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This article considers the problem of automatic paragraph segmentation. The task is relevant for

speech-to-text applications whose output transcipts do not usually contain punctuation or para-

graph indentation and are naturally difficult to read and process. Text-to-text generation applica-

tions (e.g., summarization) could also benefit from an automatic paragaraph segementation mecha-

nism which indicates topic shifts and provides visual targets to the reader. We present a paragraph

segmentation model which exploits a variety of knowledge sources (including textual cues, syn-

tactic and discourse-related information) and evaluate its performance in different languages and

domains. Our experiments demonstrate that the proposed approach significantly outperforms our

baselines and in many cases comes to within a few percent of human performance. Finally, we

integrate our method with a single document summarizer and show that it is useful for structuring

the output of automatically generated text.
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sition; I.2.7 [Artificial Intelligence]: Natural Language Processing—Text analysis; discourse
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1. INTRODUCTION

Written texts are usually broken up into sentences, paragraphs, headings,
and subheadings. Sentence splitting is a necessary preprocessing step for a
number of Natural Language Processing (NLP) tasks, including part-of-speech
tagging and parsing but also for applications such as text simplification and
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summarization. Although humans perform sentence segmentation effortlessly
while reading, automatic approaches are faced with the problem of inferring
whether punctuation is sentence-final or not (e.g., a period can be used in an
abbreviation or a decimal point as well as to mark the end of a sentence). Given
the difficulty of identifying sentence boundaries automatically and its impor-
tance for NLP, it is not surprising that the task has attracted a lot of attention
[Reynar and Ratnaparkhi 1997; Palmer and Hearst 1997; Shriberg et al. 2000].

Beyond sentence segmentation, much research has been devoted to iden-
tifying topically coherent blocks of text that span multiple paragraphs. The
automatic segmentation of texts into subtopics has important uses for text
understanding [Morris and Hirst 1991], summarization [Barzilay and Elhadad
1997], hypertext navigation [Hearst 1997; Choi 2000], and information retrieval
[Hearst 1997; Yaari 1997]. In some types of texts, such as scientific articles or
generally technical documents, headings and subheadings can signal subtopic
structure; however, in most cases, texts are not visibly marked with subtopic
structure, and it is precisely for these texts that subtopical segmentation can
be useful. Topic segmentation identifies subtopic boundaries in a linear fashion
and makes use primarily of lexical distribution information. It is thus differ-
ent from discourse segmentation which is often finer-grained and focuses on
identifying hierarchical relations across utterances (e.g., Marcu [2000]).

In contrast to sentence and subtopic segmentation, there has been virtually
no previous research on inferring paragraph boundaries automatically. One rea-
son for this is that paragraph boundaries are usually marked unambiguously
in text by a new line and extra white space. However, a number of applica-
tions could benefit from a paragraph segmentation mechanism. Text-to-text
generation applications such as single and multidocument summarization as
well as text simplification usually take naturally occurring texts as input and
transform them into new texts satisfying specific constraints (e.g., length, style,
language). The output texts do not always preserve the structure and editing
conventions of the original text. In summarization, for example, sentences are
typically extracted verbatim and concatenated to form a summary. Insertion of
paragraph breaks could improve the readability of the summaries by indicating
topic shifts and providing visual targets to the reader [Stark 1988].

Machine translation is another application for which automatic paragraph
detection is relevant. Current systems deal with paragraph boundary insertion
in the target language simply by preserving the boundaries from the source
language. However, there is evidence for cross-linguistic variation in paragraph
formation and placement, particularly for language pairs that are not closely
related such as English and Chinese [Hinds 1979; Zhu 1999]. So, a paragraph
insertion mechanism that is specific to the target language, instead of one that
relies solely on the source language, may yield more readable texts.

Paragraph boundary detection is also relevant for speech-to-text applica-
tions. The output of automatic speech recognition systems is usually raw text
without any punctuation or paragraph breaks. This naturally makes the text
very hard to read and may cause difficulties in situations where humans have
to process the output text with ease. This is precisely what happens when
speech recognition is used to provide deaf students with real-time transcripts

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



Broad Coverage Paragraph Segmentation Across Languages and Domains • 3

of lectures. In this case, an automatic paragraph insertion mechanism would
improve the transcripts’ readability. Furthermore, sometimes the output of a
speech recognizer needs to be processed automatically by applications such
as information extraction or summarization. Most of these applications port
techniques developed for written texts to spoken texts (e.g., Christensen et al.
[2004]) and therefore require input that is punctuated and broken into para-
graphs. While there has been some research on finding sentence boundaries
in spoken text [Stevenson and Gaizauskas 2000], relatively little research has
examined the automatic insertion of paragraph boundaries. A notable excep-
tion are Hauptmann and Smith [1995] who segment spoken texts into acoustic
paragraphs on the basis of pauses in the flow of speech. However, acoustic
paragraphs may not necessarily correspond to paragraphs in written text.

It can be argued that paragraphs are mainly an aesthetic device for visu-
ally breaking up long texts into smaller chunks [Longacre 1979], and therefore
paragraph boundaries could be easily inserted by splitting a text into several
equal-size segments. Psycho-linguistic research, however, indicates that para-
graphs are not purely aesthetic. For example, Stark [1988] asked subjects to
reinstate paragraph boundaries into fiction texts from which all paragraph
breaks had been removed and found that humans are able to do so with an
accuracy that is higher than would be expected by chance. Crucially, she also
found that (a) individual subjects did not make all their paragraphs the same
length and (b) paragraphs in the original text whose length deviated signif-
icantly from the average paragraph length were still identified correctly by
a large proportion of subjects. These results show that people are often able
to identify paragraphs correctly, even if they are exceptionally short or long,
without defaulting to a simple template of average paragraph length.

Human agreement on the task suggests that the text itself provides cues
for paragraph insertion even though there is some disagreement over which
specific cues are used by humans. Bond and Hayes [1984] found that mainly
three devices are used by readers to identify a paragraph: (a) the repetition
of content words (nouns, adjectives, verbs, adverbs), (b) pronoun coreference,
and (c) paragraph length as determined by sentence count information. Stark
[1988], on the other hand, argued that paragraph length on its own may not be a
very useful cue and that other factors, such as theme marking, the presence and
absence of coordination, and local semantic connectedness may be more predic-
tive. Textual cues for paragraph structure may also vary across languages and
text genres. For example, Longacre [1979] presents evidence that some lan-
guages have special particles to mark the start of a new paragraph, while other
languages indicate paragraph boundaries by increased or decreased use of back
references. Brown and Yule [1983] show that temporal adverbials often indicate
the start of a new paragraph in narrative texts, whereas paragraph boundaries
in philosophical texts are more often indicated by clauses that signify a change
in the direction of the argument (see Hinds [1979] for a detailed discussion on
the relation between paragraph structure and genre).

In this article, we investigate whether it is possible to exploit textual
cues together with syntactic and discourse-related information to determine
paragraph boundaries automatically. We view paragraph segmentation as a
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classification task (see Section 3). Given a set of sentences making up a doc-
ument, we label each sentence as either paragraph initial or not paragraph
initial. We perform this labeling using boosting [Shapire and Singer 2000], a
machine learning technique that combines many simple and moderately accu-
rate categorization rules into a single, highly-accurate categorization rule. We
exploit a variety of knowledge sources and evaluate their contribution to the
paragraph identification task. We also examine the cross-language and cross-
genre portability of our methods, thus empirically assessing whether languages
and genres differ in marking paragraph structure. Our machine learning ex-
periments are complemented by a study in which we investigate human perfor-
mance on the same task and whether it differs across domains and languages
(see Section 4). Finally, we integrate our paragraph segmentation method with a
single document summarizer and evaluate its relevance for this particular text-
to-text generation application (see Section 5). We start by giving an overview
of related work.

2. RELATED WORK

To our knowledge, there has been no previous attempt to automatically in-
fer paragraph boundaries in written text. As mentioned in Section 1, much
previous work has focused on topic segmentation and many algorithms have
been proposed in the literature for performing this task. The majority of these
algorithms are unsupervised and rely on the distribution of words in the
text to provide cues for topic segmentation under the assumption that dif-
ferent subtopics are signaled by different sets of lexical items, and therefore
when a subtopic changes, a significant proportion of the vocabulary changes as
well.

Hearst’s [1997] TextTiling algorithm, for example, determines subtopic
boundaries on the basis of term overlap in adjacent text blocks where the term
overlap across a boundary is expected to be smaller than the term overlap be-
tween blocks which belong to the same subtopic. Hearst’s algorithm uses a slid-
ing window to compute block similarity at regular intervals in the text and then
determines subtopic boundaries by looking for significant dips in the resulting
similarity plot. Variations of this method have been employed by Richmond
et al. [1997], Salton et al. [1996], and Boguraev and Neff [2000].

Reynar [1998] extends Hearst’s [1997] ideas by representing term overlap in
a matrix and then applying an optimization algorithm to determine boundaries.
A similar approach is taken by Choi [2000] who uses a similarity rank matrix
in combination with clustering. Brants et al. [2002] provide a different exten-
sion and integrate term overlap with Probabilistic Latent Semantic Analysis
[Hofmann 2001].

Another strand of work utilizes lexical chains (see Morris and Hirst [1991])
rather than term overlap. A lexical chain is a sequence of semantically-related
words, where semantic relatedness is determined on the basis of a thesaurus
or a similar resource such as WordNet [Miller et al. 1990]. Because a chain
corresponds to a theme or topic in the text, subtopic boundaries can often be
determined by looking for places where many chains end and many new chains
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begin. The usefulness of lexical chains to detect subtopic boundaries has been
investigated by Hearst [1994].

A third line of research was suggested by Utiyama and Isahara [2001]. They
model text segmentation probabilistically and use a graph search algorithm to
find the segmentation with the maximum probability (see Section 4.5 for more
details).

Finally, Genzel and Charniak [2003] investigated how word entropy rate
and syntactic complexity change within texts and found that paragraph initial
sentences are usually syntactically less complex and have a lower word entropy
rate than sentences within a paragraph. They comment that these properties
could be exploited to determine paragraph boundaries automatically but do not
pursue this idea further.

