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Abstract—RAN energy consumption is a major OPEX source
for mobile telecom operators, and 5G is expected to increase
these costs by several folds. Moreover, paradigm-shifting aspects
of the 5G RAN architecture like RAN disaggregation, virtualiza-
tion and cloudification introduce new traffic-dependent resource
management decisions that make the problem of energy-efficient
5G RAN orchestration harder. To address such a challenge, we
present a first comprehensive virtualized RAN (vRAN) system
model aligned with 5G RAN specifications, which embeds realistic
and dynamic models for computational load and energy consump-
tion costs. We then formulate the vRAN energy consumption
optimization as an integer quadratic programming problem,
whose NP-hard nature leads us to develop GreenRAN, a novel,
computationally efficient and distributed solution that leverages
Lagrangian decomposition and simulated annealing. Evaluations
with real-world mobile traffic data for a large metropolitan area
are another novel aspect of this work, and show that our approach
yields energy efficiency gains up to 25% and 42%, over state-of-
the-art and baseline traditional RAN approaches, respectively.

I. Introduction

The telecommunication industry currently consumes 2-3%

of global energy and energy consumption constitutes 20-40%

of the operating expenditure (OPEX) for mobile network

operators [1]. As we head to 5G, the energy consumption

is expected to increase further by 2-3 times due to the

infrastructure growth needed to cope with the mobile data

traffic surge [2], [3]. Over 90% of the operators have expressed

concerns about the rise in energy costs [4]. Base stations

(BSs) and consequently the radio access network (RAN) have

traditionally been the source of major energy consumption in

cellular networks [5]. This is expected to be the case also in

5G systems [1]. Developing RAN solutions that achieve high

energy efficiency is thus crucial towards 5G sustainability.

In light of the above, this paper focuses on the optimization

of energy consumption in the 5G RAN context. The 5G RAN

architecture marks a paradigm shift from earlier generations

of RAN architectures, and presents both opportunities and

challenges from an energy efficiency perspective [6]. Aiming

at greater flexibility, cost reduction and easier evolution, 5G

RAN embraces the concept of virtualized RAN (vRAN) that

combines RAN disaggregation, virtualization and cloudification.

By running RAN functionalities as Virtual Network Functions

(VNFs) over commodity hardware on a (edge) cloud infras-

tructure, it provides resource pooling and multiplexing gains,

and enables coordinated processing [7], [8].

‡X. Foukas was with the University of Edinburgh during this work.

CPM 1

CCPM

CEPM

λt
1

λt 
i

RUs

Multiple Far Edge Sites (ESs)Telco Cloud Site (CS)

RUs

RUs

λt
2

CPM 2

CPM 3

CPM k

EPM 1

EPM 2

EPM 3

EPM 4

EPM j

MH Network

CU 

EPM 5

CU CU 

CU CU CU 

CU CU CU 

CU CU CU 

DU DU

DU DU

DU DU

DU DU

DU DU

DU DU

FH Network

FH Network

FH Network

Latency: 0.05 – 0.5ms

Latency: 2 – 20 ms

Fig. 1. Schematic of a virtualized RAN (vRAN) reflecting the 5G RAN
architecture. A Telco cloud site (CS) consists of a set of Telco Cloud physical
machines (CPMs) that implement the central units (CUs) of different base
stations (BSs). Similarly, each far-edge site (ES) includes multiple far-edge
physical machines (EPMs) that realize distributed units (DUs).

Fig. 1 shows a schematic of the vRAN architecture in

line with the 5G RAN specifications [9]. Base station (BS)

processing in a vRAN is disaggregated into three units: radio

unit (RU) co-located with the antennas and dedicated to PHY

functions; distributed unit (DU) closer to the RU; and a central

unit (CU). A fronthaul (FH) network connects RUs with DUs,

whereas DUs and CUs are connected through a midhaul (MH)

network. CUs and DUs can be hosted either at far-edge sites

(ES), e.g., on premises close to the radio cell sites, or on Telco

cloud sites (CS), e.g., located in Central Offices or operator-

owned local exchange sites. This gives rise to a hierarchical

and multi-tier vRAN architecture [10], [11], with different

latency from the RUs as illustrated in Fig. 1. Distribution of

BS processing between CU and DU and their placement on

the underlying compute servers, which we refer to as physical

machines (PM), is determined by the choice of functional

split [12]. For example, the various 3GPP defined functional

split options for 4G/LTE case are shown in Fig. 2. Depending

on the functional split selected, a range of different RAN

configurations can be realized – all the way from a distributed

RAN (with no function realized at the CS, for latency sensitive

applications) to a fully centralized RAN (all functions at the

CS, for latency insensitive applications), with several hybrid

alternatives in between with functions split between CS and ES.

