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Previous work demonstrated that web counts can be used to approximate bigram counts, thus

suggesting that web-based frequencies should be useful for a wide variety of NLP tasks. However,

only a limited number of tasks have so far been tested using web-scale data sets. The present paper

overcomes this limitation by systematically investigating the performance of web-based models for

several NLP tasks, covering both syntax and semantics, both generation and analysis, and a wider

range of n-grams and parts of speech than have been previously explored. For the majority of our

tasks, we find that simple, unsupervised models perform better when n-gram counts are obtained

from the web rather than from a large corpus. In some cases, performance can be improved

further by using backoff or interpolation techniques that combine web counts and corpus counts.
However, unsupervised web-based models generally fail to outperform supervised state-of-the-art
models trained on smaller corpora. We argue that web-based models should therefore be used as

a baseline for, rather than an alternative to, standard supervised models.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; I.2.7 [Artificial Intelligence]: Natural Language Processing—Language mod-

els; H.3.5 [Information Storage and Retrieval]: Online Information Services—Web-based ser-

vices

General Terms: Algorithms; Experimentation; Languages

Additional Key Words and Phrases: Web counts, n-gram models, evaluation

1. INTRODUCTION

The web is being increasingly used as a data source in a wide range of natural
language processing (NLP) tasks. Several researchers have explored the potential
of web data for machine translation, either by creating bilingual corpora [Resnik
and Smith 2003] or by using the web to filter out or postedit translation candidates
[Grefenstette 1998; Cao and Li 2002; Way and Gough 2003]. Other work discovers
semantic relations by querying the web for lexico-syntactic patterns indicative of
hyponymy [Modjeska et al. 2003; Shinzato and Torisawa 2004], entailment [Szpek-
tor et al. 2004], similarity, antonymy, or enablement [Chklovski and Pantel 2004].
A number of studies have investigated the usefulness of the web for word sense
disambiguation [Mihalcea and Moldovan 1999; Rigau et al. 2002; Santamaŕıa et al.
2003], question answering [Dumais et al. 2002; Hildebrandt et al. 2004; Soricut and
Brill 2004], and language modeling [Zhu and Rosenfeld 2001; Keller and Lapata
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2003; Bulyko et al. 2003].

Keller and Lapata [2003] have undertaken several studies to examine the validity
of web counts for a range of predicate-argument bigrams (verb-object, adjective-
noun, and noun-noun bigrams). They presented a simple method for retrieving
bigram counts from the web by querying a search engine and demonstrated that
web counts (a) correlate with frequencies obtained from a carefully edited, bal-
anced corpus such as the 100M words British National Corpus (BNC), (b) correlate
with frequencies recreated using smoothing methods in the case of unseen bigrams,
(c) reliably predict human plausibility judgments, and (d) yield state-of-the-art
performance on pseudo-disambiguation tasks.

Keller and Lapata’s [2003] results suggest that web-based frequencies can be a
viable alternative to bigram frequencies obtained from smaller corpora or recreated
using smoothing. However, they do not demonstrate that realistic NLP tasks can
benefit from web counts. In order to show this, web counts would have to be applied
to a diverse range of NLP tasks, both syntactic and semantic, involving analysis
(e.g., disambiguation) and generation (e.g., selection among competing outputs).
Also, it remains to be shown that the web-based approach scales up to larger n-
grams (e.g., trigrams), and to combinations of different parts of speech (Keller
and Lapata [2003] only tested bigrams involving nouns, verbs, and adjectives).
Another important question is whether web-based methods, which are by definition
unsupervised, can be competitive alternatives to supervised approaches used for
most tasks in the literature. Finally, Keller and Lapata’s [2003] work raises the
question whether web counts (noisy, but less sparse) can be fruitfully combined
with corpus counts (less noisy, but sparse) into a single model.

The present paper aims to address these questions. We start by exploring the
performance of web counts on two generation tasks for which the use of large data
sets has previously shown promising results: (a) target language candidate selec-
tion for machine translation [Grefenstette 1998] and (b) context-sensitive spelling
correction [Banko and Brill 2001a; 2001b]. Then we investigate the generality of
the web-based approach by applying it to a range of analysis and generations tasks,
involving both syntactic and semantic knowledge: (c) ordering of prenominal adjec-
tives, (d) compound noun bracketing, (e) compound noun interpretation, (f) noun
countability detection, (g) article restoration, and (h) PP attachment disambigua-
tion. Table I gives an overview of these tasks and their properties. As the table
illustrates, our choice of tasks covers n-grams of different sizes and includes a wide
variety of parts of speech.

For all tasks listed in Table I, we propose simple, unsupervised n-gram-based
models whose parameters can be estimated using web counts. We compare these
models against identical corpus-based models (whose parameters are estimated from
a conventional corpus). The corpus-based models give us a lower limit on the per-
formance for a given task. We also compare the web-based models against state-
of-the-art models reported in the literature; typically, these are supervised models
(which use annotated training data), or unsupervised models which rely on external
resources such as taxonomies to recreate missing counts. The models in the liter-
ature provide an upper limit on the performance we can expect from web-based
models.
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Task n POS Ling Type

MT candidate selection 1,2 V, N Sem Generation

Spelling correction 1,2,3 Any Syn/Sem Generation

Adjective ordering 1,2 Adj Sem Generation

Article generation 1,2,3 Det, any Sem Generation

Compound bracketing 1,2 N Syn Analysis

Compound interpretation 1,2,3 N, P Sem Analysis

Countability detection 1,2 N, Det Sem Analysis

PP attachment 1,2,3 V, N, P Syn/Sem Analysis

Table I. Overview of the tasks investigated in this paper (n: size of n-gram; POS: parts of speech;

Ling: linguistic knowledge; Type: type of task)

For each of the tasks we investigate, we also explore models that combine web
counts and corpus counts. We propose two combination schemes: backoff and in-
terpolation. Both of these approaches are then compared against purely web-based
and purely corpus-based models. These combined models are weakly supervised:
they include parameters that need to be estimated on a separate development set,
but they do not require annotated data.

2. METHOD

2.1 Web Counts

Following Keller and Lapata [2003], we obtain web counts for n-grams using a
simple heuristic based on queries to a web search engine. In this approach, the web
count for a given n-gram is estimated as the number of hits (pages) returned by
the search engine for the queries generated for this n-gram. Two different ways of
generating queries for a given n-gram are employed in the present paper:

Literal queries use the quoted n-gram directly as a search term for the search
engine (e.g., the bigram history changes expands to the query "history changes").

Inflected queries are obtained by expanding an n-gram into all
its morphological forms. These forms are then submitted as literal
queries, and the resulting hits are summed up (e.g., history changes ex-
pands to "history change", "history changes", "history changed",
"histories change", "histories changed"). John Carroll’s suite of mor-
phological tools (morpha, morphg, and ana) is used to generate inflected forms of
both verbs and nouns.1 In certain cases (detailed below), determiners are inserted
before nouns in order to make it possible to recognize simple NPs. This insertion
is limited to a/an, the, and the empty determiner (for bare plurals).

All queries are performed as exact matches (using quotation marks) and all search
terms are submitted to the search engine in lower case. If a query consists of a single,
highly frequent word (such as the), some search engines return an error message. In
these cases, we set the web count to a large constant (108). This problem is limited
to unigrams, which are used in some of the models detailed below. Sometimes the
search engine fails to return a hit for a given n-gram (for any of its morphological
variants). We smooth such zero counts by setting them to .5.

1The tools can be downloaded from http://www.informatics.susx.ac.uk/research/nlp/

carroll/morph.html.
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For the experiments reported in this paper, we use two search engines: Altavista
and Google. Google only allows automated querying through the Google Web API.
This involves obtaining a license key, which then restricts the number of queries to
a daily quota of 1000.2 However, it is possible to apply for an increase of this quota
for research purposes.3

At the time when we conducted most of the research reported here (Septem-
ber 2003), the Altavista search engine placed no restrictions on automated query-
ing, and thus offered a fast and flexible way of generating web counts. This is why
Altavista was used to obtain the web counts for all the tasks dealt with in this
paper (with the exception of article generation, see below). The provider of Al-
tavista changed the database that underlies the search engine in March 2004 (it
now uses the same database as Yahoo). Altavista no longer allows unrestricted au-
tomated querying; rather the Yahoo API has to be used, which involves obtaining
a license key that restricts the number of queries to 5000 per day.4 The web counts
for the article generation task in Section 6 were obtained later than the other data
(in August 2004). We therefore decided to use Google to obtain these counts, as
Google’s database is larger that of Altavista/Yahoo, and both search engines now
restrict automatic querying. In general, we would not expect the results to differ
dramatically; Keller and Lapata [2003] compare Google and Altavista counts on
their bigram data and find that the differences are negligible.