Supervised approaches to text segmentation operate on texts that are ex-
plicitly marked with subtopic boundaries. Given the paucity of such data, few
researchers have attempted the segmentation task in a supervised manner.
Most approaches combine term cooccurrence with other cues such as expres-
sions which typically indicate topic shifts. As one might expect, these cues vary
across domains. For example, in the spoken news domain, expressions such as
welcome back, good evening, and joining us often indicate a new topic [Reynar
1998]. Beeferman et al. [1999] employ language models to detect topic shifts and
combine them with cue word features in a maximum entropy model. Litman
and Passonneau [1995] use a decision tree learner for the segmentation task;
they employ three sets of cues: prosodic cues, cue phrases, and noun phrases
(e.g., the presence or absence of anaphora). Kan et al. [1998] rely nearly exclu-
sively on lexical chains but combine these with a weighting scheme where the
weights are set in a supervised training step.

While most approaches produce a linear, nonhierarchical segmentation,
there are also methods delivering a hierarchical segmentation. Yaari [1997]
discusses an unsupervised method based on term overlap and clustering,
while Kan [2001] uses supervised decision rule learning to infer a hierarchical
segmentation.

Although related to text segmentation, our work differs from these previ-
ous approaches in that paragraphs do not always correspond to subtopics.
While topic shifts often correspond to paragraph breaks, not all paragraph
breaks indicate a topic change. Breaks between paragraphs are often in-
serted for other (not very well understood) reasons (see, e.g., Longacre
[1979], Brown and Yule [1983] and Stark [1988]).1 Therefore, the segment
granularity is more fine-grained for paragraphs than for topics. An impor-
tant advantage for methods developed for paragraph detection (as opposed
to those developed for text segmentation) is that training data is readily
available since paragraph boundaries are usually unambiguously marked in
texts. Hence, supervised methods are cheap for this task.

1In Section 4.5, we investigate empirically whether existing subtopic segmentation models can be

used to infer paragraph breaks. Our results confirm that paragraph structure is indeed different

from subtopic structure and existing topic segmentation algorithms do not lead to very good results

on the paragraph segmentation task.
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Work on text segmentation has nevertheless inspired our choice of features
for the paragraph identification task. We will make use of cue phrases, language
models, and term overlap as indicators of topic shifts, but we will also investi-
gate the contribution of relatively knowledge-intensive features that are based
on syntactic structure. Our contributions are threefold: an automatic method
for paragraph segmentation which we show can be easily ported across lan-
guages and text genres; an empirical validation of claims regarding paragraph
placement in the literature; and an application of our paragraph segmenter to
single-document summarization.

3. MODELING PARAGRAPH SEGMENTATION

In this article, we adopt a supervised approach to paragraph segmentation. The
availability of text marked with paragraph breaks makes such an approach
feasible and enables us to empirically investigate which cues are important for
the paragraph insertion task and whether they generalize across languages
and text genres.

We concentrated on three languages: English, German, and Greek. These
languages vary in morphological and syntactic complexity. English has rela-
tively impoverished morphology whereas German and Greek are highly in-
flected languages. More importantly, the three languages differ in terms of word
order which is relatively fixed for English, semifree for German, and fairly flexi-
ble for Greek. Additionally, Greek has a non-Latin writing system. The focus on
different languages allowed us to study whether languages differ in the linguis-
tic devices they employ in indicating the start of paragraphs [Longacre 1979].

Furthermore, we wanted to know whether paragraph conventions vary
across domains as has been previously noted in the literature [Brown and Yule
1983]. If this is indeed the case, then one may have to retrain a paragraph seg-
menter for each new domain. We concentrated on texts representative of three
domains: fiction, news, and parliamentary proceedings. Previous experimental
work on the role of paragraph markings [Stark 1988] has focused exclusively on
fiction texts and has shown that humans can identify paragraph boundaries in
this domain reliably. It therefore seemed natural to test our automatic method
on a domain for which the task has been shown to be feasible. We selected
news texts since most summarization methods today focus on this domain, and
we can therefore explore the relevance of our approach for this application. Fi-
nally, parliamentary proceedings are transcripts of speech, and we can examine
whether a method that relies solely on textual cues is also useful for transcribed
spoken texts.

Prior work on topic segmentation has exploited several different cues about
where topic boundaries lie. Our machine learning experiments use many cues
from the topic segmentation literature as well as novel ones that are partic-
ularly tailored to the paragraph detection task. Our features fall broadly into
three different areas: surface features, language modeling features, and syn-
tactic features (see the following sections for a detailed discussion). The lat-
ter were only applied to English and German because we did not have ac-
cess to a suitable parser for Greek. The surface features take into account the
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distribution of paragraph breaks, lexical information (e.g., paragraph starting
words, word overlap), as well as punctuation. The syntactic features are read
off from parse trees and are used to record primarily syntactic complexity. We
deliberately did not include anaphora-based features. While anaphors can help
determine paragraph boundaries (paragraph initial sentences tend to contain
few or no anaphors), anaphora structure is dependent on paragraph structure
rather than the other way round. Hence, in applications which manipulate texts
and thereby potentially distort the anaphora structure (e.g., multidocument
summarization), anaphors are not a reliable cue for paragraph identification.2

In the following sections, we give a brief overview of the machine learner we
used for our experiments (Section 3.1) and describe in more detail our features
and the motivation behind their selection (Section 3.2 to Section 3.4). Section 3.6
presents our evaluation measures.

3.1 BoosTexter

We used BoosTexter [Shapire and Singer 2000] as our machine learning system.
BoosTexter is a member of a family of boosting algorithms described in detail in
Schapire and Singer [1999, 2000]; for completeness, we give a brief description
in this section.

The main idea behind boosting is to find a highly accurate classification rule
by combining many weak hypotheses, each of which may be only moderately
accurate. Boosting presupposes access to a weak or base learner for computing
the weak hypotheses. Let X denote the set of instances, and let Y be a finite set
of labels. Then S = 〈(x1, Y1), . . . , (xm, Ym)〉 is a sequence of training examples
where each pair (xi, Yi) consists of an instance xi ∈ X and a set of labels Yi ⊆ Y.
A weak learner h is a triple (p, �α, �β), which tests a predicate p of the input x
and assigns a weight αi(i = 1, . . . , n) for each member y of Y if p is true in x,
and assigns a weight (�βi) otherwise.

From the pool of weak learners H = {h}, a combined weak learner is selected
iteratively. At each iteration t, a weak learner ht is selected that minimizes a
prediction error loss function on the training corpus. The output of the weak
learner is a hypothesis h : X × Y → R. The sign of ht(x, y) (i.e., −1 or +1) is
interpreted as a prediction and its magnitude |ht(x, y)| as a measure of confi-
dence in the prediction [Shapire and Singer 2000]. At each iteration, the weight
αt is updated for each example-label pair. For instance, the weight is increased
for example-label pairs which are misclassified by ht . The iterative algorithm
stops after a prespecified number of iterations or when the accuracy in the test
set remains stable.

Boosting is a general purpose method and can be combined with any clas-
sifier. So far it has been used with decision trees [Drucker and Cortes 1996],
neural nets [Drucker et al. 1992], and decision stumps [Shapire and Singer
2000]. The latter are BoosTexter’s default classifier and have been used for all
our experiments. More specifically, the weak hypotheses have the same basic
form as a one-level decision tree. The test at the root of this tree can be a check

2This is also true for some of the other features we use (e.g., sentence length) but not quite to the

same extent.
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for the presence or absence of a word or a sequence of words in a given sentence;
a check for the value of a particular attribute (discrete attributes); or a check
for the attribute value above or below some threshold (continuous attributes).

For all domains and languages, our training examples were sentences.3 Class
labels encoded for each sentence whether it was starting a paragraph or not. The
values of our features are numeric, boolean, or text. Text-valued features can,
for example, encode the words or part-of-speech tags of a sentence. BoosTexter
applies n-gram models when forming classification hypotheses for features with
text values (i.e., it tries to detect n-grams in the text which are particularly good
predictors for a class label).

3.2 Surface Features

Our surface features can be easily estimated from the raw text without re-
course to elaborate semantic or syntactic knowledge. They are applicable across
languages provided that word and sentence boundaries are marked or can be
identified using automatic means.

Distance (Ds, Dw). Distance features capture how paragraphs are dis-
tributed in a given text. More specifically, we encode the distance of the current
sentence from its previous paragraph break. We measure distance in terms of
the number of intervening sentences (Ds) as well as in terms of the number of
intervening words (Dw). These features should work well if paragraph breaks
are driven purely by aesthetics.4 One would only need to know how the para-
graphs are distributed in a given domain or language in order to reinstate the
paragraph breaks for unseen data.

Sentence Length (Length). This feature encodes the number of words in the
current sentence. Average sentence length is known to vary with relative text
position [Genzel and Charniak 2003; Keller 2004], and it is possible that it
also varies with paragraph position. For example, one could hypothesise that
paragraph initial sentences are often relatively short.

Relative Position (Pos). Previous work on text segmentation uses the rela-
tive position of a sentence in a text as an indicator of text layout [Kan 2001].
We additionally hypothesise that paragraph length may vary with text posi-
tion. For example, it is possible that paragraphs at the beginning and end of a
text are shorter than paragraphs in the middle and hence a paragraph break is
more likely at the two former text positions. We calculate the relative position of
a sentence in the text by dividing the current sentence number by the number
of sentences in the text.

Quotes (Quotep, Quotec, Quotei). We explicitly encode the presence of quo-
tation marks in an attempt to represent, albeit in a shallow manner, the pres-
ence or absence of direct speech. More specifically, we test for pairs of quotation

3Though some of our features did refer back to the previous sentence.
4One could also use the history of class labels assigned to previous sentences as a feature (as in

part-of-speech tagging); however, we leave this to future research.
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marks in the previous (Quotep) and current (Quotec) sentence. The third feature
(Quotei) tests whether one of the previous sentences contained opening quota-
tion marks which so far have not been closed. This is taken as evidence that
the current sentence continues a stretch of direct speech. Direct speech should
make a good cue for paragraph boundaries in some domains (e.g., fiction) be-
cause speaker turns are often signaled by a paragraph break. Furthermore,
sentences that continue direct speech are relatively unlikely to be paragraph
initial.