The problem of minimizing energy consumption in the

vRAN outlined above is markedly different from that in

traditional cellular networks. The problem is more challenging

in the vRAN setting, due to a number of factors, including

the added degrees of freedom in the form of multiple

functional split options, and the interdependent CU and DU



Fig. 2. 3GPP specified RAN functional splits in the downlink direction [13]. Split G onwards to the right typically at RU. Other splits distribute RAN functions
between CU and DU. For example, split B implies that PDCP layer realized at CU and layers between B and G realized at DU.

placement choices at far-edge and Telco cloud sites. Here,

complicating factors abound: (i) there are correlations between

the traffic load of each BS and its overall RAN processing

requirements (and energy consumption) [14], hence RAN

orchestration decisions must be updated over time as the BS

traffic loads vary; (ii) the processing load across all BSs in

the RAN influences the optimal choice of functional splits

and CU/DU placements for each BS, since the overall energy

consumption of a vRAN depends on how processing demands

of different BSs are mapped to PMs at CS/ES; and, (iii) RAN

reorchestration entailing VNFs migration between PMs in the

CS/ES also affect the energy consumption. To the best of our

knowledge, the energy-efficient vRAN orchestration problem

as outlined above has not been tackled in its entirety, and not

at all in large-scale real-world deployment scenarios.

Motivated by the above, we aim at an energy-efficient 5G

RAN orchestration targeting metro-scale scenarios. We consider

the generic vRAN architecture as depicted in Fig. 1 that covers

the full range of 5G RAN configurations. Our system model also

embeds detailed (measurement-based) models for all aspects

pertinent to the problem, including RAN function processing

loads, memory footprints and various energy consumption

costs. In particular, we account for both main energy con-

sumption costs outlined above: (1) the processing-induced

and traffic-dependent energy consumption cost; (2) the energy

consumption overhead of seamless VNF migration [15], [16].

We then formulate the vRAN energy consumption optimization

problem that minimizes the sum of these two costs across

CS and ES sites as an integer quadratic programming (IQP)

problem that finds: (i) an optimal CU-DU functional split

for each BS; (ii) an optimal DU-EPM association; and (iii)

an optimal CU-CPM association. In view of the NP-hard

nature of this optimization problem, we propose a novel

multi-phase decomposition based distributed solution named

GreenRAN. Specifically, GreenRAN leverages Langrangian

Relaxation [17] to decompose the overall energy consumption

optimization problem into multiple sub-problems at the CS and

ES sites, which are then solved via Simulated Annealing [18].

We extensively evaluate the energy efficiency benefits of

GreenRAN over baseline and state of the art approaches such

as those in [14], [19], using data traffic measurements collected

in a production, metropolitan-scale mobile network.

In summary, we make three key contributions:

• The comprehensive nature of our vRAN system model

(§III) sets our work apart from the literature (§II). Compared

to works like [14], we consider a three-level disaggregated

and cloudified RAN that is aligned with 5G specifications

and industry trends [20]. In contrast with [19] and other prior

works, we employ realistic and detailed computational load and

energy consumption models that account for crucial aspects

such as traffic dependence and VNF migration overhead.

• We formulate the problem of vRAN energy consumption

optimization in the aforementioned system model as an IQP

(§III), and propose GreenRAN (§IV), a novel distributed

solution based on Lagrangian decomposition and simulated

annealing that is efficient and scalable.

• In contrast to any other related prior work, we use real-

world mobile network traffic dataset for a large metropolitan

city to conduct evaluations of GreenRAN comparing it with

alternative approaches (§V and §VI). Our results show that

GreenRAN yields energy efficiency gains by up to 25% and

42% compared to the state-of-the-art and traditional distributed

RAN configuration, respectively. They also provide insights on

how edge cloud configurations and MH bandwidth influences

the optimal functional split as well as the processing load

distribution between CU and DU.

II. Related Work

Energy efficiency in a traditional distributed cellular RAN

architecture has been extensively studied [5]. Most of these

works focus on techniques for BS sleep modes (e.g., [21]) that

in some cases rely on traffic prediction to forecast intervals of

low traffic while in others consider extending the coverage of

neighboring BSs through a technique called cell zooming [22].

The follow on work has considered a centralized RAN

(C-RAN) scenario, where only the RF functionality of BSs

stays distributed at remote radio heads (RRHs) while the

rest of the BS functionality performing baseband processing,

i.e., the baseband unit (BBU), is realized centrally, thereby

consolidating processing of multiple BSs. Consequently, unlike

in traditional cellular networks, BSs are physically inter-

dependent as they share part of the infrastructure. When BBUs

are virtualized and realized over a cloud infrastructure, the

same scenario is referred to as cloud RAN. Representative

examples of prior work assuming the above outlined C-RAN

scenario include: [23], where BBU placement across PMs in

the CS is modeled as a bin-packing problem and a simulated

annealing based heuristic is proposed to resolve it; [24], [25],

which improve this system model further by considering

co-location and correlation among RRHs; and [26], which

demonstrates how traffic estimations at different BSs aid in

dynamic switching on/off RRHs. Another recent work in the

C-RAN category is [27], which takes an end-to-end perspective

on energy efficiency (including the core network functions)



and considering activation of PMs, placing and using VNFs

on them, and forwarding traffic between them.