2.2 Limitations of Web Counts

As discussed by Keller and Lapata [2003], simple web-based heuristics such as
the ones used here introduce noise in the resulting frequency data. Firstly, the
heuristics rely on the assumption that page counts approximate n-gram frequencies.
While Zhu and Rosenfeld [2001] present results that suggest that this assumption is
justified, it certainly adds noise to the data. Another problem is that both Google
and Altavista disregard punctuation and capitalization when matching a search
term (even if the term is quoted). This can lead to false positives, e.g., if the match
crosses a sentence boundary. Also, the matches are likely to include links, web
addresses, file names, and other non-textual data.

In the method used here, no web pages are downloaded, which means that no
tagging, chunking, or parsing of the data can be carried out. This drastically limits
the type of counts that can obtained: we are only dealing with counts of n-grams
of adjacent words as captured by literal queries. Most of the tasks that we deal
with would benefit from part-of-speech tagging, which could be used to restrict the
queries to the linguistic categories that are relevant for the task at hand (see Table I
for an overview of the parts of speech involved in the tasks).

Another problem concerns the stability and accuracy of the page counts gener-
ated by search engines. There seems to be evidence that the counts returned by
Google vary substantially over time, due to changes made to the index and the
database of the search engine, and depending on which Google server is accessed.

2The Google Web API and the license key can be obtained from http://www.google.com/apis/.
3The authors obtained a quota of 20,000 queries per day by sending a request to api-support@

google.com.
4The Yahoo API and the license key can be obtained from http://developer.yahoo.net/.
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Also, it has been observed that the Boolean operators supported by Google return
unexpected results. For example the Boolean query Chirac OR Sarkozy returns a
lower page count than the simple query Chirac, contrary to the logic of the OR

operator.5 The negation operator has a similar unexpected effect, e.g., the query
applesauce -aosdnao returns more hits than applesauce on its own.6 It has been
hypothesized that such anomalies are due to the optimizations that Google performs
when computing the results of Boolean queries.7

However, there is also evidence for the reliability of web counts: Keller and La-
pata [2003] show that the counts generated by two search engines (Google and
Altavista) are highly correlated with frequencies obtained from two standard cor-
pora for English (the BNC and the North American Newstext Corpus). Note also
that the present paper does not rely on Boolean queries and therefore the results
should be less susceptible to artifacts caused by Google’s treatment of index terms.

2.3 Corpus Counts

For all tasks, the web-based models are compared against identical models whose
parameters are estimated from the BNC [Burnard 1995]. The BNC is a static 100M
word corpus of British English, which is about 1000 times smaller than the web
[Keller and Lapata 2003]. Comparing the performance of the same model on the
web and on the BNC allows us to assess how much improvement can be expected
simply by using a larger data set. We retrieve BNC counts using the Gsearch corpus
query tool [Corley et al. 2001]; the morphological query expansion is the same as for
web queries. Gsearch is used to search solely for adjacent words; no POS information
is incorporated in the queries, and no parsing is performed. This ensures that web
counts and corpus counts are as similar as possible.

2.4 Model Selection

For all of our tasks, we have to select either the best one of several possible models
or the best parameter setting for a single model (in case of model combination,
see Section 2.5 below). We therefore require a separate development set. This is
generated by using the gold standard data set from the literature for a given task
and randomly dividing it into a development set and a test set (of equal size). We
report the test set performance for all models for a given task, and indicate which
model shows optimal performance on the development set (marked by a ‘#’ in all
subsequent tables). We also compare the test set performance of this optimal model
to the performance of the models reported in the literature. Here, it is important
to note that the performance reported in the literature was typically obtained on
the whole gold standard data set, and hence may differ from the performance on
our test set, which is only a random sample thereof. However, we work on the
assumption that such differences are negligible.

5This phenomenon was first investigated by Jean Véronis, see http://aixtal.blogspot.com/ for
details.
6This phenomenon was pointed out to us by one of the anonymous reviewers, who suggests that

including a rare word such as aosdnao forces Google to use the whole index instead of performing

optimization.
7For a detailed discussion of these questions, see the Corpora List (March 2005), http://torvald.

aksis.uib.no/corpora/.
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2.5 Combining Web and Corpus Counts

We also examine whether the performance on our tasks can be improved by com-
bining web counts and corpus counts. Web counts can be expected to contain noise
introduced by a number of sources, as discussed in Section 2.2. On the other hand,
corpus counts are much less noisy, but sparser than web counts. Hence it seems
promising to devise a model that combines the two types of counts: corpus counts
are used when they are available; but web counts are substituted for corpus counts
when the latter are too sparse.

The most straightforward way of implementing this idea is in the form of a backoff
scheme: if the n-gram count for an item in the corpus falls below a threshold θ,
the web is used to estimate the n-gram’s frequency, otherwise the corpus counts
are used.8 Note that this backoff scheme subsumes both a purely web-based model
(θ = 0) and a purely corpus-based model (θ = k, where k is the largest observed
corpus count).

An alternative way of combining web and corpus counts is interpolation. By in-
terpolating web and corpus counts we do not discard one type of counts completely,
but instead use a fraction of it in the model. This can be realized straightforwardly
using a standard interpolation scheme, as shown in (1).

f = λfweb + (1 − λ)fcorpus (1)

It can be expected that web counts are many orders of magnitude larger than
corpus counts; the interpolation approach can take this into account by making λ
very small. Again, this scheme subsumes both a purely web-based model (λ = 1)
and a purely corpus-based model (λ = 0).

The value of the backoff threshold θ and the interpolation factor λ must be tuned
on a heldout development set. This means that models employing interpolation or
backoff are weakly supervised (as opposed to models that purely rely on web or
corpus counts, and require no parameter tuning at all). To adjust the parameter
values, we simply perform exhaustive search. This means that all possible values
of λ are tried, with 0 ≤ λ ≤ 1 and a stepsize of 10−6. Along the same lines, all
possible values of θ are tried, with 0 ≤ θ ≤ 150 and a stepsize of 1.

In Section 3, we will illustrate this search process by plotting the performance of
both the backoff and the interpolation model against the parameter settings that
are explored.

2.6 Significance Testing

In what follows, we present four distinct models for all the tasks we discuss: a web-
based model, a corpus-based model, a backoff model, and an interpolated model.
We compare these models to each other to determine the usefulness of web counts
for a given task. However, it is also important to compare the models to valid
baselines, and to the best models reported in the literature. All these comparisons
are only meaningful if statistical tests are performed to determine if differences in
performance are significant.

8In models that use ratios such as
f(a,b)
f(a)

, the backoff scheme is only applied to the numerator, as

the denominator is guaranteed to be larger than the numerator in all cases.
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Correct Incorrect

Model 1 870 130

Model 2 746 251

Table II. Fictitious example for a contingency table for a χ2 test comparing to models

Symbols Meaning

# best model on development set

∗ 6 ∗ significantly (not significantly) different from best BNC model

† 6 † significantly (not significantly) different from baseline

‡ 6 ‡ significantly (not significantly) different from best model in literature

$ 6 $ significantly (not significantly) different from best web model

Table III. Meaning of the symbols indicating statistical significance (χ2 tests)

Throughout this paper, we report the results of χ2 tests that are carried out
to determine if a given difference in model performance is statistically significant.
Model performance is reported in terms of accuracy, i.e., as number of items correct
over the total number of items. Such accuracy figures are effectively frequency
data, which means that χ2 is an appropriate test, since it makes no distributional
assumptions. It can be carried out by compiling a 2 · 2 contingency table: the two
models to be compared form the rows of this table, and the number of correct and
incorrect items are listed in the columns. This is illustrated by the fictitious data in
Table II. Then the χ2 coefficient is computed, which compares the distributions of
the two rows of the table, and yields a significant result if they are reliably different.

In the example in Table II, both models are evaluated on the same data set (with
a size of 1000 items). However, this is not always the case: throughout this paper
we compare models reported in the literature against web-based and corpus-based
models; the former are typically tested on larger data sets that the latter. This is
due to the fact that we split the data sets used in the literature into development
and test sets, as indicated in Section 2.4. Note that the χ2 test is robust against
such differences in sample size.

In order to facilitate the comparison between models, we use a set of symbols
throughout this paper, see Table III. These symbols indicate if the corresponding
χ2 is significant or not.

3. CANDIDATE SELECTION FOR MACHINE TRANSLATION

Target word selection is a generation task that occurs in machine translation (MT).
A word in a source language can often be translated into different words in the
target language and the choice of the appropriate translation depends on a variety
of semantic, syntactic and pragmatic factors. The task is illustrated in (2) where
there are five translation alternatives for the German noun Geschichte listed in
curly brackets, the first being the correct one.