Final Punctuation (FinPun). This feature keeps track of the final punctu-
ation mark of the previous sentence. Some punctuation marks may provide
hints as to whether a break should be introduced [Kan 2001]. For example, a
question and answer pair is unlikely to be interrupted by a paragraph break
unless both are direct speech and there was a speaker turn. Consequently, in
domains which do not contain much direct speech (e.g., news), the fact that the
previous sentence ended in a question mark should decrease the probability
that the current sentence is paragraph initial. Other punctuation marks may
be similarly useful cues.

Words (W1, W2, W3, Wall). Many topic segmentation algorithms rely on the
frequency of individual words [Hearst 1997; Reynar 1998; Beeferman et al.
1999] or multiword phrases [Reynar 1998] to indicate topic change. Although
paragraph breaks are not necessarily correlated with topic and consequently
vocabulary change, there are certain words that may occur frequently at the
start of a paragraph (e.g., Yes, Oh, If). This is in line with the idea that lan-
guages employ specific phrases (e.g., temporal adverbials) to mark paragraph
boundaries [Longacre 1979; Brown and Yule 1983]. Furthermore, by taking the
words of a sentence into account, we implicitly capture the presence or absence
of cue words. The use of cue words has been widespread in discourse segmenta-
tion [Litman and Passonneau 1995] as well as topic segmentation [Kan 2001;
Beeferman et al. 1999]. Wall takes the complete sentence as its value; W1 en-
codes the first word in a sentence, W2 the first two words, and W3 the first three
words.

Word Overlap (Wover). We use word overlap as a superficial way of captur-
ing theme changes in the text. In particular, we hypothesise that paragraph
starting sentences are more likely to exhibit relatively low word overlap with
their preceding sentences. For each adjacent pair of sentences X and Y , we use
the Dice coefficient to measure word overlap. This is defined as follows:

Wover (X , Y ) = 2|X ∩ Y |
|X | + |Y | , (1)

where |X ∩Y | is the number of words that occur in both sentences, and |X | (|Y |)
is the number of words in sentence X (Y ). Notice that our use of word overlap
is relatively localised; we do not keep track of how individual words distribute
within an entire document as is customary in topic segmentation (e.g., Hearst
[1997]).
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3.3 Language Modeling Features

Our motivation for including language modeling features stems from Genzel
and Charniak’s [2003] work where they show that the word entropy rate is lower
for paragraph initial sentences than for noninitial ones. We therefore decided
to examine whether per-word entropy is a useful feature for the paragraph
prediction task. Following Genzel and Charniak [2003] we computed per-word
entropy as:

Ĥ(X ) = − 1

|X |
∑

xi∈X

log P
(
xi|xi−(n−1) . . . xi−1

)
. (2)

Here, Ĥ(X ) is the estimate of the per-word entropy of sentence X , consisting
of words xi, and n is the size of the n-gram. In addition to per-word entropy, we
also estimated the probability of a sentence according to a language model of
size n:

PLM (x1 . . . xn) =
n∏

i=1

P (xi|xi−1). (3)

Using the training set for each language and domain, we created language
models with the CMU language modeling toolkit [Clarkson and Rosenfeld
1997]. We experimented with language models of variable length (i.e., 1–5);
the models were smoothed using Witten-Bell discounting. We additionally
experimented with character level n-gram models. Such models are defined
over a relatively small vocabulary and can be easily constructed for any lan-
guage without preprocessing. Character level n-gram models have been ap-
plied to the problem of authorship attribution and obtained state-of-the art
results [Peng et al. 2003]. If some characters are more often attested in para-
graph initial sentences (e.g., “A” or “T”), then we expect these sentences to
have a higher probability compared to noninitial ones. Again, we used the
CMU toolkit for building the character level n-gram models (see (3)). We
experimented with models whose length varied from 2 to 8 and estimated
the probability assigned to a sentence according to the character level model
(PCM).

3.4 Syntactic Features

For the English and German data, we also used several features encoding syn-
tactic complexity. Genzel and Charniak [2003] show that the syntactic com-
plexity of sentences varies with their position in a paragraph. Their findings
suggest that paragraph starting sentences are less complex than paragraph
internal ones. Hence, measures of syntactic complexity may be good indicators
of paragraph boundaries. To estimate complexity, we parsed the English texts
with Charniak’s [2000] parser. The latter was trained and tested on the Penn
Treebank with a lexicalized Markov grammar parsing model that achieved an
average precision/recall of 89.5% on sentences of length < 100. German texts
were parsed using Dubey’s [2004] parser, a bottom-up CYK parser that employs
an unlexicalized Markov grammar model. The German parser was trained and
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tested on the Negra corpus,5 achieving an average precision/recall of 79%. The
following complexity features were extracted from English and German parse
trees.

Parsed. A few sentences (typically less than 1%) in each data set could not
be parsed. Whether a sentence can be parsed or not is probably correlated with
its syntactic complexity. Hence, we introduced a boolean feature to record this
information.

Number of phrases (nums, numvp, numnp, numpp). One way to measure syn-
tactic complexity is by recording the number of S, VP, NP, and PP constituents
in the parse tree.

Signature (Sign, Signp). The sequence of part-of-speech tags in a sentence
can also be viewed as a way of encoding syntactic complexity. Sign only encodes
the sequence of word tags, while Signp also includes punctuation tags.

Children of Top-Level Nodes (Childrs1, Childrs). These features encode the
top-level complexity of a parse tree: Childrs1 takes as its value the sequence
of syntactic labels of the children of the S1-node (i.e., the root of the parse
tree), while Childrs encodes the syntactic labels of the children of the highest
S-node(s). For example, Childrs1 may encode that the sentence consists of one
clause, and Childrs may encode that this clause consists of an NP, a VP, and a
PP.

Branching Factor (Branchs, Branchvp, Branchnp, Branchpp). These features
measure the complexity of S, VP, NP, and PP constituents in the sentence
by recording the average number of their children (see Genzel and Charniak
[2003]).

Tree Depth. We define tree depth as the average length of a path (from root
to leaf node) in the parse tree.

Discourse Cues (Cues, Cuem, Cuee). Our word-based features simply record
information about words present in a given sentence while being agnostic of
their particular function. Here, we focus explicitly on discourse cues in order to
assess their individual contribution. Cues, Cuem, and Cuee are boolean features
and encode whether there are any cues (such as because) at the start, in the
middle, and at the end of the sentence, respectively. We define start as the first
word, end as the last one, and everything else as middle. We keep track of all
cue word occurrences without attempting to distinguish between their syntactic
and discourse usages. For English, there are extensive lists of discourse cues
(we employed Knott’s [1996]), but such lists are not widely available for German
and Greek. Hence, we only used this feature on the English data.

3.5 Data

Since our approach is supervised, we require training examples (i.e., sentences)
whose class labels indicate whether they are paragraph starting or not. As

5See http://www.coli.uni-sb.de/sfb378/negra-corpus/.
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Table I. Number of Words per Corpus

Fiction News Parliament

English 1,140,000 1,156,000 1,156,000

German 2,500,000 4,100,000 3,400,000

Greek 563,000 1,500,000 1,500,000

mentioned previously, we concentrated on three languages (English, German,
Greek) and three domains (fiction, news, parliamentary proceedings). We there-
fore compiled corpora representative of these domains and languages for train-
ing and testing purposes.

For English, we used the whole Hansard section of the BNC as our corpus of
parliamentary proceedings. We then created a fiction corpus of similar size by
randomly selecting prose files from the fiction part of the BNC. A news corpus
was created by randomly selecting files from the Penn Treebank.

For German, we used the prose part of Project Gutenberg’s e-book collection6

as our fiction corpus. The news corpus was created from the complete Frank-
furter Rundschau part of the ECI corpus7, and the corpus of parliamentary
proceedings was obtained by randomly selecting a subset of the German sec-
tion from the Europarl corpus [Koehn 2002].

For Greek, a fiction corpus was compiled from the ECI corpus by select-
ing all prose files that contained paragraph markings. Our news corpus was
downloaded from the WWW site of the Modern Greek weekly newspaper Eleft-
herotypia and consists of financial news from the period of 2001–2002. A cor-
pus of parliamentary proceedings was again created from the Europarl corpus
[Koehn 2002] by randomly selecting a subset of the Greek section.

Parts of the data were further preprocessed to insert sentence boundaries. We
trained a publicly-available sentence splitter [Reynar and Ratnaparkhi 1997]
on a small, manually annotated sample (1,000 sentences per domain, per lan-
guage) and applied it to our corpora. Table I shows the corpus sizes. We tried to
use corpora of similar size for each domain of a given language. However, due
to limitations in the availability of data, this was not always possible. Our cor-
pus sizes also vary between languages. In general, we tried to make the data
sets for German and Greek larger than for English because the corpora for
these languages were less carefully constructed and annotated, and we wanted
to counteract the effect of noise contained in the corpora or introduced by the
automatic sentence splitting. All corpora were split into training (72%), devel-
opment (24%), and test set (4%).

3.6 Evaluation Measures

Table II shows the evaluation measures we used to assess the performance
of BoosTexter on the paragraph segmentation task. The first four measure
performance in terms of the number of true positives (tp, the number of para-
graph starting sentences classified correctly), true negatives (tn, the number of

6See http://www.gutenberg.net/. For copyright reasons, this Web site mainly contains books

published before 1923.
7See http://www.elsnet.org/eci.html.
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Table II. Evaluation Measures

Accuracy
tp+tn

tp+fp+tn+fn

Precision P = tp
tp+fp

Recall R = tp
tp+fn

F-measure F = 2PR
P+R

WindowDiff WD(ref, hyp) = 1
N−k

N−k∑
i=1

(|b(refi , refi+k) − b(hypi , hypi+k)| > 0)

paragraph internal sentences classified correctly), false positives (fp, the num-
ber of paragraph internal sentences classified as paragraph starting ones), and
false negatives (fn, the number of paragraph starting sentences classified as
nonstarting ones).

Accuracy is defined as the number of correctly assigned labels divided by
the number of all classification decisions. As the distribution of class labels in
the paragraph prediction task is typically strongly skewed towards the major-
ity class (i.e., there are many more sentences which are not paragraph initial
than sentences which are paragraph initial), the accuracy will be relatively
high for a classifier which always predicts the majority class. However, in most
applications, a classifier which never inserts a paragraph break is clearly not
very useful. Instead one would prefer a classifier which optimizes the number
of true positives (i.e., correctly predicted paragraph breaks). The F-measure
takes into account true positives, false negatives, and false positives but not
true negatives and is therefore better suited to assess how well a classifier
identifies correct breaks. Hence we report both accuracy and F-measure in our
experiments.