The above described C-RAN scenario, however, reflects

one fixed lowest-level functional split of BSs, between BBUs

and RRHs with very high FH datarate requirements and

consequently very high deployment cost. More recent work

has considered the impact of flexible and dynamic functional

splits [12]. For example, [8] analytically models the compu-

tational resource and power savings with different functional

splits, and shows that 25-30% savings relative to a traditional

distributed RAN can be achieved by leveraging the functional

splits. [19] considers a vRAN model like ours with a three-level

disaggregation of RAN processing across CU, DU and RU, in

line with the 3GPP specifications [9]. Their focus is on jointly

optimizing MH bandwidth consumption and overall system

energy efficiency, whereas we have MH bandwidth consumed

as a constraint. However, more crucially and unlike our work,

[19] adopts an unrealistic traffic-invariant power consumption

model as do all other prior C-RAN works [23]–[25], [27]. Also

unlike our work, none of these above works consider the energy

consumption for seamless migration of VNFs across PMs in

CS/ES. This migration overhead [15], [16] has been shown

to have non-negligible impact on energy consumption in data

center networks [28], [29] but has largely been ignored in the

energy-efficient C-RAN/vRAN literature.

Apt-RAN [14] is a recent work that experimentally shows

the dependence of CU/DU energy consumption on the BS

traffic demand and functional split chosen. However, in contrast

to our work, Apt-RAN does not distinguish between DU and

RU, and instead assumes they both are realized together via a

dedicated PM, thereby overlooking the potential multiplexing

gains with edge clouds through co-location of DUs of different

BSs. Finally, different from the above mentioned works, we

evaluate our proposed solution GreenRAN at metro-scale,

driven by real-world mobile network traffic data.

III. System Model and Problem Formulation

A. Generic Virtualized RAN Model

We consider a 2-tier vRAN model i.e., with two levels of

edge clouds as shown in Fig 1 which consists of a set of BSs

(B), a set of far-edge clouds (referred as edge clouds henceforth

for simplicity) at the far-edge site (E) and a set of Telco clouds

(C). Let F represent the set of 5G RAN functions and S be

the set of functional splits. We adopt 3GPP CU-DU functional

split model where different RAN VNFs are placed either at ES

or at CS [13]. Various RAN functions with the corresponding

functional splits are shown in Fig 2.

Let PE be the set of compute servers or edge PMs (EPMs)

deployed across all far-edge sites and PC be the set of compute

servers deployed across all Telco cloud sites i.e., Telco cloud

PMs (CPMs). Throughout the text, we use indices i, j and k for

BS (and its CU/DU), EPM and CPM respectively. Each edge,

e ∈ E , is connected to Telco cloud, c ∈ C, via a dedicated MH

link. Let Cepm and Ccpm be the processing capacity of EPMs

and CPMs respectively (in Hz), and Cmh,e be the bandwidth

(maximum data transfer capacity) of MH links from edge e ∈ E
to Telco cloud c ∈ C (in Mbps).

Each edge cloud is responsible for the processing of VNFs for

a specific set of mutually exclusive BSs (Fig. 1). Thus, the DU

of a BS can associate with the PMs of only one edge cloud and

its CU with the PMs of only one Telco cloud. A binary matrix

VB×E represents the allowed associations between BSs i ∈ B
and edge cloud e ∈ E . For instance, vi,e = 1 means that DU i

can be placed at any of the EPM of edge cloud e. Similarly, we

use binary matrices WB×PE
and XB×PC

to represent the set

of BSs that can be associated with EPMs (in all edge clouds)

and CPMs (in all Telco clouds), respectively. V, W and X are

the network configuration variables pre-defined by the mobile

network operator to reflect vRAN topological constraints.

B. 5G RAN Function Processing and Functional Splits

Full centralization of RAN functions leads to maximum

energy savings [30], however placing all RAN VNFs in

the Telco cloud, or in core datacenter as envisioned in a

fully centralized cloud RAN, is not always feasible. For

example, lower physical layer (lowPHY) RAN functions such

as FFT, Cyclic Prefix, P/S (from split option G to the right,

Fig. 2) have strict latency constraints as well as incur huge

datarate demand on the limited transport capacity of FH (MH)

network if implemented on DU (CU). These functions are

therefore typically placed at RUs, e.g., as per the latest O-RAN

7.2 functional split specifications [31]. The stringent latency

constraints also apply to higher physical layer (highPHY) and

MAC/RLC functions. In LTE, MAC uses synchronous uplink

HARQ thus imposing a strict round-trip latency budget of

3ms (including processing) [32]. However, with the adoption

of fully asynchronous uplink HARQ in 5G [33], the MAC

latency is no longer a stringent constraint and response time is

determined by the service class of the traffic being served i.e.,

URLLC, eMBB, mMTC [34]. Moreover, the latency tolerance

for the MAC/RLC layer can further increase through the use

of techniques like HARQ prediction considered in the context

of non-ideal fronthauls [35], [36]. All of the above means that

different functions can be served by different compute sites

depending on the deployment scenario. The RAN functions

that we include in our model are presented in Table I along

with representative relative CPU processing load or demand

(dp) [37], [38] and latency requirements [10], [13], [34], [36].

In our vRAN model, we consider the four practical functional

splits listed in Table II, which are responsible for the most

significant changes of load across DU and CU [12], [13], and

are standardized and used in operational networks [39]–[41].