(2) a. Die Geschichte ändert sich, nicht jedoch die Geographie.
b. {History, story, tale, saga, strip} changes but geography does not.

Statistical approaches to target word selection rely on bilingual lexica to provide
all possible translations of words in the source language. Once the set of translation

ACM Transactions on Speech and Language Processing, Vol. 2, No. 1, February 2005.
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Altavista BNC Interpol Backoff

high low high low high low high low

Model ambig ambig ambig ambig ambig ambig ambig ambig

f(v, n) 46.77 69.40# 52.78# 72.94# 53.07 74.27 52.78# 75.16#

f(v, n)/f(n) 46.62# 64.52 49.26 70.06 53.07 74.27 49.26 71.61

Table IV. Performance of Altavista, BNC, interpolated, and backoff models for candidate selection

for MT (data from Prescher et al. 2000)

candidates is generated, statistical information gathered from target language cor-
pora is used to select the most appropriate alternative [Dagan and Itai 1994]. The
task is somewhat simplified by Grefenstette [1998] and Prescher et al. [2000] who
do not produce a translation of the entire sentence. Instead, they focus on specific
syntactic relations. Grefenstette translates compounds from German and Spanish
into English, and uses BNC frequencies as a filter for candidate translations. He
observes that this approach suffers from an acute data sparseness problem and goes
on to obtain counts for candidate compounds through web searches, thus achieving
a translation accuracy of 86–87%.

Prescher et al. [2000] concentrate on verbs and their objects. Assuming that the
target language translation of the verb is known, they select from the candidate
translations the noun that is semantically most compatible with the verb. The se-
mantic fit between a verb and its argument is modeled using a class-based lexicon
that is derived from unlabeled data using the expectation maximization algorithm
(verb-argument model). Prescher et al. also propose a refined version of this ap-
proach that only models the fit between a verb and its object (verb-object model),
disregarding other arguments of the verb. The two models are trained on the BNC
and evaluated against two corpora differing in the degree of translation ambiguity
displayed by the object noun. The high ambiguity corpus contains 1,340 bilingual
sentence pairs with an average of 8.63 translations for the object noun. The low
ambiguity corpus has 814 bilingual sentence pairs with an average of 2.83 transla-
tions. Table V lists Prescher et al.’s results on these two corpora for both models
together with a frequency baseline9 (select the most frequent target noun).

Grefenstette’s [1998] evaluation was restricted to compounds that are listed in a
dictionary. These compounds are presumably well-established and fairly frequent,
which makes it easy to obtain reliable web frequencies. We wanted to test if the web-
based approach extends from lexicalized compounds to productive syntactic units
for which dictionary entries do not exist. We therefore performed our evaluation
using Prescher et al.’s [2000] test set of verb-object pairs. Web counts were retrieved
for all possible verb-object translations; the most likely one was selected using either
co-occurrence frequency (f(v, n)) or conditional probability (f(v, n)/f(n)). The
web counts were gathered using inflected queries involving the verb, a determiner,
and the object (see Section 2.1). Table IV compares the web-based models against
the BNC models on the test set. (Recall from Section 2.4 that we split the data sets
in the literature into a development set and a test set. We report the performance

9Prescher et al. [2000] only report a random baseline (i.e., they select a target noun at random);

the latter achieves an accuracy of 14.20% for the high ambiguity words and 45.90% for the low

ambiguity words.
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Fig. 1. The performance of the f(v, n) model for candidate selection for machine translation for
different interpolation factors (λ).

on the test set in Table IV, and indicate which models performed best on the
development set using a ‘#’. These models then form the basis for the significance
tests reported in Table V.)

As explained in Section 2.5, we also test two weakly supervised models that
combine web counts and corpus counts using backoff and interpolation. Table IV
includes the performance of these two approaches, listed under the headings Interpol
and Backoff. Note that these models require the adjustment of parameters on the
development set. Figures 1 and 2 show how model performance varies along different
parameter values.

Figure 1 plots model accuracy for the f(v, n) model against values of λ for the
interpolation model. Note that these curves were obtained on the development
set, while the performance reported in Table IV is that on the test set. For the
high ambiguity data set, the best performance was achieved with an interpolation
threshold of λ = 2.1 · 10−5; for the low ambiguity data set, the best performance
was achieved with λ = 4 · 10−5. This means that in both cases the best model only
included a very small fraction of web counts in the interpolated counts.

Figure 2 plots the performance of the backoff model against different values of θ
(again, these curves were obtained on the development set). We observe that for
the high ambiguity data set a threshold of θ = 1 yields the best performance, i.e., a
model where we use web counts only when the corpus counts are zero. For the low
ambiguity data set, the best performance is obtained for θ = 13, i.e., for a model
that uses web counts if the corpus counts are less than 13.

Returning to Table IV, we observe that in most cases simple co-occurrence fre-
quency outperforms conditional probability. Furthermore, notice that for both the
high and low ambiguity data sets, the performance of the best BNC model is com-
parable to the best web-based model; in fact the difference between the two models
is not statistically significant (see Table V). Combining the BNC and web models

ACM Transactions on Speech and Language Processing, Vol. 2, No. 1, February 2005.
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Fig. 2. The performance of the f(v, n) model for candidate selection for machine translation for
different backoff thresholds (θ).

high low
Model ambig ambig

Baseline 31.90∗‡$ 45.50∗‡$
Prescher et al. [2000]: Verb-argument 43.30∗†‡6 $ 61.50∗†‡$

Best Altavista 46.62∗†6 ‡ 69.406 ∗†6 ‡
Prescher et al. [2000]: Verb-object 49.406 ∗†6 $ 68.206 ∗†6 $
Best Backoff 52.786 ∗†6 ‡$ 70.286 ∗†6 ‡6 $

Best BNC 52.78†6 ‡$ 72.94†6 ‡6 $
Best Interpol 53.076 ∗†6 ‡$ 74.276 ∗†‡6 $

Table V. Performance comparison with the literature for candidate selection for MT (Baseline:
select most frequent target noun)

yields improved performances over the individual models. For low ambiguity words
the interpolated model yields an improvement of approximately 1% over the BNC
model, whereas the improvement for the backoff model is approximately 2%. The
backoff model yields no improvement over the best BNC model for high ambiguity
words; a small improvement of .3% is obtained with the interpolated model.

Table V compares our unsupervised and weakly supervised models with the two
sophisticated class-based models discussed above. The results show that there is
no significant difference in performance between the best model reported in the
literature and the best Altavista or the best BNC model. The backoff and inter-
polated models are not significantly different from the best model in the literature
either. For high ambiguity words, backoff and interpolation perform significantly
better than the best Altavista model. The models based on BNC and Altavista
counts, as well as the models based on their combination, significantly outperform
the baseline. This holds for both the high and low ambiguity data sets.

ACM Transactions on Speech and Language Processing, Vol. 2, No. 1, February 2005.
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4. CONTEXT-SENSITIVE SPELLING CORRECTION

Context-sensitive spelling correction is the task of correcting spelling errors that
result in valid words. Such a spelling error is illustrated in (3) where principal was
typed when principle was intended.

(3) Introduction of the dialogue principal proved strikingly effective.

Context-sensitive spelling correction can be viewed as a generation task, since it
consists of choosing between alternative surface realizations of a word. This choice is
typically modeled by confusion sets such as {principal, principle} or {then, than}
under the assumption that each word in the set could be mistakenly typed when
another word in the set was intended. The task is to infer which word in a confusion
set is the correct one in a given context. This choice can be either syntactic (as for
{then, than}) or semantic (as for {principal, principle}).

A number of machine learning methods have been proposed for context-sensitive
spelling correction. These include a variety of Bayesian classifiers [Golding 1995;
Golding and Schabes 1996], decision lists [Golding 1995] transformation-based
learning [Mangu and Brill 1997], Latent Semantic Analysis (LSA) [Jones and Mar-
tin 1997], multiplicative weight update algorithms [Golding and Roth 1999], and
augmented mixture models [Cucerzan and Yarowsky 2002]. Despite their differ-
ences, most approaches use two types of features: context words and collocations.
Context word features record the presence of a word within a fixed window around
the target word (bag of words); collocational features capture the syntactic envi-
ronment of the target word and are usually represented by a small number of words
and/or part-of-speech tags to the left or right of the target word.