While accuracy and F-measure are standard evaluation methods in machine
learning, they have the disadvantage of not being sensitive to near misses.
For example, a model will not be given partial credit if it is slightly off, for
instance, if it misplaces a paragraph boundary by just one sentence. This also
means that accuracy and F-measure do not discriminate very well between
models which are slightly off and models which place boundaries completely in
the wrong places. To remedy this, Beeferman et al. [1999] proposed an alterna-
tive evaluation metric for text segmentation which encodes how likely it is that
a segmenter wrongly places two adjacent sentences into different segments.

Pevzner and Hearst [2002] point out some problems with Beeferman
et al’s. [1999] metric (e.g., it penalizes false negatives more heavily than false
positives and overpenalizes near misses) and provide an extended version,
called WindowDiff. WindowDiff uses a sliding window of length k (typically
set to half of the true segment size). At each position, the number of boundaries
within the window is determined for both the automatically derived segmen-
tation and the gold standard segmentation. If the number of boundaries is not
the same, a penalty is assigned. Penalties are summed over the whole text and
then normalized so that the metric returns a value between 0 (segmentations
are identical) and 1 (segmentations are maximally different).
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The precise formulation of WindowDiff is given in Table II, where b(i, j )
represents the number of boundaries between positions i and j in the text, N
represents the number of sentences in the text, ref are the topic boundaries in
the gold standard, and hyp are the boundaries hypothesized by the automatic
segmenter. Like accuracy, WindowDiff is also slightly biased towards classifiers
which default to the majority class. A further disadvantage is that WindowDiff
values on their own are slightly more difficult to interpret than accuracy or
F-scores, however, they can still be used to compare different segmentations.8

Because WindowDiff is a popular evaluation measure for text segmentation,
we included it in our evaluation.

4. EXPERIMENTS

In this section, we describe and analyze the experiments we performed using
BoosTexter. In all our experiments, we trained and tested BoosTexter as follows:
first we optimized the number of iterations on the development set by training
BoosTexter for 500 iterations; then we retrained BoosTexter with the number of
iterations that led to the lowest error rate on the development set and tested on
the test set. Throughout this article, we report the performance of the optimized
models on the test set.

We conducted five experiments in total. First, we assessed whether humans
agree on identifying paragraph boundaries thus providing an upper bound for
the task (Section 4.1). Second, we investigated whether it is possible to predict
paragraph breaks based solely on the basis of nonsyntactic features (i.e., sur-
face and language modeling features) (Section 4.2). In a third experiment
(Section 4.3), we examined the role of syntactic information in the paragraph
segmentation task. In a fourth experiment (Section 4.4), we looked at the effect
of the training set size on the performance of our models. Finally, we assessed
whether an unsupervised text segmentation method can be used for the para-
graph detection task instead of our approach (Section 4.5).

4.1 Upper Bound

We established an upper bound against which our automatic methods could
be compared by conducting an experiment that assessed how well humans
agree on identifying paragraph boundaries. For each language and domain,
3 to 5 participants were given an extract from the original test set (consist-
ing of approximately 200 sentences) and asked to insert paragraph breaks as
they deemed appropriate. No other instructions were given as we wanted to
see whether they could independently perform the task without any specific
knowledge regarding the domains and their paragraphing conventions.

We measured the agreement of the judges using the Kappa coefficient [Siegel
and Castellan 1988] but also report accuracy (Acc), F-measure (F-score) and
WindowDiff (WDiff) to facilitate comparison with our models. All measures are
computed in a pairwise fashion and their mean is reported. Our results are
shown in Table III.

8Pevzner and Hearst [2002] mention that they found evidence that the WindowDiff metric grows

approximately linearly with the difference between two segmentations.
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Table III. Human Agreement on the Paragraph

Identification Task

Kappa Acc F-score WDiff

EngFiction .72 88.58 80.00 .238

EngNews .47 77.45 62.72 .228

EngParl .76 88.50 86.54 .115

GerFiction .76 88.67 85.77 .113

GerNews .70 85.67 82.35 .143

GerParl .49 76.00 68.05 .240

GreFiction .57 88.00 64.71 .120

GreNews .61 82.94 74.26 .170

GreParl .61 90.83 66.41 .092

As can be seen, participants tend to agree with each other on the task. But no
clear trends emerge regarding which domains are most difficult. For English,
the lowest agreement is achieved for the news domain. For German, agreement
is relatively high for the news domain, whereas the least agreement is achieved
for the parliamentary proceedings. For Greek, the fiction domain seems to be
most difficult. These differences are probably due to the individual corpora we
used. For example, the English news corpus consists of Wall Street Journal
texts, which are written in a particular style and have somewhat idiosyncratic
paragraphing conventions (with an average paragraph length of just two sen-
tences). Determining paragraph boundaries in such texts may be difficult for
nonexperts, that is, people unfamiliar with that particular writing style. The
German news corpus, on the other hand, consists of texts from the Frankfurter
Rundschau which include passages such as weather forecasts and cinema list-
ings and are therefore probably easier to segment. Furthermore, while the fic-
tion domain did not normally cause our subjects too many problems, the Greek
fiction text proved fairly difficult, possibly because it was an extract from an
epistolary novel. Overall it seems that the ease with which nonexperts can rein-
sert paragraph breaks depends not so much on the genre of a text but more on
the properties of the text itself; that is, texts which are difficult to paragraph
can probably be found in all genres.

4.2 The Influence of Nonsyntactic Features

In our first set of experiments, we investigated whether it is possible to exploit
relatively shallow textual cues to predict paragraph breaks automatically. We
ran BoosTexter on all nine corpora but only used the surface and language mod-
eling features, which we will collectively refer to as nonsyntactic features. To
assess the contribution of individual features to the classification task, we built
a set of one-feature classifiers in addition to a combined classifier which was
based on all features. Tables IV to VI show our results for the one-feature clas-
sifiers and for the combined classifier (allnonsyn) for all languages and domains.
As explained in Section 3.6, we report accuracy (Acc), F-measure (F-score),
and WindowDiff (WDiff). But we mainly base our discussion on the F-measure
results, since the other two evaluation measures tend to be biased towards
classifiers which default to the majority class. We use NA (short for nonappli-
cable) in cases where the F-measure cannot be calculated. This arises when our
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Table IV. The Contribution of Nonsyntactic Features for English

EngFiction EngNews EngParl

Feature Acc F-score WDiff Acc F-score WDiff Acc F-score WDiff

Bm 71.04 NA .485 51.44 NA .486 69.38 NA .536

Bd 60.16 26.16 .566 51.73 41.08 .509 59.50 32.01 .537

Dists 71.07 0.20 .585 57.74 57.47 .423 54.02 24.98 .437

Distw 71.04 0.70 .485 63.08 64.31 .369 65.64 46.94 .525

Length 72.08 15.36 .470 56.11 37.34 .439 68.45 15.61 .529

Position 71.04 NA .485 49.18 47.91 .508 38.71 40.26 .842

Quotep 80.84 63.52 .309 56.25 34.63 .438 30.62 46.88 .924

Quotec 80.64 64.45 .313 54.95 29.71 .450 31.00 46.93 .921

Quotei 71.04 NA .485 51.44 NA .486 30.62 46.88 .924

FinPun 72.08 0.78 .469 54.18 10.85 .458 71.75 15.21 .512

W1 72.96 22.17 .454 57.74 59.81 .423 82.05 59.35 .328
W2 73.42 30.45 .433 58.51 60.10 .415 80.62 66.73 .328
W3 73.68 30.27 .433 59.90 64.30 .401 80.73 66.73 .324
Wall 73.97 32.19 .429 61.78 57.56 .382 75.06 61.97 .413

Wover 71.04 NA .485 54.95 41.69 .448 68.12 22.90 .536

PLM 72.41 14.57 .461 50.48 60.75 .466 56.22 35.73 .538

H 59.77 34.84 .464 52.21 58.51 .478 67.95 15.65 .527

PCM 72.10 15.49 .458 53.70 56.91 .426 69.33 19.35 .513

allnonsyn 82.45 66.66* .307 70.91 68.92* .291 82.82 69.23* .310
UpperBound 88.58 80.00 .238 77.45 62.72 .228 88.50 86.54 .115

The diacritic ∗ (� ∗) indicates whether a model is (not) significantly different from the distance-based baseline Bd

(χ2 test).

Table V. The Contribution of Nonsyntactic Features for German

GerFiction GerNews GerParl

Feature Acc F-score Wdiff Acc F-score WDiff Acc F-score Wdiff

Bm 75.75 NA .417 68.24 NA .541 66.17 NA .338

Bd 65.44 21.93 .525 59.03 27.82 .549 58.26 29.06 .544

Dists 75.80 0.40 .417 68.25 0.07 .541 66.23 0.34 .338

Distw 75.80 0.40 .417 67.70 16.14 .487 67.09 27.42 .329

Length 75.75 NA .417 72.55 35.40 .464 67.08 12.26 .329

Position 75.68 0.12 .417 68.05 0.95 .543 66.35 1.48 .336

Quotep 72.97 26.43 .430 68.24 NA .541 66.23 0.40 .338

Quotec 72.35 32.75 .447 68.24 NA .541 66.17 NA .338

Quotei 75.75 NA .417 68.24 NA .541 66.17 NA .338

FinPun 73.15 25.12 .455 76.36 41.12 .432 69.53 18.07 .305

W1 75.43 5.39 .425 73.84 32.53 .463 75.27 48.85 .247

W2 75.80 8.86 .418 74.89 40.39 .439 76.76 54.74 .232
W3 75.60 9.64 .420 74.58 38.52 .445 76.81 55.70 .232
Wall 75.50 14.80 .419 73.01 36.29 .464 76.25 55.45 .238
Wover 75.50 NA .417 68.32 2.36 .540 66.27 0.79 .337

PLM 75.93 1.84 .417 70.49 37.37 .478 67.40 11.55 .331

H 75.90 1.84 .417 40.94 44.14 .519 33.83 50.56 .328

PCM 75.98 1.84 .417 73.37 40.19 .446 67.33 11.61 .327

allnonsyn 75.90 48.80* .400 79.61 57.45* .371 79.43 64.22* .206
UpperBound 88.67 85.77 .113 85.67 82.35 .143 76.00 68.05 .240

The diacritic ∗ (� ∗) indicates whether a model is (not) significantly different from the distance-based baseline

Bd (χ2 test).