A functional split si,p is performed at BS i if all VNFs above

and including fp are executed at CU while VNFs below fp are

executed at DU. Therefore, for a split si,p ∈ S , CPU processing

load at CU (δp), is equal to the cumulative sum of processing

load of all VNFs above and including fp i.e., δp =
∑

i≥p di.

While our model considers processing load for downlink traffic,

it can be easily extended to uplink scenarios with appropriate

changes to the figures in Table I.



TABLE I
CPU load and latency requirements for various RAN VNFs. CPU load

is expressed as the processing gain of moving a VNF from DU to CU.

RAN VNFs (F ) CPU load (dp) Latency (σp)

f1: highPHY 65% 0.25 — 1 ms

f2: MAC,RLC 15% 0.25 – 30 ms

f3: PDCP, RRC 20% 10 – 50 ms

TABLE II
CU-DU placement of RAN VNFs for different functional splits.

Split p
at BS i

Split Type RAN Functions at
ES ↔ CS

Standard

si,1 G: No split, all at CS ↔ f1, f2, f3 -

si,2 E: highPHY - MAC,RLC f1 ↔ f2, f3 nFAPI

si,3 B: MAC,RLC-PDCP,RRC f1, f2 ↔ f3 F1

si,4 A: No split, all at ES f1, f2, f3 ↔ -

C. Decision Variables

1) DU-EPM association matrix: The placement of DUs

at EPMs at each time step t is represented by the binary

association matrix A
t ∈ {0, 1}|B|×|PE | such that each element

ati,j ∈ A
t represents

ati,j =

{

1, DU of BS i is associated with EPM j,

0, otherwise.
(1)

2) CU-CPM association matrix: The placement of CUs at

CPMs is represented in a similar manner i.e., by the binary

association matrix B
t ∈ {0, 1}|B|×|PC | with each element

bti,k ∈ B
t given by

bti,k =

{

1, CU of BS i is associated with CPM k,

0, otherwise.
(2)

3) CU-DU split matrix: Functional split between CU and

DU of a BS is represented by the binary matrix S
t ∈

{0, 1}|B|×|S| where each element sti,p ∈ S
t represents

sti,p =

{

1, BS i performs functional split p,

0, otherwise.
(3)

We consider that the above variables are decided over time at

intervals or epochs of fixed length (T ) or of dynamically deter-

mined variable length. Either way, we henceforth refer to these

decision points in time as resource reorchestration intervals.

D. Computational Load at Edge and Telco Cloud

Let λ̂t
i and λ

t

i be the peak and average input traffic to the

BS i at time epoch t i.e., during the time interval [t, t + 1).
CPU computation load (i.e., number of CPU cores required

per second) incurred at CU and DU of each BS depends upon

its input traffic demand. Mathematically,1

ltdu,i = λt
i

∑

p∈S

sti,p(δ1 − δp), (4)

ltcu,i = λt
i

∑

p∈S

sti,pδp. (5)

The peak, l̂tepm,j , and average, l
t

epm,j , computation load of

an EPM j at time epoch t are the sum of the computation load

of their associated DUs as per matrix A
t, hence

ltepm,j =
∑

i∈B

ati,j l
t
du,i, ∀j ∈ PE , ati,j ∈ A

t. (6)

1The peak and average load are computed in similar manner, hence we use
a neutral notation in Eq. (4) and (5) to denote DU and CU peak/average load.

Similarly, the load at CPM k is given as the sum of the

computation load of its associated CUs, as

ltcpm,k =
∑

i∈B

bti,kl
t
cu,i, ∀k ∈ PC , bti,k ∈ B

t. (7)

E. Energy Consumption Related to Processing

Our energy consumption model builds on the earlier work

from the well-known EARTH project [42] and adapts it to

the vRAN setting, accounting for various aspects of energy

costs such as static and traffic-dependent dynamic energy

consumption [43]. More specifically, the energy consumed

by an EPM at epoch t over a period of length T is a function

of average CPU load (l) and can be modeled as2:

E
p
epm,j(t) =

(

I(
l
t

epm,j>0
)Pepm + P ′

epm ·
l
t

epm,j

Cepm

)

T, (8)

where Pepm is the static power (in Watts) of EPM and accounts

for fixed costs of running a server (cooling, power amplification,

network switches etc.) for the duration it is kept switched-on.

P ′
epm (also in Watts) is the dynamic (i.e., load dependent) power

consumption that increases linearly with the machine’s load.

I(
l
t

epm,j>0
) is the indicator variable which takes value 1 when

the condition l
t

epm,j > 0 is True (representing EPM j is busy)

or 0 when EPM j is idle.

Similarly, the energy consumption of a CPM k is given as:

E
p
cpm,k(t) =

(

I(
l
t

cpm,k>0
)Pcpm + P ′

cpm ·
l
t

cpm,k

Ccpm

)

T, (9)

where Pcpm, P ′
cpm are static and dynamic power consumptions.

F. Energy Consumption Related to Function Migration

To ensure reliable and uninterrupted service delivery during

reorchestration, live VM migration needs to be employed.