The results obtained by a variety of classification methods are given in Table VII.
All methods use either the full set or a subset of 18 confusion sets originally gathered
by Golding [1995]. Most methods are trained and tested on the Brown corpus, using
80% for training and 20% for testing.10

We devised a simple, unsupervised method for performing spelling correction us-
ing web counts. The method takes into account collocational features, i.e., words
that are adjacent to the target word. For each word in the confusion set, we used
the web to estimate how frequently it co-occurs with a word or a pair of words
immediately to its left or right. Disambiguation is then performed by selecting the
word in the confusion set with the highest co-occurrence frequency or probability.
The web counts were retrieved using literal queries (see Section 2.1). Ties were
resolved by defaulting to the word with the highest unigram frequency in the con-
fusion set. The web models were compared to their corresponding BNC models.
BNC and web models were further combined using interpolation and backoff, as
explained in Section 2.5 (and also Section 3).

Table VI shows the types of collocations we considered and their corresponding
accuracy. The baseline (f(t)) in Table VI was obtained by always choosing the most
frequent unigram in the confusion set. We used the same test set (2056 tokens from
the Brown corpus) and confusion sets as Golding and Schabes [1996], Mangu and

10An exception is Golding [1995], who uses the entire Brown corpus for training (1M words) and

three quarters of the Wall Street Journal corpus [Marcus et al. 1993] for testing.
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Model Altavista BNC Interpol Backoff

f(t) 74.79 71.78 – –

f(w1, t) 86.13 83.29 86.48 87.54

f(t, w1) 82.36 81.70# 83.67 82.99

f(w1, t, w2) 89.35# 78.14 89.57# 89.35#

f(w1, w2, t) 89.24 74.72 88.26 87.38

f(t, w2, w2) 83.71 73.46 84.36 83.68

f(w1, t)/f(t) 84.44 78.61 83.94 82.33

f(t, w1)/f(t) 75.68 80.19 80.85 80.05

f(w1, t, w2)/f(t) 86.07 76.64 85.59 85.88

f(w1, w2, t)/f(t) 85.38 74.51 86.22 85.70
f(t, w2, w1)/f(t) 81.79 72.47 82.23 82.57

f(w1, t, w2)/f(w1, t) 78.02 74.41 78.03 80.16

f(w1, t, w2)/f(t, w2) 81.78 75.88 82.07 84.69

f(w1, w2, t)/f(w2, t) 71.40 69.61 74.74 78.57

f(t, w1, w2)/f(t, w1) 74.68 70.31 71.99 75.48

Table VI. Performance of Altavista, BNC, interpolated, and backoff models for context-sensitive
spelling correction (data from Cucerzan and Yarowsky 2002)

Model Accuracy

Baseline 71.25∗‡$

Golding [1995] 81.406 ∗†‡$
Best BNC 81.70∗†‡$
Jones and Martin [1997] 84.266 ∗†‡$
Best Backoff 89.35∗†‡6 $

Best Altavista 89.35∗†‡
Best Interpol 89.57∗†‡6 $
Golding and Schabes [1996] 89.82∗†‡6 $
Cucerzan and Yarowsky [2002] 92.20∗†‡$

Mangu and Brill [1997] 92.79∗†6 ‡$
Golding and Roth [1999] 94.23∗†$

Table VII. Performance comparison with the literature for context-sensitive spelling correction
(Baseline: select most frequent word in confusion set)

Brill [1997], and Cucerzan and Yarowsky [2002]. A comparison with the literature
is given in Table VII.

The best result (89.35%) for the web-based approach is obtained with a context
of one word to the left and one word to the right of the target word (f(w1, t, w2),
see Table VI). The BNC-based models perform consistently worse than the web-
based models with the exception of f(t, w1)/t; the best Altavista model performs
significantly better than the best BNC model. Table VII shows that both the best
Altavista model and the best BNC model outperform their respective baselines. A
comparison with the literature reveals that the best Altavista model significantly
outperforms Golding [1995], Jones and Martin [1997] and yields results compara-
ble to Golding and Schabes’s [1996]. The backoff and interpolation models fail to
significantly outperform the best Altavista model.

The highest accuracy on the task is achieved by the class of multiplicative weight-
update algorithms such as Winnow [Golding and Roth 1999]. Both the best BNC
model and the best Altavista model perform significantly worse than this model.
Note that Golding and Roth [1999] use algorithms that can handle large numbers of
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Model Altavista BNC Interpol Backoff

f(a1, a2) : f(a2, a1) 89.20# 76.40# 91.20# 91.40#

f(a1, a2)/f(a2) : f(a2, a1)/f(a1) 80.80 75.80 96.60 86.80

f(a1, a2)/f(a1) : f(a2, a1)/f(a2) 79.40 75.80 87.20 87.40

Table VIII. Performance of Altavista, BNC, interpolated, and backoff models for adjective ordering

(data from Malouf 2000)

features and are robust to noise. Our method uses a very small feature set, it relies
only on co-occurrence frequencies and does not have access to POS information
(the latter has been shown to have an improvement on confusion sets whose words
belong to different parts of speech). An advantage of our method is that it can
be used for a large number of confusion sets without relying on the availability of
training data.

5. ORDERING OF PRENOMINAL ADJECTIVES

The ordering of prenominal modifiers is important for natural language generation
systems where the text must be both fluent and grammatical. For example, the
sequence big fat Greek wedding is perfectly acceptable, whereas fat Greek big wed-
ding sounds odd. The ordering of prenominal adjectives has sparked a great deal
of theoretical debate (see Shaw and Hatzivassiloglou 1999 for an overview) and ef-
forts have concentrated on defining rules based on semantic criteria that account
for different orders (e.g., age ≺ color, value ≺ dimension).

Data intensive approaches to the ordering problem rely on corpora for gathering
evidence for the likelihood of different orders. They rest on the hypothesis that
the relative order of premodifiers is fixed, and independent of context and the noun
being modified. The simplest strategy is what Shaw and Hatzivassiloglou [1999] call
direct evidence. Given an adjective pair {a, b}, they count how many times 〈a, b〉
and 〈b, a〉 appear in the corpus and choose the pair with the highest frequency.

Unfortunately the direct evidence method performs poorly when a given order is
unseen in the training data. To compensate for this, Shaw and Hatzivassiloglou
[1999] propose to compute the transitive closure of the ordering relation: if
a ≺ c and c ≺ b, then a ≺ b. Malouf [2000] reduces adjective ordering to the
well-known problem of estimating n-gram probabilities and proposes a back-off bi-
gram model of adjective pairs for choosing among alternative orders (P (〈a, b〉|{a, b})
vs. P (〈b, a〉|{a, b})). He also uses positional probabilities as a means of estimating
how likely it is for a given adjective a to appear first in a sequence by looking
at each pair in the training data that contains the adjective a and recording its
position. Finally, he frames the adjective ordering problem as a classification task
and uses memory-based learning for inferring an appropriate order. Morphological
and semantic similarities among different adjective orders are expressed using a
feature-vector representation. Each adjective pair ab is encoded as a vector of 16
features (the last eight characters of a and the last eight characters of b) and a class
(〈a, b〉 or 〈b, a〉).

Malouf [2000] extracted 263,838 individual pairs of adjectives from the BNC
which he randomly partitioned into test (10%) and training data (90%) and evalu-
ated all the above methods for ordering prenominal adjectives. His results showed
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Model Accuracy

Baseline 78.286 ∗‡$

Best BNC 76.406 †‡$

Best Altavista 89.20∗†‡

Best Interpol 91.20∗†6 ‡6 $

Best Backoff 91.40∗†6 ‡6 $

Malouf [2000] 91.80∗†$

Table IX. Performance comparison with the literature for the ordering of prenominal modifiers

(Baseline: taken from Malouf [2000]; selects most frequent adjective order in the BNC)

that a memory-based classifier that uses morphological information as well as po-
sitional probabilities as features outperforms all other methods.

For the ordering task we restricted ourselves to the direct evidence strategy which
simply chooses the adjective order with the highest frequency or probability (see
Table VIII). Web counts were obtained by submitting literal queries to Altavista
(see Section 2.1). We used the same 263,838 adjective pairs that [Malouf 2000]
extracted from the BNC. These were randomly partitioned into a training (90%)
and test corpus (10%). The test corpus contained 26,271 adjective pairs. Given
that submitting 4 · 26, 271 queries to Altavista would be fairly time-consuming, a
random sample of 1000 sequences was obtained from the test corpus and the web
frequencies of these pairs were retrieved.

Table VIII shows the performance of direct evidence vs. conditional probability
models. The best BNC, Altavista, backoff, and interpolated models are compared
against Malouf [2000] in Table IX. We find that direct evidence models generally
perform better than conditional models. The best Altavista model significantly
outperforms the baseline11 (reported by Malouf) and the best BNC model; its
performance is significantly worse than the best model reported in the literature.
The backoff and interpolated models obtain performances that are not significantly
different from the best model proposed by Malouf [2000], a supervised method using
positional probability estimates from the BNC and morphological variants.

6. ARTICLE GENERATION

Non-native speakers of English often have difficulties with article selection
(e.g., the, a) especially if their native language is a language that lacks articles such
as Japanese or Russian. Common mistakes include dropping articles altogether or
using a or an with plural or uncountable nouns (e.g., a students, a research). Simi-
lar mistakes in article choice occur in automatically generated texts that form the
output of machine translation or summarization systems, especially if the latter
include a sentence regeneration component.

Aiming to improve the quality of the text produced by a Japanese-English ma-
chine translation system, Knight and Chander [1994] construct an automatic poste-
ditor for inserting articles into English text. They cast article selection as a binary
classification problem and use decision trees to learn whether to generate the or

11Malouf’s [2000] baseline is the direct evidence model (f(a1, a2) : f(a2, a1)) estimated on the

BNC; it varies slightly from our best BNC model since it is computed on a different training/test

set split.
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a/an. The decision trees are trained on a database of 400,000 NP instances derived
from the Wall Street Journal, using a variety of lexical (e.g., words before or after
the article), syntactic (e.g., parts-of-speech), and semantic (e.g., tense) features.
During testing, the postediting process is simulated by removing the articles from
texts with grammatical article usage; the decision trees re-insert articles and the
resulting text is compared to the original. By constructing decision trees for the
most frequent nouns in their data set and guessing the for the rest, Knight and
Chander [1994] achieve an overall accuracy of 78% (see Table XI).

Knight and Chander [1994] also performed experiments with humans in order
to estimate an upper bound on the article generation task. The humans mimicked
the decision trees: they were given English text without articles and were asked to
re-insert them. When given access to the context surrounding the NP in question,
the humans achieved accuracies between 94% and 96% (see Table XI). With some
context (i.e., two words to the left of the missing article and two words to the right
of the head noun), human performance was between 83% to 88%. With limited
context (i.e., the head noun following the article and its premodifiers), humans
achieved an accuracy between 79% and 80%.

Knight and Chander’s [1994] approach was further extended by Minnen et al.
[2000] and Lee [2004] who learn to predict whether to generate the, a/an, or no
article. Using memory-based learning and a feature set larger than that of Knight
and Chander [1994], including grammatical functions (e.g., subject, object) and
semantic roles (e.g., location, manner), Minnen et al. [2000] achieve an accuracy of
83.6%. Lee [2004] reports an accuracy of 87.7% using a maximum entropy learner
and features similar to those employed by Minnen et al. [2000] (see Table XI).

We attempted the article generation task using unsupervised models which were
evaluated on Lee’s [2004] test data. The latter was generated from section 23 of
the Penn treebank. For our simplest model, we estimate how frequently each noun
phrase in the test data co-occurs with the, a/an, or nothing, and default to the
choice with the highest frequency (f(art,NP)). We also devised models that take
into account one or two words to the left of the unknown article and the core noun
phrase (f(c1, art,NP) and f(c2, c1, art,NP)). The web counts were retrieved using
literal queries (see Section 2.1). Table XI shows the models we considered and their
corresponding accuracy. The baseline in Table XI was obtained by choosing the
most frequent class (i.e., no article) in the test data.12

The best Google model achieves 91.20% on the test data and takes two con-
text words into account (f(c2, c1, art,NP)). On the BNC, the model that takes
one context word into account performs best (f(c1, art,NP)). The Google model
significantly outperforms the BNC model as well as the best model in the literature
(Lee’s [2004] maximum entropy model). The interpolated and backoff models yield
results similar to the best Google model but fail to significantly outperform it.

Knight and Chander [1994] obtained upper bounds on the article generation task
by asking humans to decide whether the unknown article is the or a/an. To compare
with these upper bounds, we tested the performance of our model on this simpler
task by excluding from our test data all instances where the head noun was not

12For this task, we used Google instead of Altavista counts, due to the fact that Altavista had

changed its database, see Section 2.1 for details.
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Model Google BNC Interpol Backoff

Baseline 69.40 69.40 69.40 69.40

f(art,NP) 76.20 73.60 78.60 78.70

f(c1, art,NP) 87.30 74.10# 87.40 87.20

f(c2, c1, art,NP) 91.20# 70.50 91.20# 91.10#

f(c1, art,NP)/f(art,NP) 61.10 68.40 68.40 66.40

f(c2, c1, art,NP)/f(c1, art,NP) 79.30 70.40 81.70 81.70

Table X. Performance of Altavista, BNC, interpolated, and backoff models for article generation

(data from Lee 2004)

Model Accuracy

Baseline 69.40 ∗‡$

Best BNC 74.10 †‡$
Lee [2004] 87.70 ∗†$
Best Backoff 91.10 ∗†‡6 $
Best Google 91.20 ∗†‡

Best Interpol 91.20 ∗†‡6 $

Table XI. Performance comparison with the literature for article generation (Baseline: always
selects no article, the most frequent class in Lee’s [2004] data set)

preceded by an article. The best Google model reached an accuracy of 95.51% (over
the most frequent class baseline which achieved 68.57%). This compares favorably
with the 95–96% upper bound cited by Knight and Chander [1994].

7. BRACKETING OF COMPOUND NOUNS

The first analysis task we consider is the syntactic disambiguation of compound
nouns, which has received a fair amount of attention in the NLP literature [Puste-
jovsky et al. 1993; Resnik 1993; Lauer 1995]. The task can be summarized as follows:
given a three word compound n1 n2 n3, determine the correct binary bracketing of
the word sequence (see (4) for an example).

(4) a. [[backup compiler] disk]
b. [backup [compiler disk]]

Previous approaches typically compare different bracketings and choose the most
likely one. The adjacency model compares [n1 n2] against [n2 n3] and adopts a
right branching analysis if [n2 n3] is more likely than [n1 n2]. The dependency

model compares [n1 n2] against [n1 n3] and adopts a right branching analysis if
[n1 n3] is more likely than [n1 n2].

The simplest model of compound noun disambiguation compares the frequencies
of the two competing analyses and opts for the most frequent one [Pustejovsky
et al. 1993]. Lauer [1995] proposes an unsupervised method for estimating the fre-
quencies of the competing bracketings based on a taxonomy or a thesaurus. He uses
a probability ratio to compare the probability of the left-branching analysis to that
of the right-branching (see (5) for the dependency model and (6) for the adjacency

ACM Transactions on Speech and Language Processing, Vol. 2, No. 1, February 2005.



Web-based Models for NLP · 17

Model Altavista BNC Interpol Backoff

f(n1, n2) : f(n2, n3) 75.40 69.67 75.40 0.7540

f(n1, n2) : f(n1, n3) 78.68# 76.22# 77.04# 77.04#

f(n1, n2)/f(n1) : f(n2, n3)/f(n2) 70.49 63.11 77.04 74.59

f(n1, n2)/f(n2) : f(n2, n3)/f(n3) 73.77 70.49 66.39 68.85

f(n1, n2)/f(n2) : f(n1, n3)/f(n3) 79.50 77.04 81.14# 77.04

Table XII. Performance of Altavista, BNC, interpolated, and backoff models for compound brack-

eting (data from Lauer 1995)

model).

Rdep =

∑
ti∈cats(wi)

P (t1 → t2)P (t2 → t3)

∑
ti∈cats(wi)

P (t1 → t3)P (t2 → t3)
(5)

Radj =

∑
ti∈cats(wi)

P (t1 → t2)

∑
ti∈cats(wi)

P (t2 → t3)
(6)

Here t1, t2 and t3 are conceptual categories in the taxonomy or thesaurus, and the
nouns w1 . . . wi are members of these categories. The estimation of probabilities
over concepts (rather than words) reduces the number of model parameters and
effectively decreases the amount of training data required. The probability P (t1 →
t2) denotes the modification of a category t2 by a category t1.

Lauer [1995] evaluated both the adjacency and dependency models on 244 com-
pounds extracted from Grolier’s encyclopedia, a corpus of 8 million words. Fre-
quencies for the two models were obtained from the same corpus and from Roget’s
thesaurus (version 1911) by counting pairs of nouns that are either strictly adja-
cent or co-occur within a window of a fixed size (e.g., two, three, fifty, or hundred
words). The majority of the bracketings in the test set were left-branching, yielding
a baseline of 66.80% (see Table XIII). Lauer’s best results (77.50%) were obtained
with the dependency model and a training scheme which takes strictly adjacent
nouns into account. Performance increased further by 3.2% when POS tags were
taken into account. The results for this tuned model are also given in Table XIII.
Finally, Lauer conducted an experiment with human judges to assess the upper
bound for the bracketing task. An average accuracy of 81.50% was obtained.

We replicated Lauer’s [1995] results for compound noun bracketing using the
same test set. We compared the performance of the adjacency and dependency
models (see (5) and (6)), but instead of relying on a corpus and a thesaurus, we
estimated the relevant probabilities using web counts. The latter were obtained
using inflected queries (see Section 2.1). Ties were resolved by defaulting to the
most frequent analysis (i.e., left-branching). To gauge the performance of the web-
based models we compared them against their BNC-based alternatives; we also
explored whether the combination of web and BNC counts yields better results
than the individual models (see Table XII). We compare our results against the
literature in Table XIII.

The performance of the best Altavista model was not significantly higher than
that of the best BNC model (see Table XIII) even though it significantly outper-

ACM Transactions on Speech and Language Processing, Vol. 2, No. 1, February 2005.



18 · M. Lapata and F. Keller

Model Accuracy

Baseline 66.806 ∗‡$

Lauer [1995]: adjacency 68.906 ∗6 †‡6 $

Best BNC 76.226 †6 ‡6 $

Best Backoff 77.046 ∗6 †6 ‡6 $

Lauer [1995]: dependency 77.506 ∗†6 ‡6 $

Best Altavista 78.686 ∗†6 ‡

Lauer [1995]: tuned 80.706 ∗†6 $

Best Interpol 81.146 ∗†6 ‡6 $

Upper bound 81.506 ∗†6 ‡6 $

Table XIII. Performance comparison with the literature for compound bracketing (Baseline: always

selects the most frequent analysis (i.e., left branching) in Lauer’s [1995] data set)

formed the baseline. Both the best BNC and Altavista models were not significantly
different from the best model in the literature (Lauer’s tuned model). Hence our
simple unsupervised models achieve the same performance as Lauer without re-
course to a predefined taxonomy or a thesaurus. As far as the weakly supervised
models are concerned, the backoff’s performance is disappointing, failing to outper-
form the baseline. The interpolation model performs slightly better than Lauer’s
tuned model (i.e., 0.44%); however the difference is not statistically significant.
Neither the backoff nor the interpolated model significantly outperform the best
Altavista model.

8. INTERPRETATION OF COMPOUND NOUNS

The second analysis task we consider is the semantic interpretation of compound
nouns. Most previous approaches to this problem have focused on the interpretation
of two word compounds whose nouns are related via a basic set of semantic relations
(e.g., cause relates onion tears, for relates pet spray). The majority of proposals
are symbolic and therefore limited to a specific domain due to the large effort
involved in hand-coding semantic information (see Lauer 1995 for an extensive
overview).

Lauer [1995] is the first to propose and evaluate an unsupervised probabilistic
model of compound noun interpretation for domain independent text. By recast-
ing the interpretation problem in terms of paraphrasing, Lauer assumes that the
semantic relations of compound heads and modifiers can be expressed via prepo-
sitions that (in contrast to abstract semantic relations) can be found in a corpus.
For example, in order to interpret war story, one needs to find in a corpus related
paraphrases: story about the war, story of the war, story in the war, etc. Lauer uses
eight prepositions for the paraphrasing task (of, for, in, at, on, from, with, about).
A simple model of compound noun paraphrasing is shown in (7):

p∗ = arg max
p

P (p|n1, n2) (7)

Lauer [1995] points out that the above model contains one parameter for every
triple 〈p, n1, n2〉, and as a result hundreds of millions of training instances would
be necessary. As an alternative to (7), he proposes the model in (8) which combines
the probability of the modifier given a certain preposition with the probability of
the head given the same preposition, and assumes that these two probabilities are
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Model Altavista BNC Interpol Backoff

f(n1, p)f(p, n2) 50.71# 26.42# 50.71# 50.71#

f(n1, p, n2) 55.71# 10.71 55.71# 55.71#

f(n1, p)f(p, n2)/f(p) 47.14 32.14 49.28 47.14

f(n1, p, n2)/f(p) 55.00 08.57 55.00 55.00

Table XIV. Performance of Altavista, BNC, interpolated, and backoff models for compound in-

terpretation (data from Lauer 1995)

Model Accuracy

Best BNC 26.426 †‡$

Lauer [1995]: concept-based 28.006 ∗6 †‡$

Baseline 33.006 ∗6 ‡$

Lauer [1995]: word-based 40.00*6 †$
Best Altavista 55.71∗†‡

Best Interpol 55.71∗†‡6 $
Best Backoff 55.71∗†‡6 $

Table XV. Performance comparison with the literature for compound interpretation (Baseline:
always selects of, the most frequent interpretation in Lauer’s [1995] data set)

independent.

p∗ = arg max
p

∑

t1 ∈ cats(n1)
t2 ∈ cats(n2)

P (t1|p)P (t2|p) (8)

Here, t1 and t2 represent concepts in Roget’s thesaurus. Lauer [1995] also experi-
mented with a lexicalized version of (8) where probabilities are calculated on the
basis of word (rather than concept) frequencies which Lauer obtained from Grolier’s
encyclopedia heuristically via pattern matching.

Lauer [1995] tested the model in (8) on 282 compounds that he selected randomly
from Grolier’s encyclopedia and annotated with their paraphrasing prepositions.
The preposition of accounted for 33% of the paraphrases in this data set (see
Baseline in Table XV). The concept-based model (see (8)) achieved an accuracy
of 28% on this test set, whereas its lexicalized version reached an accuracy of 40%
(see Table XV).

We attempted the interpretation task with the lexicalized version of the bigram
model (see (8)), but also tried the more data intensive trigram model (see (7)), again
in its lexicalized form. Furthermore, we experimented with several conditional and
unconditional variants of (8) and (7) and weakly supervised models (i.e., backoff
and interpolation). Co-occurrence frequencies were estimated from the web using
inflected queries (see Section 2.1). Determiners were inserted before nouns resulting
in queries of the type story/stories about and about the/a/0 war/wars for the
compound war story.

As shown in Table XIV, the best performance was obtained using the web-based
trigram model (f(n1, p, n2)); this result was matched by the backoff and interpo-
lation models.13 Comparison with the literature in Table XV reveals that the best
Altavista model significantly outperformed both the baseline and the best model

13The models f(n1, p)f(n2, p) and f(n1, p, n2) obtained identical accuracies on the development
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Altavista BNC Interpol Backoff

Model Count Uncount Count Uncount Count Uncount Count Uncount

f(n) 86.94 90.53 87.69# 90.13# 87.69 90.13 87.69 90.30

f(det , n) 88.62# 91.53# 50.22 50.80 88.59# 91.42# 88.52# 91.48#

Table XVI. Performance of Altavista, BNC, interpolated, and backoff models for noun countability

detection (data from Baldwin and Bond 2003)

in the literature (Lauer’s word-based model). The BNC model, on the other hand,
achieved a performance that is not significantly different from the baseline, and
significantly worse than Lauer’s best model.

9. NOUN COUNTABILITY DETECTION

The next analysis task that we consider is the problem of determining the count-
ability of nouns. Countability is the semantic property that specifies whether a
noun can occur in singular and plural forms, and affects the range of permissible
modifiers. In English, nouns are typically either countable (e.g., one dog, two dogs)
or uncountable (e.g., some peace, *one peace, *two peaces).

Baldwin and Bond [2003] propose a method for automatically learning the count-
ability of English nouns from the BNC. They obtain information about noun
countability by merging lexical entries from COMLEX [Grishman et al. 1994]
and the ALTJ/E Japanese-to-English semantic transfer dictionary [Ikehara et al.
1991]. Words are classified into four classes: countable, uncountable, bipartite
(e.g., trousers), and plural only (e.g., goods). A memory-based classifier is used
to learn the four-way distinction on the basis of several linguistically motivated
features such as: number of the head noun, number of the modifier, subject-verb
agreement, plural determiners.

We devised unsupervised models for the countability learning task and evaluated
their performance on Baldwin and Bond’s [2003] test data. We concentrated solely
on countable and uncountable nouns, as they account for the vast majority of
the data. Two models were tested: (a) compare the frequency of the singular and
plural forms of the noun; (b) compare the frequency of determiner-noun pairs that
are characteristic of countable or uncountable nouns; the determiners used were
many for countable and much for uncountable ones.

Unigram and bigram frequencies were estimated from the web using literal
queries. The performance of the BNC and Altavista models on the test set is given
in Table XVI; interpolated and backoff models are also shown. Table XVII compares
our results with state of the art.

The best Altavista model is the det-noun model (f(det , n)), which achieves
88.62% on countable and 91.53% on uncountable nouns. On the BNC, the sim-
ple unigram model performs best. Its performance was not statistically different
from that of the best Altavista model. Note that the det-noun BNC models per-
form poorly, presumably due to data sparseness. Neither the interpolated nor the
backoff model manage to significantly outperform the BNC or the best Altavista

set when using Altavista counts. The same behavior was observed with the backoff and interpo-
lation models. This is why both models are signaled by # in Table XIV, although on the test set

f(n1, p, n2) outperformed f(n1, p)f(n2, p).
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Model Count Uncount

Baseline 74.60∗‡$ 78.30∗‡$

Best BNC 87.69†‡6 $ 90.13†‡$

Best Backoff 88.526 ∗†‡6 $ 91.486 ∗†‡6 $

Best Interpol 88.596 ∗†‡6 $ 91.426 ∗†‡6 $

Best Altavista 88.626 ∗†‡ 91.536 ∗†‡

Baldwin and Bond [2003] 93.90∗† 95.20∗†$

Table XVII. Performance comparison with the literature for noun countability detection (Baseline:

always selects countable, the majority class in Baldwin and Bond’s [2003] data set)

model. Table XVII shows that both the Altavista and BNC models significantly out-
perform the baseline (relative frequency of the majority class on the gold-standard
data). Both models perform significantly worse than the best model in the literature
[Baldwin and Bond 2003]; this is a supervised model that uses many more features
than just singular/plural frequency and det-noun frequency.

10. PP ATTACHMENT DISAMBIGUATION

A pervasive problem in natural language analysis is resolving syntactic attachment
ambiguities. PP attachment ambiguities in particular have received considerable
attention in the NLP literature. The ambiguity is exemplified in (9), where the PP
with pockets can be either attached to the noun shirt (and mean that the shirt has
pockets) or to the verb bought (and mean that the pockets were used to purchase
the shirt).

(9) I bought the shirt with pockets.

Previous work has framed the problem as a classification task where the goal is to
predict either verb or noun attachment, given the head verb v, the head noun n1

of the object of the verb, the preposition p, and optionally, the head noun n2 of
the object of the preposition. Hindle and Rooth [1993] propose a partially super-
vised approach, in which a parser is used to extract 〈v, n1, p〉 tuples from a corpus.
These data are then used to estimate lexical association scores, based on which
attachment decisions are made. Subsequent work has used 〈v, n1, p, n2〉 tuples ex-
tracted from the Penn Treebank to train supervised models including a maximum
entropy model [Ratnaparkhi et al. 1993], a back-off model [Collins and Brooks 1995],
transformation-based [Brill and Resnik 1994], and memory-based learning [Zavrel
et al. 1997]. Unsupervised approaches to PP-attachment have been proposed by
Ratnaparkhi [1998] and Pantel and Ling [2000].

Table XIX compares the performance of the different approaches on Ratnaparkhi
et al.’s [1993] standard data set.14 The latter was obtained from the Penn Treebank
by identifying examples of VPs containing a [V NP PP] sequence. For each such
sequence, the head verb, the first head noun, preposition, and second head noun
were extracted along with the attachment decision (noun or verb). The training/test
set therefore contained solely head words (e.g., the VP [[joined [the board]] [as a
nonexecutive director]] would give the tuple 〈joined,board, as,director〉) and the
majority of previous models rely primarily on head words for disambiguating PP

14Hindle and Rooth’s [1993] original results are not comparable as they used a different test set.
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attachment. Table XIX also includes two baselines (always choose noun attachment;
choose the most likely attachment for a given preposition) and two upper bounds
reported by Ratnaparkhi et al. [1993] (human judgments are based on the head
words or the whole sentence).

Recently, Volk [2001] proposed an unsupervised model based on web-counts to
resolve PP-attachment ambiguities. His approach was tested on German data, and
achieved an accuracy of 73.08%. We applied this approach to a random sample of
1000 tokens from the standard test set for English [Ratnaparkhi et al. 1993]. Three
models were tested. Model 1 uses Hindle and Rooth’s [1993] lexical association
ratio, computed as the probability of the preposition given the first noun divided
by the probability of preposition given the verb:15

R1 =
P (p|n1)

P (p|v)
=

f(n1,p)
f(n1)

f(v,p)
f(v)

(10)

Noun attachment is chosen if this ratio is greater than or equal to one, verb attach-
ment if it is less than one. Model 2 was proposed by Volk [2001]; here the lexical
association is computed as the joint probability of the first noun, the preposition,
and the second noun divided by the joint probability of the verb, the preposition,
and the second noun:

R2 =
P (n1, p, n2)

P (v, p, n2)
=

f(n1, p, n2)

f(v, p, n2)
(11)

Model 3 (again due to Volk 2001) is the same as Model 2, but the probabilities
of the first noun and the verb are included as a way of normalizing the lexical
association ratio:

R3 =
P (p, n2|n1)

P (p, n2|v)
=

f(n1,p,n2)
f(n1)

f(v,p,n2)
f(v)

(12)

We estimated the probabilities of Models 1–3 using web counts, employing literal
queries or inflected queries. As before, the web-based models were also compared to
the BNC, and we additionally experimented with backoff and interpolated models.
Table XVIII gives an overview of the performance of the various models. Note that
inflected queries generally outperformed literal queries both for the web and the
BNC. This is perhaps not surprising given that literal queries are more vulnera-
ble to sparse data. The web-based models are compared against the literature in
Table XIX.

The highest web-based performance is 69.40%, achieved by Model 3 with in-
flected queries. The same model on the BNC obtains an accuracy of 74.40%. The
web-based model is significantly better than the baseline of 56.80% (defaulting to
noun attachment). It reaches the performance of the second baseline (always choos-
ing the most likely attachment for a given preposition). Note, however, that this is
a supervised baseline, as it requires information about the attachment preferences

15Hindle and Rooth’s [1993] original model uses smoothed estimates for the probabilities in (10);

no smoothing is employed in our experiments, since we aim to examine whether web counts can

be used as a substitute for counts that are unseen in a given corpus.
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Model Altavista BNC Interpol Backoff

Inflected queries

f(n1, p)/f(n1) : f(v, p)/f(v) 69.40# 74.40# 69.80# 72.20

f(n1, p, n2) : f(v, p, n2) 67.20 60.00 68.40 68.00

f(n1, p, n2)/f(n1) : f(v, p, n2)/f(v) 72.40 63.40 72.40 72.20

Literal queries

f(n1, p)/f(n1) : f(v, p)/f(v) 0.664 0.704 0.688 0.702#
f(n1, p, n2) : f(v, p, n2) 0.434 0.408 0.436 0.428

f(n1, p, n2)/f(n1) : f(v, p, n2)/f(v) 0.702 0.656 0.700 0.706

Table XVIII. Performance of Altavista, BNC, interpolated, and backoff models for PP attachment

(data from Ratnaparkhi et al. 1993)

Model Accuracy

Always noun attachment 56.90∗‡$
Best Altavista 69.406 ∗†‡

Best Interpol 69.806 ∗†‡6 $
Best Backoff 70.206 ∗†‡6 $
Most likely for each preposition 72.206 ∗†‡6 $

Best BNC 74.40†‡6 $
Ratnaparkhi et al. [1993] 81.60∗†‡$
Hindle and Rooth [1993] 82.10∗†‡$
Brill and Resnik [1994] 84.10∗†‡$
Zavrel et al. [1997] 84.10∗†‡$
Pantel and Ling [2000] 84.30∗†‡$
Collins and Brooks [1995] 84.50∗†‡$

Stetina and Nagao [1997] 88.10∗†$

Average Human (4 head words only) 88.20∗†6 ‡$
Average Human (whole sentence) 93.20∗†‡$

Table XIX. Performance comparison with the literature for PP attachment

of prepositions. The backoff and interpolation models achieve performances compa-
rable to the best Altavista model. However, none of these three models significantly
outperforms the best BNC model.

In general none of the models attempted here compare favorably with previous
approaches in the literature, most of which, including unsupervised ones, rely on the
availability of grammatical information (i.e., POS tags) and syntactic knowledge
(either in the form of parse trees or syntactic chunks) to provide cues for the choice
of the PP attachment site. Stetina and Nagao [1997] even make use of a semantic
dictionary. Neither syntactic nor semantic information is available to our models,
and it is a matter of future work to determine whether the naive models presented
here can be combined with some of the more sophisticated approaches in the face
of data sparseness.

11. DISCUSSION

In this paper we examined whether simple unsupervised web-based models can be
devised for a variety of NLP tasks. The tasks were selected so that they cover both
syntax and semantics, both generation and analysis, and a wider range of n-grams
and parts of speech than have been previously explored. In order to quantify the
effect of the use of web counts on each task, we compared web-based models against
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Task Ling Type Base BNC Lit

MT candidate selection∗ Sem Generation 4 ≡ 4/≡

Spelling correction Syn/Sem Generation 4 4 5

Adjective ordering∗ Sem Generation 4 4 ≡

Article generation Sem Generation 4 4 4

Compound bracketing Syn Analysis 4 ≡ ≡

Compound interpretation Sem Analysis 4 4 4

Countability detection Sem Analysis 4 ≡ 5

PP attachment Syn/Sem Analysis 4 ≡ 5

Table XX. Overview of the performance of the web-based models investigated in this paper

(Ling: linguistic knowledge; Type: type of task; Base: comparison against baseline; BNC: compari-

son against BNC-based model; Lit: comparison against best model in the literature). The symbols

indicate significance (4: significantly better; ≡: not significantly different; 5: significantly worse).

The ∗ indicates that the web-based model used interpolation or backoff).

identical models whose parameters were estimated on the BNC. While the BNC
is a relatively large corpus (100M words), it offers considerably less data than the
web.

We also explored the performance of two models that combine web counts and
corpus counts. The backoff model uses corpus counts, unless they fall below a thresh-
old, in which case the model backs off to web counts. The interpolation model uses
the sum of web counts and corpus counts, with their relative contribution weighted
by an interpolation factor.

A summary of our findings is given in Table XX. The table lists the tasks we
attempted, whether they are semantic or syntactic, and whether they concern the
analysis or generation of natural language. The table also compares the best web-
based model for each task against the baseline, the BNC, and the best model in
the literature, and states whether significantly lower or higher performance was
obtained by the web-based model. Note that in two cases, this comparison is based
on a combined model (using interpolation or backoff), as it outperformed the model
based on web counts alone. These cases are marked with an asterisk.

For all tasks we attempted the web-based models significantly outperform the
baseline. However, generation and analysis tasks seem to behave differently when it
comes to comparing web-based models with BNC-based models and state-of-the-art
models in the literature. We will discuss both types of tasks in turn.

For all generation tasks (with one exception), we found that web-based models
significantly outperform the corpus-based models. An exception is candidate selec-
tion for MT, where there was no difference between web-based and corpus-based
models. As for the comparison with the literature, here we obtained a mixed pic-
ture: for spelling correction, web-based models perform worse than the state of the
art, for article generation, they outperform it. For adjective ordering, web-based
models match the state of the art, while for candidate selection, they either match
the state of the art (for high ambiguity items) or outperform it (for low ambiguity
items).

It is not surprising that the web performs better at generation tasks than
the BNC. It has been argued that corpus-based methods can offer ways to ad-
dress knowledge gaps and collocational idiosyncrasies in generation while avoiding
knowledge intensive hand coding [Knight and Hatzivassiloglou 1995; Langkilde and
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Knight 1998]. Since there are many ways of realizing a given semantic content,
the likelihood of a relevant construction is directly related to the size of the cor-
pus from which it is estimated. Our results show that web-scale data can be of
benefit to generation applications that exploit corpus-based knowledge. Our re-
sults are also consistent with Keller and Lapata [2003], who investigate another
generation-related task, viz., the plausibility of predicate argument constructions.
Their findings show that web frequencies provide more accurate estimates of plau-
sibility than BNC frequencies. The reason for this seems to be that the web is much
larger than the BNC (about 1000 times). The large size seems to compensate for
the inadequacies of web data, i.e., for the fact that simple heuristics were used to
obtain web counts, and for the noise caused by tokenization errors, the absence of
punctuation, etc.

Turning now to the analysis tasks in Table XX, we fail to observe an advantage
of the web models over the BNC models (apart from one case). Also, all web-
based models perform worse or equal to the state of the art models reported in
the literature (again with one exception). An explanation for this is that analysis
tasks involve decisions that are not directly observable in the data. For example,
the attachment choice for a PP or the bracketing for a compound noun cannot
be reduced to counting alternatives in a corpus, unless the corpus is explicitly
annotated with syntactic structure. The fact that the web is much larger than the
BNC makes little difference, since neither data source contains the formation that
is important for the tasks at hand. Most approaches in the literature therefore take
advantage of information that goes beyond the words in the corpus: they are trained
on treebanks or on corpora annotated with part-of-speech tags.

It is worth noting that the web models outperform the BNC and the state of the
art in the compound noun interpretation task. Recall that this task was cast by
Lauer [1995] as a generation problem. The meaning of a compound was approxi-
mated by a paraphrase consisting of a preposition co-occurring with the compound
modifier and head (e.g., war story can mean story about the war, story of the war,
story in the war). We can easily look for such paraphrases in a corpus without
any preprocessing (i.e., parsing or POS-tagging). However, since there are many
alternative paraphrases to choose from, it is not surprising that web-based models
significantly outperform models whose parameters are estimated from the BNC or
smaller corpora.

For all generation and analysis tasks we attempted, our web-based models were
compared against state-of-the-art models which are reported in the literature and
are similar in one important aspect. Most of them are supervised models that
have access not only to simple bigram or trigram frequencies, but also to corpus
external linguistic information such as part-of-speech tags, semantic restrictions,
or context. When unsupervised web-based models are compared against supervised
methods that employ a wide variety of features, we observe that having access to
linguistic information makes up for the lack of vast amounts of data. The only
two unsupervised models in the literature are Lauer’s [1995] models of compound
noun bracketing and interpretation. In the case of compound interpretation, Lauer’s
[1995] model is truly unsupervised, and the web-based approach outperforms it. In
the case of compound noun bracketing, Lauer [1995] makes use of Roget’s thesaurus
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in order to alleviate data sparseness, hence his model is not truly unsupervised (and
the web-based model yields the same performance).

Furthermore, this paper also reported experiments on combining web counts
and corpus counts. We showed that a small performance gain can sometimes be
obtained by using interpolation or backoff. For two tasks we found that a combined
model outperforms a straight web model, in the sense that the combined model was
significantly better than the corpus-based model or the model in the literature, while
the straight web model failed to achieve a significant difference (see the asterisks in
Table XX).

To summarize, our results indicate that large data sets such as those obtained
from the web are not the panacea that they are claimed to be (at least implicitly)
by authors such as Grefenstette [1998] and Keller and Lapata [2003]. Rather, in
our opinion, web-based models should be used as a new baseline for NLP tasks.
The web baseline indicates how much can be achieved with a simple, unsupervised
model based on n-grams with access to a huge data set. This baseline is more real-
istic than baselines obtained from standard corpora; it is generally harder to beat,
as our comparisons with the BNC baseline throughout this paper have shown. Note
that for certain tasks, the performance of a web baseline model might actually be
sufficient, so that the effort of constructing a sophisticated supervised model and
annotating the necessary training data can be avoided: recall that for three tasks,
our web-based models outperformed the best model in the literature (for MT can-
didate selection, article generation, and compound interpretation, see Table XX).

12. FUTURE WORK

An important future direction lies in the application and evaluation of web models
across domains. Rather than looking into different tasks, we will concentrate on a
single task and examine whether web counts (and their combination with corpus
counts) yield improvements for different domains (e.g., sports, medicine) and regis-
ters (e.g., speech vs. text). Most modeling work to date has focused on written texts
and the effect of web counts for speech data has not been rigorously quantified (an
exception is language modeling work, e.g., Zhu and Rosenfeld 2001). Furthermore,
the performance of web-based models has been mainly compared against models
trained on established corpora such as the BNC, the Brown corpus, or the Penn
Treebank. It remains to be seen whether web-based models are robust across do-
mains with maximally different vocabularies and stylistic conventions. A related
issue is the degree to which different domains are represented in web data and
whether there is a threshold (in terms of the amount of pages indexed by a search
engine) above which web counts become useful.

Another possibility that needs further investigation is the combination of web-
based models with supervised methods. This can be done with ensemble learning
methods or simply by using web-based frequencies (or probabilities) as features
(in addition to linguistically motivated features) to train supervised classifiers. The
latter approach is taken, for example by Modjeska et al. [2003] who show that an
F-measure increase of 11.4% can be achieved when web-based counts are added
to a set of morphosyntactic features for resolving other-anaphora in a supervised
setting.
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Finally, in this paper we have compared relatively simple web-based models
against their state-of-the-art alternatives by assessing model performance on the
same data sets. A challenge for the future lies in replicating state-of-the-art models
using web-scale data annotated with linguistically rich information such as parts of
speech and syntactic structure. It is probably infeasible to store a snapshot of the
whole web and process it linguistically – estimates regarding the size of the web
not only vary (see Kilgariff and Grefenstette 2003) but are constantly increasing.
However, sampling techniques could provide an alternative. For instance, the pages
returned by a query could be downloaded and processed linguistically; if a query
returns too many hits, then sampling techniques could be used select the most
informative or least similar pages for processing.
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