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



Broad Coverage Paragraph Segmentation Across Languages and Domains • 17

Table VI. The Contribution of Nonsyntactic Features for Greek

GreFiction GreNews GreParl

Feature Acc F-score WDiff Acc F-score WDiff Acc F-score WDiff

Bm 67.57 NA .559 53.99 NA .460 76.25 NA .428

Bd 59.00 28.60 .558 52.41 40.02 .509 66.48 23.46 .501

Dists 67.68 0.64 .559 57.94 15.78 .421 76.30 0.43 .428

Distw 68.31 4.42 .555 59.76 23.56 .402 76.30 0.43 .428

Length 67.57 NA .559 60.84 44.93 .392 76.55 2.54 .424

Position 67.57 NA .559 56.52 17.09 .435 76.25 NA .428

Quotep 72.80 48.72 .430 58.00 16.15 .420 76.30 0.43 .428

Quotec 71.03 37.19 .468 53.99 NA .460 76.25 NA .428

Quotei 67.57 NA .559 53.99 NA .460 76.25 NA .428

FinPun 73.33 30.71 .474 59.86 22.6 .401 76.55 2.54 .423

W1 67.05 28.89 .521 67.41 61.73 .326 76.81 10.94 .414

W2 66.37 29.88 .514 68.22 63.86 .318 78.48 23.51 .391
W3 67.63 33.65 .493 67.88 62.29 .321 78.43 21.48 .391
Wall 67.78 33.33 .507 67.88 60.16 .321 77.26 17.98 .401
Wover 67.57 NA .559 55.00 18.84 .450 76.35 0.85 .428

PLM 67.83 1.91 .559 56.29 59.71 .386 75.69 16.72 .423

H 66.89 17.90 .537 56.12 11.43 .439 76.40 2.52 .425

PCM 67.68 0.96 .557 60.64 50.84 .383 76.14 5.25 .424

allnonsyn 77.67 59.37* .388 76.31 72.97* .237 79.86 38.89� ∗ .357
UpperBound 88.00 64.71 .120 82.94 74.26 .170 90.83 66.41 .092

The diacritic ∗ (� ∗) indicates whether a model is (not) significantly different from the distance-based baseline Bd

(χ2 test).

models assign a single label to all instances in the test data. We use boldface
to highlight the results of the combined classifier as well as the results of the
three best performing one-feature classifiers for each evaluation measure.

The length of the language and character models was optimized on the devel-
opment set. A single best model was then applied on the test set. These models
are indicated as PLM (best language model), PCM (best character model), and
H (entropy rate estimated with best language model).9

BoosTexter’s performance was further compared against two baselines, Bd
and Bm. The former is distance-based and was obtained by hypothesizing a
paragraph break after every d sentences. We estimated d in the training data
by counting the average number of sentences between two paragraphs. The
second baseline, Bm, defaults to the majority class, that is, it assumes that the
text does not have paragraph breaks.

For all languages and domains, the combined models perform better than the
baselines (under all evaluation measures). In order to determine whether this
difference is significant, we compared the models’ precision and recall against
the distance baseline Bd using a χ2 test. The diacritic ∗ (� ∗) in Tables IV–VI
indicates whether a given model is (not) significantly different (both in terms
of precision and recall) from the baseline.10 As can be seen, significant results

9Which language and character models perform best varies slightly across corpora but no clear

trends emerge.
10Throughout this article, we apply significance tests separately on precision and recall. Unless

otherwise stated, when we mention that a model is significantly different from another model, we

imply, that this is both in terms of precision and recall.
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Table VII. Word Combinations Associated with Paragraph

Starting Sentences

EngFiction EngNews EngParl

Yes In New York To ask the

No For the nine The Prime Minister

What do you In composite trading My hon Friend

Oh In early trading Mr Speaker

What are you In addition to The hon Gentleman

Of course At the same Order

Ah One of the Interruption

What’s the The White House Does my right hon

Good In addition the I am grateful

Don’t you In an interview Will my right hon

are achieved across the board with the exception of Greek parliamentary pro-
ceedings. On this data set, BoosTexter significantly outperforms the baseline
in terms of precision but not recall. Also notice that in most cases the com-
bined classifier yields performances lower than the upper bound. This observa-
tion holds for all three evaluation measures. The sole exception is the English
news domain where BoosTexter outperforms the upper bound by 6.2% when the
F-measure is taken into account. We attribute this to the unfamiliarity of our
subjects with the Wall Street Journal style of writing (see previous section).

In general, the best performing features vary across domains but not lan-
guages. For fiction, quotes (Quotep, Quotec) and punctuation (FinPun) seem
to be useful for predicting paragraph breaks. This reflects the fact that fic-
tion texts often contain a significant proportion of dialogue and speaker turns
are typically signaled by paragraph breaks. Word features (W1–W3, Wall) are
also important for the fiction domain but to a lesser extent. For the news and
parliamentary domains, on the other hand, the word features yield the best
individual feature performances. Table VII shows word combinations that are
good predictors of paragraph starting sentences (i.e., BoosTexter associates high
confidence in their predictions). The table focuses on English but similar word
combinations were selected for the other two languages. Most word combina-
tions shown in Table VII seem plausible. For example, in the fiction domain,
BoosTexter chose sequences such as Yes, No, and Of course, which are likely
to appear at the beginning of a speaker turn and are therefore good predictors
of a paragraph break. In the news domain, sequences such as In early trading
and In addition to were chosen. Again these are likely to occur at the beginning
of paragraphs in the news domain. Finally, for the parliamentary domain, the
chosen sequences include Mr. Speaker, The hon. Gentleman and Order which
also seem to be plausible predictors for paragraph breaks in this domain.

The language models behave similarly across domains and languages. Their
predictive power seems to be larger for the news domain than for the other two
domains (i.e., the F-scores are higher for the news domain). This may reflect the
fact that the structure of news stories is more rigid than that of fiction texts or
parliamentary speeches. The word entropy rate yields relatively better results
in German, whereas sentence probability yields higher F-scores in English and
Greek. The character models perform poorly in all languages and domains with
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the exception of news where we observe that they yield performances compa-
rable to the language models. We attribute this to the formulaic nature of news
texts. In general, our results show that language modeling features are not
particularly useful for the paragraph segmentation task.

While some clear trends emerge regarding which features are good predictors
in a given domain, there are also some noticeable differences. For example, the
distance in words from the previous paragraph boundary (Distw) is a good indi-
cator for paragraph breaks in the news domain for English but less useful for
the other two languages. An explanation might be that the English news corpus
is very homogeneous (i.e., it contains articles that not only have similar content
but are also structurally alike). The Greek news corpus is slightly less homo-
geneous; while it mainly contains financial news articles there are also some
interviews. Hence, there is greater variation in paragraph length which means
that the distance feature is overtaken by the word-based features. Finally, the
German news corpus is highly heterogeneous, containing not only news stories
but also weather forecasts, sports results, and cinema listings. This leads to
a large variation in paragraph length which in turn means that the distance
feature performs worse than the best baseline on accuracy and F-score.

The heterogeneity of the German news corpus may also explain another
difference: while the final punctuation of the previous sentence (FinPun) is
among the less useful features for English and Greek, it is the best performing
feature for German. The German news corpus contains many sentences that
end in atypical end-of-sentence markers such as semicolons (which are found
often in cinema listings). These markers usually only occur within a paragraph,
unlike normal end-of-sentence markers (such as a full-stop), which can occur
before paragraph boundaries as well. This fact renders final punctuation a
better predictor of paragraph breaks in the German corpus than in the other
two corpora.

Our results show that punctuation often provides useful cues for automatic
paragraph prediction. However, punctuation is typically not available in one
important application for automatic paragraph boundary detection, namely,
in the output of speech-to-text systems. Although an investigation of how
paragraph boundary detection could be interfaced with speech-to-text appli-
cations is beyond the scope of this article, it is still worthwhile to get some
idea of the influence of punctuation on paragraph break recognition. We thus
conducted a further experiment in which we removed the main punctuation
features (Quote p, Quote c, Quote i, and FinPun) from our models before train-
ing on the parliamentary proceedings data. The latter is closest to spoken
text and can provide a more realistic estimate of our models’ performance
when punctuation information is not taken into account. Table VIII shows
the results. Although there is some expected drop in performance, the degra-
dation is rather modest. This is especially the case for English and German
where the F-measure decreases by 1.36% for the former and 1.21% for the
latter.11

11Note that here we rely on perfect input at the word level which will not be the case if the text is

the output of a speech recognition system.
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Table VIII. The Effect of Removing Punctuation Features (Quote p,

Quote c, Quote i, and FinPun) From the Models

Parl without Punctuation Parl with Punctuation

Acc F-score WDiff Acc F-score WDiff

English 79.41 67.87 .353 82.82 69.23 .310

German 78.83 63.01 .212 79.43 64.22 .206

Greek 78.69 29.34 .380 79.86 38.89 .357

Besides punctuation, our models crucially require information about sen-
tence boundaries. For most of our data, sentence boundaries were inserted auto-
matically using a publicly available sentence splitter [Reynar and Ratnaparkhi
1997] (see Section 3.5). We conducted a brief error analysis to evaluate the ef-
fect of wrong sentence boundaries on our models. For this, we manually checked
the sentence boundaries in the test data from the German fiction domain. This
data set is challenging for automatic sentence splitters as it contains a fairly
heterogeneous collection of noncontemporary texts with inconsistent spelling
and punctuation. We found that one in ten of the predicted sentence boundaries
are false positives (i.e., not genuine sentence boundaries) in this data set. We
next examined whether BoosTexter inserted paragraph boundaries to coincide
with wrong sentence boundaries. In a random sample of 120 false positives, we
did not find a single instance where this was the case. Hence, it seems that
our models are relatively robust with respect to errors in the sentence splitting
component.

4.3 The Influence of Syntactic Features

Our third set of experiments investigated the usefulness of syntactic features
for the English (see Table IX) and German data (see Table X). Again, we cre-
ated one-feature classifiers and a classifier that combines all syntactic features
(allsyn), including discourse cues for English. Tables IX and X repeat the per-
formances of the two baselines (Bd and Bm) and the combined nonsyntactic
models (allnonsyn). Finally, the results of a classifier (all) that combines all fea-
tures (i.e., syntactic and nonsyntactic) are also presented. The three best results
for a given evaluation measure and the results of the combined model (all) are
again shown in boldface.

As can be seen, classifiers solely trained on syntactic features (allsyn) gener-
ally perform worse than classifiers trained on nonsyntactic features (allnonsyn).
A χ2 test revealed that the difference between allsyn and allnonsyn is statis-
tically significant for the parliamentary proceedings domain (indicated by †

in Table IX) but not for fiction or news (indicated by � †). When syntactic and
nonsyntactic features are combined (all), the F-score increases by at most 1–
2% compared to using nonsyntactic features alone (allnonsyn). This difference is
not statistically significant (indicated by �‡ in Table IX). The largest improve-
ment is achieved in the news domain. This is due to the fact that Charniak’s
[2000] parser was trained on the same corpus (i.e., the Penn Treebank), and
therefore the parse trees (and by extension the syntactic features derived from
these parse trees) are more accurate than for the other two domains.
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Table IX. Syntactic Features for English

EngFiction EngNews EngParl

Feature Acc F-score WDiff Acc F-score WDiff Acc F-score WDiff

Bm 71.04 NA .485 51.44 NA .486 69.38 NA .536

Bd 60.16 26.16 .566 51.73 41.08 .509 59.50 32.01 .537

Cues 71.48 4.33 .479 51.49 63.30 .485 40.64 49.44 .821

Cuem 70.97 NA .485 54.28 42.33 .457 59.03 30.47 .565

Cuee 71.04 NA .485 51.78 1.57 .482 31.61 46.92 .909

Parse 71.04 NA .485 51.88 4.03 .481 30.62 46.88 .924

nums 71.04 NA .485 53.56 22.60 .464 69.05 17.35 .519

numvp 71.04 NA .485 54.18 28.29 .458 70.59 16.04 .517

numnp 71.77 16.00 .470 56.11 51.46 .439 68.94 9.61 .533

numpp 71.04 NA .485 53.61 51.19 .464 64.98 25.18 .534

numadjp 71.04 NA .485 51.11 37.34 .489 42.62 42.68 .711

numadvp 71.04 NA .485 52.40 56.39 .476 47.96 44.90 .683

Sign 75.39 43.06 .397 57.02 56.47 .430 67.95 39.12 .489
Signp 75.49 43.03 .398 59.18 59.32 .408 70.76 24.68 .499

Childrs1 71.69 7.12 .475 55.87 25.61 .441 79.35 49.93 .389
Childrs 75.34 42.46 .408 55.53 29.76 .445 79.52 51.31 .386
Branchs 71.35 19.83 .458 55.82 46.35 .442 69.11 17.38 .519

Branchvp 71.33 15.29 .469 53.46 13.11 .465 70.48 18.04 .515

Branchnp 71.77 16.00 .470 56.11 58.74 .439 33.09 46.83 .899

Branchpp 71.04 NA .485 49.09 61.73 .509 64.92 25.15 .534

TreeDepth 72.57 19.92 .458 54.04 52.25 .460 69.00 16.35 .523

allsyn 77.56 50.63 .384 61.92 61.33 .381 74.45 53.69 .412

allnonsyn 82.45 66.66†/ .307 70.91 68.92†/ .291 82.82 69.23† .310

all 82.99 67.33∗�‡ .299 71.97 70.57∗�‡ .280 83.53 70.25∗�‡ .297
UpperBound 88.58 80.00 .238 77.45 62.72 .228 88.50 86.54 .115

We used a χ2 test to compute statistical significance: ∗(�∗) indicates whether models which use all features (all)
are (not) significantly different from the distance-based baseline Bd ; †(†/) indicates whether models which only

use syntactic features (allsyn) are (not) significantly different from those which only use nonsyntactic features

(allnonsyn); ‡ (�‡) indicates whether models which use all features (all) are (not) significantly different from those

which only use nonsyntactic features (allnonsyn).

For German, the syntax-based classifiers perform significantly worse than
the classifiers trained on nonsyntactic features (see Table X). In fact, the
addition of syntactic features harms the performance of the combined clas-
sifier (all) for the fiction and parliamentary domains. For the news domain,
adding syntactic features increases the F-score marginally (by 1.86%), which
is, however, not statistically significant. Again the difference between the news
domain and the other two domains can be explained by the fact that the German
parser, too, was trained on news texts.

The syntactic features seem to be less domain-dependent than the nonsyn-
tactic ones. In general, the part-of-speech signature features (Sign, Signp) tend
to be fairly good predictors (i.e., they lead to relatively high F-scores). Exam-
ples of part-of-speech signatures with high confidence for paragraph starting
sentences are shown in Table XI. As can be seen, noun phrases (e.g., NNP NNP,
NNP NNPS) are frequently found in paragraph initial sentences, especially
for the news and parliamentary domains. Interjections (e.g., UH, UH NNP)
are good predictors for the fiction domain, presumably because they com-
monly indicate speaker turns. For the English parliamentary texts, however,
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Table X. Syntactic Features for German

GerFiction GerNews GerParl

Feature Acc F-score WDiff Acc F-score WDiff Acc F-score WDiff

Bm 75.75 NA .417 68.24 NA .541 66.17 NA .338

Bd 65.44 21.93 .525 59.03 27.82 .549 58.26 29.06 .544

Parse 75.75 NA .417 68.24 NA .541 66.17 NA .338

nums 75.75 NA .417 68.24 NA .541 66.17 NA .338

numvp 75.75 NA .417 68.24 NA .541 66.17 NA .338

numnp 75.75 NA .417 68.24 0.14 .540 66.22 1.48 .338

numpp 75.75 NA .417 68.24 NA .541 66.05 2.14 .340

numadjp 75.75 NA .417 68.22 0.62 .541 66.22 2.82 .338

numadvp 75.75 NA .417 68.24 NA .541 66.17 NA .338

Sign 75.57 2.20 .420 69.87 11.68 .519 67.92 25.27 .321
Signp 75.57 2.20 .420 70.09 12.89 .517 67.92 25.27 .321
Childrs1 75.72 4.53 .419 69.28 7.21 .525 66.17 NA .329

Childrs 75.00 9.26 .422 69.20 6.58 .526 66.17 NA .320
Branchs 75.75 NA .417 68.24 NA .541 66.17 NA .338

Branchvp 75.75 NA .417 68.24 NA .541 66.17 NA .337

Branchnp 75.75 0.20 .417 68.25 0.07 .541 66.17 NA .338

Branchpp 75.75 NA .417 68.24 NA .541 66.17 NA .338

TreeDepth 75.75 NA .417 69.10 11.26 .525 66.03 1.76 .340

allsyn 74.59 8.48 .436 69.97 12.23 .519 70.05 32.20 .299

allnonsyn 75.90 48.80† .400 79.61 57.45† .371 79.43 64.22† .206

all 75.95 47.51∗�‡ .403 79.93 59.31∗�‡ .367 79.31 63.96∗�‡ .207
UpperBound 88.67 85.77 .113 85.67 82.35 .143 76.00 68.05 .240

We used a χ2 test to compute statistical significance: ∗ (�∗) indicates whether models which use all features (all)
are (not) significantly different from the distance-based baseline Bd ; †(†/) indicates whether models which only

use syntactic features (allsyn) are (not) significantly different from those which only use nonsyntactic features

(allnonsyn); (�‡) indicates whether models which use all features (all) are (not) significantly different from those

which only use nonsyntactic features (allnonsyn).

Table XI. Part-of-Speech Signatures Associated with Paragraph Starting

Sentences

EngFiction EngNews EngParl

UH NNP NNP NNP NNP

NNP VBD NNP NNP NNP NNP NNP NNP

NNP NNP DT NNP NNP

NNP VBD PRP$ NN NNP NNPS VB

UH UH NNP NNP VBD CD TO CD NN

NNP NNP NNP NNP JJ NNS NN CD NNP NNP NNP NNP

UH VBD NNP NNP NNP CD CD UH

NNP VBD RB NNP NNP CD TO CD NNP VB

UH NNP JJ NNP DT JJ

(UH: interjection, NNP: proper noun singular, VBD: verb past tense, PRP$: possessive pro-

noun, NN: noun singular or mass, RB: adverb, NNPS: proper noun plural, CD: cardinal

number, TO: to, JJ: adjective, DT: determiner, VB: verb base form).

part-of-speech signatures are outperformed by features that encode the top-
level complexity of the parse tree (Childrs1, Childrs).

For the news domain, features dealing with the NPs and PPs of the sentence
(Branchnp, Branchpp, numnp, numpp) also lead to a relatively good performance
for English. This is plausible since paragraph initial sentences in the Wall
Street Journal often contain named entities, such as company names, which are
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Fig. 1. Learning curves for English.

typically somewhat complex and thus have a high branching factor. However,
for German news texts, the tree depth (TreeDepth) is a better predictor.

Discourse cues were only used for the English data where their presence in
sentence initial position (Cues) proved a useful predictor in both parliamentary
and news texts but not in fiction texts.

4.4 The Effect of Training Size

Our experiments in the previous sections have shown that BoosTexter signifi-
cantly outperforms our baselines for most domains. This good performance may,
however, be due to the large amounts of training data available. While training
data with paragraph boundaries is generally easy to obtain for written text, it
may not be readily available in large amounts for speech transcripts. In this
case, manual annotation might be necessary. In the experiments reported in
this section, we investigated how much manual annotation would be neces-
sary for BoosTexter to achieve good performance. We assessed this indirectly
by examining the effect of the training set size on the learner’s performance.

We conducted our experiments on all three domains and languages. From
each training set, we created ten progressively smaller data sets, the first iden-
tical to the original set, the second containing 9/10 of the sentences in the
original training set, the third containing 8/10, etc. BoosTexter was trained on
each of these sets (using the complete feature set available for each language),12

and tested on the test set.
Figures 1 to 3 show the learning curves obtained in this way. The curves re-

veal that increasing the amount of training data yields improved performance.

12As in the previous experiments, we optimized the parameter settings for each BoosTexter model

separately on the development set.
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Fig. 2. Learning curves for German.

Fig. 3. Learning curves for Greek.

The effect is starkest for the Greek parliament domain where F-score increases
by 20% when the size of the training data is ten times larger. However, even the
smallest of our training sets (containing around 3,000 sentences) is big enough
to outperform the best baseline. Hence, it is possible to do well on this task
even with a fairly small amount of training data. This means that in situations
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where no training data is available, only a relatively modest annotation effort
is required.

4.5 Comparison with Unsupervised Methods

Our results from the previous section show that only a relatively small training
set is required to outperform the best baseline. Furthermore, corpora annotated
with paragraph boundaries are usually easy to obtain. However, our results
from the experiments in Section 4.2 also suggest that there are domain-specific
differences regarding which features are good predictors of paragraph breaks.
This means that paragraph segmentation models would have to be retrained
for every new domain.

This is in marked contrast with unsupervised methods developed for text
segmentation [Hearst 1997; Choi 2000; Utiyama and Isahara 2001], which do
not require training data and therefore are, at least in theory, applicable across
several text types without requiring additional tuning (see Section 2 for details).
Of course paragraph boundary identification is different from text segmentation
in that paragraph boundaries do not always correspond to topic boundaries.
However, given that at least some paragraph boundaries will coincide with
topic boundaries, it is possible that existing unsupervised text segmentation
methods still lead to relatively good results on the paragraph segmentation
task.

To determine whether this is a promising route, we compared our supervised
method against Utiyama and Isahara’s [2001] topic segmentation algorithm
which is fully unsupervised and based on a statistical model that finds the
maximum probability segmentation of a given text. The most likely segmenta-
tion (Ŝ) for a text is given by:

Ŝ = argmax
s

P (W |S)P (S), (4)

where W is the text and S is a segmentation of the text. By assuming that
different topics have different word distributions and that the words within
the scope of a topic are statistically independent of each other given the topic,
P (W |S) can be defined:

P (W |S) = P (W1, W2 . . . Wm|S) =
m∏

i=1

ni∏

j=1

P
(
wi

j |Si
)
, (5)

where ni is the number of words in segment Si, wi
j the j -th word in Si, and∑m

i=1 = ni. The definition of P (S) can vary depending on prior information
about the possibility of segmentation S. For example, if information about the
average segment length is known, it can be easily incorporated into P (S). In
cases where no prior information is available, Utiyama and Isahara [2001]
make use of a description length prior:

P (S) = 2−l (S), (6)

where l (S) = m log n bits.
To find the maximum probability segmentation Ŝ, Utiyama and Isahara

[2001] define C(S), the cost of segmentation S, and then accordingly minimize
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Table XII. Comparison of BoosTexter with Utiyama and Isahara’s [2001] Unsupervised Text

Segmentation Algorithm

EngFiction EngNews EngParl

Method Acc F-score Wdiff Acc F-score WDiff Acc F-score WDiff

Bm 71.04 NA .485 51.44 NA .486 69.38 NA .536

Bd 60.16 26.16 .566 51.73 41.08 .509 59.50 32.01 .537

U&I (noPr) 70.99 0.88 .484 51.83 1.99 .482 69.66 2.48 .533

U&I (avglenPr) 28.95 44.91# .906 49.52 48.02� # .505 44.27 39.62� # .791

BoosTexter 82.99 67.33$ .299 71.97 70.57$ .280 83.53 70.25$ .297

UpperBound 88.58 80.00 .238 77.45 62.72 .228 88.50 86.54 .115

GerFiction GerNews GerParl

Method Acc F-score Wdiff Acc F-score Wdiff Acc F-score Wdiff

Bm 75.75 NA .417 68.24 NA .541 66.17 NA .338

Bd 65.44 21.93 .525 59.03 27.82 .549 58.26 29.06 .544

U&I (noPr) 75.76 0.62 .417 68.27 0.35 .540 66.25 0.50 .338

U&I (avglenPr) 63.61 24.97� # .538 56.81 32.00� # .655 55.61 34.40� # .444

BoosTexter 75.95 47.51$ .403 79.93 59.31$ .367 79.31$ 63.96$ .207

UpperBound 88.67 85.77 .113 85.67 82.35 .143 76.00 68.05 .240

GreFiction GreNews GreParl

Method Acc F-score WDiff Acc F-score WDiff Acc F-score WDiff

Bm 67.57 NA .559 53.99 NA .460 76.25 NA .428

Bd 59.00 28.60 .558 52.41 40.02 .509 66.48 23.46 .501

U&I (noPr) 67.68 0.64 .559 54.03 0.29 .460 76.30 0.85 .427

U&I (avglenPr) 58.37 35.81� # .651 46.81 42.20� # .520 61.75 19.49� # .574

BoosTexter 77.67 59.37$ .388 76.31$ 72.97$ .237 79.86 38.89$ .357

UpperBound 88.00 64.71 .120 82.94 74.26 .170 90.83 66.41 .092

The diacritic # (� #) indicates whether the unsupervised method is (not) significantly different from the distance-

based baseline Bd ; $ (� $) indicates whether the best BoosTexter model is (not) significantly different from the

unsupervised method (using a χ2 test).

it using a graph-based search algorithm:

Ŝ = argmax
s

C(S) = argmax
s

− log P (W |S)P (S). (7)

Utiyama and Isahara’s [2001] algorithm outperformed Choi’s [2000] method
as well as TextTiling [Hearst 1997], DotPlot [Reynar 1998], and Segmenter
[Kan et al. 1998]. The algorithm was tested on an artificial corpus consist-
ing of a concatenation of segments where each segment corresponded to the
first n sentences of a randomly selected document from the Brown corpus
[Choi 2000].

We used Utiyama and Isahara’s [2001] probabilistic model13 to segment our
test data in all three domains and languages. We then compared the output of
the automatic text segmenter to our gold standard. We experimented with the
default description length prior P (S) (see Equation (6)) but also with a prior
that takes into account the average paragraph length which we estimated from
our training data. The results are presented in Table XII.

When a noninformative prior (noPr) is used, the unsupervised method in-
serts very few paragraph breaks. While this leads to relatively high accuracy, it

13Available at http://www.crl.go.jp/jt/a132/members/mutiyama/softwares.html.
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results in a very low F-score. Better F-scores are obtained with the average para-
graph length prior (avglenPr). With the exception of the Greek parliament do-
main, Utiyama and Isahara’s [2001] algorithm outperforms the distance-based
baseline (Bd ) when the informative prior is used. However, in most cases, the
difference is not statistically significant. The diacritic # (� #) indicates whether
their model is (not) significantly better than the baseline in Table XII. The re-
sults of the unsupervised method are significantly worse than BoosTexter for
all domains and languages (indicated in Table XII by the diacritic $).

We therefore conclude that unsupervised text segmentation methods
cannot be readily used for the paragraph insertion task without further
modification. One potential caveat is that most of the unsupervised methods
rely on vocabulary changes to determine where a boundary should be placed.
While topic shifts are typically indicated by changes in word distribution, para-
graph boundaries are probably influenced by additional factors (see the discus-
sion in Section 1) and therefore text segmentation methods may not be very well
suited for the paragraph identification task. It is a matter for future research to
examine whether it is possible to devise a special purpose unsupervised method
for this task.

5. RELEVANCE FOR SUMMARIZATION

In our introductory section, we argued that a mechanism for automatic para-
graph insertion can be useful for text-to-text generation applications such as
summarization and machine translation. To substantiate this claim we ported
our paragraph segmentation method into a summarization system and per-
formed a user study in order to assess whether humans prefer texts with or
without automatically inserted paragraph breaks. In the following, we describe
our method for assembling the set of experimental materials and eliciting judge-
ments from human participants.

Materials and Design. Our evaluation focused on single-document sum-
maries produced by the English version of SweSum [Dalianis et al. 2003], a pub-
licly available summarizer14 that performs sentence extraction by identifying
the most relevant sentences in a text. SweSum employs a state-of-the-art archi-
tecture: first tokenization and keyword extraction take place; second, sentences
are ranked using a combination of heuristics such as typesetting (e.g., boldface),
the presence of numerical data and keywords, and term frequency; third, the
summary is generated by preserving the order of the sentences in the origi-
nal document. It is important to note that SweSum does not have a dedicated
paragraph insertion module; instead each sentence forms its own paragraph.
When compared against gold standard summaries, SweSum achieved accu-
racies of 52%, 68%, and 84% for compression rates of 10%, 30%, and 40%,
respectively.

We randomly selected nine newspaper articles from the portion of the Penn
Treebank that formed our test data set. Average sentence length was 65.2.

14The summarizer is available at http://swesum.nada.kth.se/index-eng.html.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



28 • C. Sporleder and M. Lapata

Table XIII. Mean Ratings

for Automatic Summaries

Version Rating

Default 2.37

RandPar 3.61

AutPar 4.66

The articles were summarized using SweSum at a compression rate of 30%;
we used a version of BoosTexter that employed our full feature set to automat-
ically insert paragraph breaks. In addition to the summaries that contained
automatic paragraph breaks, we created two baseline versions. Our first base-
line preserved SweSum’s default strategy of inserting a paragraph break after
every sentence. Our second baseline randomly determined the number and
placement of paragraph breaks. For any summary of length n, there are n − 1
potential breaks. We determined the number of breaks per summary by ran-
domly selecting a number m, ranging from 1 to n − 1. Then we randomly chose
m from n summary sentences and assumed that they are paragraph initial.
Our materials therefore contained 3 × 9 = 27 summaries.

Procedure and Subjects. We partitioned our materials into three subsets,
each corresponding to the automatically inserted paragraphs (AutPar), Swe-
Sum’s default summary output (Default), and the randomly generated para-
graph breaks (RandPar). Each participant saw nine summaries, three from
each subset. We made sure that all nine summaries corresponded to differ-
ent documents, that is, no subject saw more than one version of the same
summary. Examples of the summaries our participants saw are given in
Appendix A.

Participants were asked to use a seven point scale to rate the structure of
the summaries on the basis of their paragraph breaks. It was explained that
the summaries had been produced automatically by a computer program.

The study was conducted remotely over the Internet. Participants first saw a
set of instructions that explained the task and had to fill in a short questionnaire
including basic demographic information. Then the summaries were presented;
a new random order was generated for each participant. The experiment was
completed by 30 unpaid volunteers, all self-reported native speakers of English.
Participants were recruited via postings to local emailing lists.

Results. We carried out an Analysis of Variance (ANOVA) to examine the ef-
fect of different types of paragraph breaks (default, random, and automatic)
on the summaries. Statistical tests were done using the mean of the rat-
ings shown in Table XIII. The ANOVA revealed a reliable effect of paragraph
structure: F1(3; 27) = 16.30, p < 0.01. Post-hoc Tukey tests indicated that
summaries with automatically inserted paragraph breaks are perceived as
significantly better than the default summaries (α = 0.01) and the random
baseline summaries (α = 0.05). The latter are significantly better than the de-
fault summaries (α = 0.01).

Our results indicate that an automatic paragraph insertion mechanism
could be useful for structuring the output of automatic summarizers. Such a
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mechanism is preferable to the simple strategy of listing the summary sen-
tences, especially when the compression rate is relatively high. It can be in-
corporated in a summarization system and can be easily obtained for different
types of texts and domains.

6. CONCLUSIONS

In this article, we investigated whether it is possible to predict paragraph
boundaries automatically using a supervised approach which exploits textual,
syntactic, and discourse cues. We achieved F-scores of up to 73%. For each data
set, our results were significantly better than the best baseline and, in many
cases, came to within a few percent of human performance on the task. Our re-
sults were also significantly better than those obtained by applying an existing
unsupervised text segmentation method [Utiyama and Isahara 2001] on the
paragraph segmentation task.

To get some insight into whether there are cross-domain or cross-language
differences, we conducted our study in three different domains and languages.
We found that the most useful cues vary between domains but not languages.
For the fiction domain, punctuation and quotation marks are highly predictive
of paragraph boundaries, whereas for the news and parliamentary proceed-
ings domains, word-based features work better. We also found that including
syntactic and discourse cues does not improve the performance very much and
may even harm it in cases where the accuracy of the parser is suboptimal. Since
low-level features lead to a good performance, predicting paragraph boundaries
automatically is feasible even for languages for which parsers or cue word lists
are not readily available.

However, one potential drawback of our method is that it is supervised and
relies on the availability of training data which is annotated with paragraph
breaks. This type of training data is usually easy to come by, but some manual
annotation effort may be required when dealing with spoken texts, for exam-
ple, if our method is used to determine paragraph boundaries automatically
in the output of a text-to-speech system. To assess how much training data is
required, we experimented with training sets of different sizes and found that
significant performance gains over the baseline can be obtained even with a
training set of relatively modest size.

Finally, we assessed whether our method can be used to improve the output of
a text summarization system. For this we conducted a user study to determine
how humans rate summaries with automatically inserted paragraph breaks.
The results showed that the paragraph structure produced by our method is not
only preferred over randomly inserted paragraph breaks but also over the de-
fault output of the text summarizer (which places a break after each sentence).
This suggests that our method is indeed a useful add-on for a text summariza-
tion system.

The work presented here can be extended in several directions. While we
experimented with languages that displayed structural, grammatical, and
morphological dissimilarities, it would be interesting to evaluate our para-
graph segmentation algorithms on languages with more complex writing
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systems or languages without delimiters between words (e.g., Hindi, Chinese,
Japanese). More cross-linguistic studies would further allow us to evaluate the
extent to which languages differ in their paragraph structure [Hinds 1979; Zhu
1999].

While our results show that unsupervised methods which are based on
word distributions only achieve moderate results for the paragraph predic-
tion task, it may be possible to devise novel unsupervised strategies which
can help determine paragraph boundaries. Our results indicate that some sur-
face features (e.g., sentence initial word n-grams, punctuation) are relatively
good predictors of paragraph structure. We plan to take advantage of these
cues and their distributions in developing an unsupervised approach, thus
avoiding the potential cost of manual annotation in cases where paragraph
boundaries are not explicitly marked. Another possibility would be to com-
bine the predictions made by an unsupervised topic segmentation algorithm
with our supervised paragraph identification method. This might improve the
performance in situations where a paragraph break corresponds to a topic
boundary.

Finally, we aim to investigate the usefulness of our method for speech-to-
text applications. Such applications are particularly interesting, because it is
not entirely clear what the paragraph structure of transcribed text should be.
Furthermore, speech transcripts are typically unedited texts, and any method
that segments texts into meaningful units could potentially benefit applications
such as summarization and information extraction. While our methods work
well for transcripts of parliamentary speeches, these are typically carefully
drafted and therefore relatively close to written texts. The situation may be
different for domains which involve spoken language that is more spontaneous,
for example, transcripts of lectures or business meetings. When dealing with
spoken language, it is not only the transcripts that provide useful information,
but also the original speech signal. We therefore aim to take advantage of the
latter and explore the benefit of prosodic cues, such as pauses or intonation,
since they may indicate places where a paragraph boundary could be placed
in a transcript (see the related work of Litman and Passonneau [1995] and
Hauptmann and Smith [1995]).

APPENDIX: EXAMPLE SUMMARIES

Here, we give an example of the summaries our participants saw in the three ex-
perimental conditions: summaries with a paragraph break after every sentence
(Default), summaries with randomly inserted breaks (RandPar), and automat-
ically inserted breaks using BoosTexter (AutPar).
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Default Summary

Assuming the stock market doesn’t crash again and completely discredit
yuppies and trading rooms, American television audiences in a few months
may be seeing Britain’s concept of both.

“Capital City” is a weekly series that premiered here three weeks ago amid
unprecedented hype by its producer, Thames Television.

The early episodes make you long for a rerun of the crash of 1987.

According to the program’s publicity prospectus, “Capital City”, set at Shane
Longman, a fictional mid-sized securities firm with $500 million capital,
follows the fortunes of a close-knit team of young, high-flying dealers, hired
for their particular blend of style, genius and energy.

Turned loose in Shane Longman’s trading room, the yuppie dealers do little
right.

Judging by the money lost and mistakes made in the early episodes, Shane
Longman’s capital should be just about exhausted by the final 13th week.

In the opening episode we learn that Michelle, a junior bond trader, has
indeed pulled off another million before lunch.

Little chance that Shane Longman is going to recoup today.

And a large slice of the first episode is devoted to efforts to get rid of some
nearly worthless Japanese bonds (since when is anything Japanese nearly
worthless nowadays?).

Surprisingly, Shane Longman survives the week, only to have a senior ex-
ecutive innocently bumble his way into becoming the target of a criminal
insider trading investigation.

After all, this isn’t old money, but new money, and in many cases, young
money.

In producing and promoting “Capital City”, Thames has spent about as
much as Shane Longman loses on a good day.

Perhaps without realizing it, Mr Taffner simultaneously has put his finger
on the problem and an ideal solution: “Capital City” should have been a
comedy, a worthy sequel to the screwball British “Carry On” movies of the
1960s.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



32 • C. Sporleder and M. Lapata

RandPar Summary

Assuming the stock market doesn’t crash again and completely discredit
yuppies and trading rooms, American television audiences in a few months
may be seeing Britain’s concept of both.

“Capital City” is a weekly series that premiered here three weeks ago amid
unprecedented hype by its producer, Thames Television. The early episodes
make you long for a rerun of the crash of 1987. According to the program’s
publicity prospectus, “Capital City”, set at Shane Longman, a fictional mid-
sized securities firm with $500 million capital, follows the fortunes of a
close-knit team of young, high-flying dealers, hired for their particular blend
of style, genius and energy.

Turned loose in Shane Longman’s trading room, the yuppie dealers do little
right.

Judging by the money lost and mistakes made in the early episodes, Shane
Longman’s capital should be just about exhausted by the final 13th week.
In the opening episode we learn that Michelle, a junior bond trader, has
indeed pulled off another million before lunch.

Little chance that Shane Longman is going to recoup today. And a large
slice of the first episode is devoted to efforts to get rid of some nearly worth-
less Japanese bonds (since when is anything Japanese nearly worthless
nowadays?).

Surprisingly, Shane Longman survives the week, only to have a senior ex-
ecutive innocently bumble his way into becoming the target of a criminal
insider trading investigation.

After all, this isn’t old money, but new money, and in many cases, young
money. In producing and promoting “Capital City”, Thames has spent about
as much as Shane Longman loses on a good day. Perhaps without realizing
it, Mr Taffner simultaneously has put his finger on the problem and an ideal
solution: “Capital City” should have been a comedy, a worthy sequel to the
screwball British “Carry On” movies of the 1960s.
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AutPar Summary

Assuming the stock market doesn’t crash again and completely discredit
yuppies and trading rooms, American television audiences in a few months
may be seeing Britain’s concept of both.

“Capital City” is a weekly series that premiered here three weeks ago amid
unprecedented hype by its producer, Thames Television. The early episodes
make you long for a rerun of the crash of 1987.

According to the program’s publicity prospectus, “Capital City”, set at Shane
Longman, a fictional mid-sized securities firm with $500 million capital,
follows the fortunes of a close-knit team of young, high-flying dealers, hired
for their particular blend of style, genius and energy.

Turned loose in Shane Longman’s trading room, the yuppie dealers do little
right. Judging by the money lost and mistakes made in the early episodes,
Shane Longman’s capital should be just about exhausted by the final 13th
week. In the opening episode we learn that Michelle, a junior bond trader,
has indeed pulled off another million before lunch. Little chance that Shane
Longman is going to recoup today. And a large slice of the first episode
is devoted to efforts to get rid of some nearly worthless Japanese bonds
(since when is anything Japanese nearly worthless nowadays?). Surpris-
ingly, Shane Longman survives the week, only to have a senior executive
innocently bumble his way into becoming the target of a criminal insider
trading investigation. After all, this isn’t old money, but new money, and in
many cases, young money.

In producing and promoting “Capital City”, Thames has spent about as
much as Shane Longman loses on a good day.

Perhaps without realizing it, Mr Taffner simultaneously has put his finger
on the problem and an ideal solution: “Capital City” should have been a
comedy, a worthy sequel to the screwball British “Carry On” movies of the
1960s.
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