However, this incurs additional energy consumption due to an

increased amount of memory and processing information being

transferred between the two PMs in question. This additional

network transfer consumes additional storage, processing as

well as networking resources [44]. We refer to the energy

consumption cost due to the above as the migration cost [45].

We model this cost based on experimentally derived power

consumption modelling in [46]. Specifically, the migration cost

of DU and CU at BS i, respectively, is modelled as:

Em
du,i(t) = αV m

du,i + β (10)

Em
cu,i(t) = αV m

cu,i + β (11)

where V m
du,i (V m

cu,i) is the volume of data transfer incurred

while migrating DU (CU) i. α and β are the coefficients that

map network traffic to energy consumption [46]. Migration

volume depends upon the split p and can be calculated from

the cumulative memory footprint of VNFs (ωp) (see Table III).

Authors in [15] report that actual volume of data transferred

between two VMs for a VNF p, ωp, increases by a factor τ .

2Note that Ep(t) depends on the average load during interval T , as the
power changes with load. However, CPU resources for CU/DU are reserved
based on the peak load during T in order to avoid service disruption.



This is because some memory pages are transferred multiple

times as they become dirty during the migration period. The

total migration cost at EPM j can therefore be given as,

Em
epm,j(t) =

(

∑

i∈B

(ati,j − at−1
i,j )2ati,jE

m
du,i(t)

)

(12)

where (ati,j − at−1
i,j )2 tell us that association of DU i changed

w.r.t EPM j from the previous interval. Product with ati,j
implies that DU i moved to EPM j from some other EPM.

Since at−1
i,j takes binary values, Eq. (12) can be rewritten as,

Em
epm,j(t) =

(

∑

i∈B

(1− at−1
i,j )ati,jE

m
du,i(t)

)

(13)

Similarly, total migration cost at CPM k is,

Em
cpm,k(t) =

(

∑

i∈B

(1− bt−1
i,k )bti,kE

m
cu,i(t)

)

(14)

It is worth noting that we consider above the migration cost

with respect to one previous interval, however a better decision

may be taken by accounting for the traffic load over multiple

epochs. To explore this opportunity, we later extend our model

by adapting the length of the resource reorchestration interval

to the fluctuations in the network traffic (§IV-E).

G. Overall Optimization Framework

Our aim is to minimize the processing as well as resource

orchestration energy consumption at each time epoch t by

finding the optimal DU-EPM association matrix (At), CU-

CPM association matrix (Bt) and the optimal functional split

matrix (St). Formally,

min
At,Bt,St

Etot(t) = min
At,Bt,St

(

EES(t) + ECS(t)
)

(15)

= min
At,Bt,St

∑

j∈PE

(

E
p
epm,j + Em

epm,j

)

+
∑

k∈PC

(

E
p
cpm,k + Em

cpm,k

)

subject to
ati,j ≤ wi,j , ∀i ∈ B, j ∈ PE (16)

bti,k ≤ xi,k, ∀i ∈ B, k ∈ PC (17)

l̂tepm,j ≤ Cepm,j , ∀j ∈ PE (18)

l̂tcpm,k ≤ Ccpm,k, ∀k ∈ PC (19)
∑

i∈B

∑

p∈S

vi,es
t
i,pµ

t
i,p ≤ Cmh,e, ∀e ∈ E (20)

∑

j∈PE

ati,j =
∑

k∈PC

bti,k = 1, ∀i ∈ B (21)

∑

p∈S

sti,p = 1, ∀i ∈ B. (22)

Constraints (16) and (17) restrict the framework to only

associate a BS with those EPMs and CPMs where the

connection to BS is possible given by matrices W and X.

Constraints (18) and (19) mean that the loads on any physical

machine (EPM or CPM) should not exceed its processing

capacity, Cepm or Ccpm, respectively. Constraint (20) means

that data transferred over MH link (µt
i,p) from all BSs associated

with edge e should not exceed the maximum bandwidth of

Fig. 3. Visualization of inter-dependence between association and split
variables, and decomposition during different phases of heuristic.

MH link, Cmh,e. Constraint (21) means that CU and DU of

each BS, i (represented by row i in matrices A
t and B

t) can

be placed at only one EPM and CPM, respectively, during an

orchestration interval. Constraint (22) commends that a BS can

only use one functional split in one time interval. Note that

the focus of our study is on the energy gains, hence we do not

consider CoMP-related benefits of centralization, which could

be included as an additional constraint into our formulation.

Moreover, the formulation assumes an eMBB use case only;

for other service classes, diverse latency-related constraints

need to be added. The constrained optimization problem in

Eq. (15)–(22) is an IQP, which is NP-hard. To solve it in a

computationally efficient and near-optimal way, we propose a

distributed algorithm, introduced next.

IV. GreenRAN: A Multi-phase Distributed Solution

The CU/DU placement on the cloud is equivalent to a bin-

packing problem and is known to be NP hard [23]. With

the vRAN model involving distributed far-edge and Telco

clouds used based on functional split employed, we face

placement decisions at both ES and CS. The centralized

problem is equivalent to solving for local optima among |S||B|

bin-packing problems making it computationally intractable

as the network components increase. To overcome this, we

propose a distributed solution called GreenRAN that takes

a divide-and-conquer approach in that it divides the main

problem into multiple sub-problems and then conquers the

smaller sub-problems via a metaheuristic algorithm [47].

More formally, GreenRAN consists of three phases, each

derived from well-known approximation solution: (a) decom-

posing the problem into two sub-problems, one for Telco cloud

in the CS and the other for all far-edge clouds at the ES, using

Lagrangean Relaxation, (b) dividing the formulation on the

ES into further independent sub-problems, each corresponding

to a different far-edge cloud, and (c) solving the decomposed

problems using Simulated Annealing [18]. Each decomposition

targeting different parts of the vRAN is depicted in Fig 3. The

phases of the solution methodology are presented next.

A. Phase 1: Lagrangian Relaxation for vRAN Far Edge – Telco

Cloud Decomposition

Dual Decomposition or Lagrangian Relaxation (LR) method

is used to change the centralized nature of the problem into

a distributed one, by means of the introduction of linear



constraints [17]. This enables finding independent solutions to

the decomposed sub-problems while agreeing with each other

based on the constraints added [48].

As seen in Fig. 3 and Eq. (15), DU-EPM association A
t

cannot be seen as independent of CU-CPM association B
t,

since they are interlinked via the functional split variable

S
t. Building on this observation, we use LR to make the

two association variables independent by introducing new

split variables for EPM (S1) and CPM (S2), and adding the

constraint S1 = S2. This enables our objective to be divided

into two independent parts, executing at ES and CS respectively:

f1(A
t,St

1) = EES(t) =
∑

j∈PE

(

E
p
epm,j(t) + Em

epm,j(t)
)

, (23)

f2(B
t,St

2) = ECS(t) =
∑

k∈PC

(

E
p
cpm,k(t) + Em

cpm,k(t)
)

, (24)

such that St
1 = S

t
2. Enumerating over all possible combinations

of S is computationally not feasible, therefore we relax this

constraint by introducing a Lagrange multiplier (θ) and obtain

two independent dual problems, as follows.

f1(A
t,St

1) = EES = min
At,St

f1(A,S) +
∑

i∈B

∑

p∈S

θi,psi,p, (25)

f2(B
t,St

2) = ECS = min
Bt,St

f2(B,S)−
∑

i∈B

∑

p∈S

θi,psi,p. (26)

The value of θ is updated using gradient ascent (as we are now

solving the dual problem) such that as θ → 0 when S1 = S2.

B. Phase 2: Divide-and-Conquer for Edge Disaggregation

An additional advantage of using LR to separate the ES

energy computation from CS is that the DU-EPM association

of BSs belonging to one edge cloud become independent of DU-

EPM associations of other edges. Motivated by this observation,

we further decompose the ES optimization problem (Eq. (25))

into |E| independent sub-problems (as shown in Fig. 3).

To adopt our optimization framework for distributed edge

setting, our formulation of energy equations (Eq. (25) and

(26)) remains the same, with only a minor difference i.e.,

instead of all BSs B, all EPMs PE and all CPMs PC , for each

optimization corresponding to one edge e ∈ E and one Telco

cloud c ∈ C, only a subset of BSs Be is used where vi,e = 1.

Similarly, a subset of EPMs Pe and CPMs Pc is used that

belong to the far-edge and Telco cloud considered during that

iteration. Also, the LHS of Eq. (25) and (26) now refer to the

energy obtained by edge e (Ee(t)) and Telco cloud c (Ec(t)).

C. Phase 3: Efficient Placement via Simulated Annealing

Simulated Annealing (SA) is a well-known probabilistic

heuristic method for approximating global optimum for an

optimization problem [18] and has been widely used in

problems with discrete and very large problem spaces, like

ours. We perform SA for each edge cloud (and Telco cloud)

separately, as their optimization variables are now independent

following Phases 1 & 2 above.

The SA algorithm starts with a random initialization of

decision variables3, Ω(t) = {ati,j , b
t
i,k, s

t
i,p}. The current energy

value Ex(t) is computed for any x ∈ {e, c}, and the current

solution is slightly shifted to new values Ω
(t)
new through ran-

domization. The SA algorithm parameters, i.e., temperature (γ),

annealing parameter (k) and fitness (ρ = Ex,new(t)− Ex(t))
determine the probability of adopting a new random solution,

Ω
(t)
new. At higher initial temperatures, the probability of selecting

worse solutions is higher (exploration stage which helps the

algorithm not to get stuck in local optima), while as γ reduces,

the algorithm goes into exploitation stage settling in the

neighborhood of current best solution. The pseudocode of

our solution framework, GreenRAN, is shown in Alg. 1.

D. Computational Complexity Analysis of GreenRAN

Let Ksa be the number of iterations taken by SA to converge.

Then the time complexity of finding the solution for BSs

Be belonging to one edge e ∈ E having PE EPMs can

be given as O(Ksa|Be||PE ||S|), where | · | represents the

count. Similarly, the computation time at the Telco cloud will

be O(Ksa|Bc||PC ||S|). Let Klr be the number of iterations

taken by Lagrangean Relaxation to converge, then the time

complexity of running GreenRAN over the entire network will

be O
(

KlrKsa|S|
(

|Be||Pe||E|+ |Bc||Pc||C|
)

)

. Given the inde-

pendent and distributed solution nature of GreenRAN, its time

complexity is polynomial in the number of network parameters

and does not increase exponentially with the network scale, as

is the case with combinatorially NP-hard problems like these.

E. Adaptive Resource Reorchestration Intervals

The traffic load varies significantly over time, so does the

rate at which traffic changes. Hence, performing reorchestration

at fixed interval may be inefficient, causing, e.g., unnecessary

migrations when traffic changes slowly or resource underutiliza-

tion when the demands shift suddenly. To address this issue,

we propose an enhancement to GreenRAN that adaptively

determines the next reorchestration interval duration. This value

is computed by considering the rate of change in the traffic load.

At the start of a generic epoch ti, we calculate the difference

between the traffic at ti and that at successive intervals

ti+k, k={1,2,...}, until the absolute difference |λ̂ti+k
− λ̂ti |

becomes larger than a system parameter ∆λ. The start of

first epoch i + k for which the ∆λ threshold is exceeded is

selected as the next point in time for orchestration.

V. Evaluation Methodology

We evaluate the quality of our solution with real-world traffic

loads observed at the radio access network of a metropolitan-

scale mobile network. The measurement data was collected

by a major operator in a wide urban region in Europe, and

consists of the aggregate downlink demands accommodated by

each of 450 4G BSs at every 5 seconds during 24 consecutive

hours of a typical weekday.

3We initialize variables using a first-fit bin-packing strategy, for faster and
near-optimal convergence.



Algorithm 1: GreenRAN pseudocode

1 procedure GREENRAN(B,PE ,PC ,F ,S, Cepm, Ccpm, λ
t)

2 Initialize Lagrange multiplier, θ = θ0

3 Decompose system into ES and CS using LR (Eq. (25), (26))
4 Divide edge site further into per edge components
5 while True, do

6 foreach e ∈ E do

7 Ω
(t)
e , Ee(t) = SimAnneal(Be, Pe, Fe, e)

8 Ω(t) = Ω(t) ∪ Ω
(t)
e

9 end

10 foreach c ∈ C do

11 Ω
(t)
c , Ec(t) = SimAnneal(Bc, Pc, Fc, c)

12 Ω(t) = Ω(t) ∪ Ω
(t)
c

13 end

14 θnew = θ − η(S1 − S2) # Gradient Ascent
15 if (θnew − θ) ≤ threshold, then
16 break
17 end

18 θ = θnew

19 end

20 Calculate EES(t) =
∑

e∈E
Ee(t) and ECS(t) =

∑

c∈C
Ec(t)

21 Calculate total energy, Etot(t), using Eq. (15)

22 return Ω(t), E
(t)
tot

23 end

24 procedure SimAnneal(Bx,Px,Fx, x)

25 Initialize: Ω(t) = {xt
i,j , s

t
i,p}

26 Initialize temperature and annealing parameters: γ = γ0, k = 1
27 Calculate EPM (or CPM) energy, Ex(t), using Eq. (25) (or (26))

28 while γ > 0 do

29 Update variables: Ω
(t)
new

30 Calculate Ex,new(t) with Ω
(t)
new variables

31 Calculate fitness, ρ = Ex,new(t)− Ex(t)

32 p = exp

(

ρ
γ

)

33 if ρ > 1 or random(0, 1) ≤ p, then

34 Ω(t) = Ω
(t)
new

35 Ex(t) = Ex,new(t)
36 end

37 k = k + 1, γ = γ0

log(k)

38 end

39 return Ω(t), Ex(t)
40 end

TABLE III
Simulation Parameters.

Parameter Value

Base Stations 450 RUs in total, 25 per Edge Cloud

Cloud Configuration 1 Central Cloud with 30 CPMs

Ccpm 64 RCs

Pcpm, P
′
cpm 200 W

Edge Configuration 18 Edge Clouds with 15 EPMs each

Cepm {12, 16, 32, 48, 64} RCs

Pepm, P
′
epm {40, 60, 120, 180, 240} W

CPU Load {d1, d2, d3} {3.25, 0.75, 1.00} RCs

Memory {ω1, ω2, ω3} {1795, 415, 820} MB

Latency {σ1, σ2, σ3} {0.25, 2, 10} ms

Processing interval, T {1, 3, 5, 8} hours and adaptive intervals

Migration params α, β, ω 0.512, 20.165, 3
Heuristic params θ0, γ0 1, 100

A. Network Infrastructure Configuration

We consider a single Telco cloud located in the CS and

18 far-edge clouds located in the ES. We map each of 450
4G BSs to a RU4 site, and consider that each group of 25

4Each RU is 2× 2 MIMO enabled and configured with 20 MHz bandwidth
transmitting at full capacity i.e., 100 PRBs with MCS index 28 [49].

geographically close BSs are associated to the same edge

cloud. We estimate CPU load, dp, of each VNF, fp ∈ F , as

the number of Reference CPU cores (RC)5 required to execute

1 Gbps of input traffic [37], [38], [49], [50]. This is in-line

with the assumption that CPU utilization can be estimated as a

linear function of the maximum downlink datarate [51]. While

we consider uniform capacity of cloud servers i.e., each CPM

is a 64 RC machine, we vary the capacity of each EPM from

12 to 64 RCs to evaluate different edge cloud configurations.

Our simulation parameters are carefully taken from mul-

tiple references: (i) a hierarchical cloud network topology

at metropolitan scale [11], [52], (ii) a power consumption

of different sized EPMs and CPMs based on cloud’s Power

Usage Effectiveness6 (PUE) [43], (iii) a power consumption

proportional to the processing load with a static baseline of

50 − 70% of the total server energy consumption at peak

load [53], and, (iv) MH bandwidth requirement for various

splits (µt
i,p) obtained from Appendix C of [13] and [54].

We obtain the memory footprint of different RAN functions

(ωp) by carrying out measurements at different PRB utilization.

The experiments were performed on an OpenAirInterface

(OAI) [55] testbed using the latest F1 interface implementation

supporting CU/DU splits [56].To compute adaptive

reorchestration interval lengths, we set the threshold

∆λ = 0.2 ∗maxi λ̂ti upon extensive parametric analyses. This

gives us six reorchestration epochs at 00:00, 01:00, 02:30,

07:00, 08:00, and 13:30 during our reference one-day scenario.

Various vRAN topology and configuration parameters, along

with our heuristic solution parameters are presented in Table III.

B. Comparison Benchmarks

We compare our solution against the following benchmarks.

1) Traditional distributed RAN (D-RAN): This is a baseline

approach where all baseband processing occurs at DUs in

the ES, in line with upcoming 5G settings where dedicated

servers will be typically placed in EPMs at the edge aggregation

sites. All the energy consumption is at the ES and no Telco

or central cloud is involved. We employ a well-known bin-

packing strategy (first-fit) to associate DUs of each BS with

EPMs: each DU is selected from an ordered sequence of BSs

and associated with first EPM with enough remaining CPU

capacity from an ordered sequence of EPMs. Thus, the order

of association of BSs to EPMs is fixed.

2) Greedy centralized RAN (Greedy): At the opposite end

of the spectrum of solutions from D-RAN, we have a fully

centralized C-RAN that performs all processing in the CU.

However, this is not a viable approach in realistic settings, due

to strict latency constraints at the PHY layer as well as the

limited capacity of the MH between DU and CU. Instead, we

consider a practical version of the C-RAN approach that aims

at moving to the CU as many functions as possible, while

considering the limits imposed by latency and link capacity

5An RC as considered in [37] is a single Intel Haswell i7-4770 3.40GHz.
6PUE, a measure of data center energy efficiency, is the ratio of total data

center annual energy consumption to the total compute related annual energy
consumption.



Fig. 4. Energy consumption (KJoules) of different solutions for interval lengths of 1, 3, 5, 8 hours and adaptive interval length (plots in the order from left to
right). ES configuration consists of 6 EPMs per edge, each equipped with a 32 core server. MH bandwidth is 10 Gbps.

constraints. Only the functions that cannot be moved to the CU

are left at the DU. This happens in two phases. First, based on

the premise that higher the level of centralization, lower is the

energy consumption, it greedily chooses the lowest possible

functional split for each BS that meets MH capacity constraints

in Eq. (20). Second, it adopts again a first-fit approach for

DU-EPM and CU-CPM association like in D-RAN.

3) State-of-the-art Cloud RAN (SotA): A vast majority

of solutions proposed for energy-efficient RAN orchestration

neglect consumptions due to VM migrations. Moreover, the

energy models of most related works are not as comprehensive

as ours, so a direct comparison is not possible. Therefore, we

benchmark GreenRAN against an equivalent solution where

the contributions of Eq. (13) and (14) are neglected. This is

equivalent to performing an optimization of the association

and split variables at each epoch independent of previously

made decisions, which, as mentioned above, is a common

assumption in current state-of-the-art (SotA) works. This

benchmark comprehensively models state-of-the-art works on

energy-efficient vRANs, e.g., [19] and [14].

VI. Results

We run experiments by orchestrating the large-scale RAN

infrastructure outlined in Section V-A under realistic mobile

data traffic demands. Our results not only compare the energy

efficiency gains of GreenRAN over the benchmarks, but also

provide insight into resource utilization of servers at ES and CS.

We also analyze energy consumption under different vRAN

configurations, thereby enabling informed decisions by mobile

operators about infrastructure deployment. We also note that

the runtime performance of GreenRAN is significantly better

than solving IQP (with IBM ILOG CPLEX solver [57]). As

an instance, for a single edge cloud with 25 RUs, optimization

over a single reorchestration interval using CPLEX solver

(branch and cut algorithm) takes more than 3 hours. Whereas,

GreenRAN takes less than 5 minutes for the same scenario.

Moreover, our heuristic, for most of the reorchestration

intervals, is within 2% of the optimal IQP solution. We omit

detailed comparisons with IQP due to space restrictions.

A. Energy Consumption

We start by looking at the main metric, i.e., the overall

energy consumption of RAN operation. Fig. 4 shows the result

attained by the various solutions. