
local measure is KPP (F1 31.8%), whereas the best perform- \erbs 36.1| 36.1| 36.1
ing global measure is graph entropy (F1 29.4%). KPP is sig- Nouns 63316121622
nificantly better than graph entropy both in terms of preci- IRST-DDD | Adjectives 68.2| 65.6| 66.9
sion and recall (again using & test). We conjecture that Verbs 51.6| 49.2| 50.4

the inferior performance of the global measures is due to
the use of a heuristic algorithm for searching the interpretapje 2: Results on the Senseval-3 all words task by part of
tation space. Interestingly, PageRank yields significantly betsyeach,

ter recall and precision than HITS. We attribute the differ-

ence in performance fo the fact that PageRank implementg similarity-based algorithm. It was developed by Strappar-
the random surfer model. Finally, note that a relatively sim-gy et al. [2004 and performs domain driven disambigua-
ple measure like InDegree performs as well as PageRank (Fjon (IRST-DDD). The approach compares the domain of the
Is 28.6% for both measures). This is not entirely surprisingcontext surrounding the target word with the domains of its
The PageRank value of a node is proportional to its degree igenses and uses a version of WordNet augmented with do-
undirected graphs. Furthermore, research on directed graphgain labels (e.g., economy, geography). Table 2 shows how
has experimentally shown that the two measures are broad erformance varies across parts of SpeetRP performs
equivalen{Upstill et al, 2003. . comparably to IRST-DDD for nouns and adjectives (the dif-
We now turn to the performance of the different measure§erences in recall and precision are not statistically signifi-
when the enriched WordNet (EnWordNet) is used. Here weanf) |RST-DDD vyields significantly better results for verbs.
also observe that all measures are significantly better than thgis’can be explained by the fact that the enriched WordNet
baseline (in terms of precision and recall), Th(()e best performeniains a significantly smaller number of relatedness edges
ing global measure is Compactness (F1 35.9%). The best Iq5 yerbs than for nouns or adjectives and this impacts the
calomeasures are InDegree, KPP and PageRank (F1 is arougg formance of KPP, Also note that our experiments focused
40%). KPP performs consistently well with WordNet and its nrimarily on graph connectivity measures. Consequently, we
enriched version. All three local measures achieve S'gn'f"employed a relatively generitySD algorithm (see Section 2)
cantly better precision and recall than Compactness. It seemgihqoyt additional tuning. For instance we could obtain im-
that local measures benefit from a denser reference lexicol,oved results by considering word sequences larger than sen-

Vr;iégsaurlg;gaerg Lézgggzlaor]:tgggjagﬂce {gl?rt]ig?:%mvgi]ri;te(;arisaﬂg(ﬁ)nlginces or by weighting edges according to semantic impor-
. . ! - ince (e.g.hypernymys more important thameronymy.
sion problem discussed above. To further substantiate this, we (e.g hypernymy P ymy.

analyzed how KPP’s performance varies when an increasin .
number of edges is considered for disambiguation. Figure Conclusions

shows that F1 increases when a sense has a large numbghpis naner we presented a study of graph connectivity mea-

of edges. In fact, when more than 200 edges are taken inig, o5 for unsupervised/'SD. We evaluated a wide range of

account, KPP obtains an F1 of 85%. Notice that we are expca| and global measures with the aim of isolating those that
cluding unambiguous words and that there are at least 1,5

' e particularly suited for this task. Our results indicate that
occurrences of word senses in the SemCor corpus for €aqfca| measures yield better performance than global ones. The
interval in the graph. best local measures are KPP, InDegree, and PageRank. KPP
_ We next assess how KPP performs on the Senseval-3 Engys 5 slight advantage over the other two measures, since it
lish all-words test set when using the enriched WordNet. We%erforms consistently well across experimental conditions.

also compare our results with the best unsupervised syste@ results are in agreement with Borgé®003 who shows
that took part in the Senseval-3 competifioifhe latter is

. 3F1 scores here are higher than those reported in Table 1. This is
2See http://lwww.senseval.org/senseval3 for de- expected since the Senseval-3 data set contains monosemous words
tails on the competition and participating systems. as well.



in the context of social network analysis that KPP is bettef{Ford and Fulkerson, 1962 estor R. Ford and D. R. Fulkerson.
than other measures (e.g., betweeness or in-degree central-Flows in NetworksPrinceton University Press, 1962.

ity) at identifying which node in the graph is maximally con- [Freeman, 1979L C. Freeman. Centrality in networks: I concep-
nected to all other nodes. In linguistic terms this means th ;Sg'g:%“g‘;g?;-lsggéﬂ ’}‘fg‘é"gg‘ﬁé-?%ﬁi& 1?E7c%entricity and
KPP selects maximally cohesive nodes which typically cor- - y o el

respond to topical senses, thus indirectly enforcing the on?é centrality in networksSocial Networks13:57-63, 1995.

. ] ) leinberg, 1998 Jon M. Kleinberg. Authoritative sources in a hy-
sense per discourse constraint. We also find that the employ perlinked environment. IProceedings of the 9th ACM-SIAM

reference dictionary critically influencé¥SD performance. Symposium on Discrete Algorithsages 668—-677, San Fran-
We obtain a large F1 improvemeri:{% for KPP, 11:4% cisco, California, 1998.

for InDegree) when adopting a version of WordNet enrichedLesk, 1986 Michael Lesk. Automatic sense disambiguation using
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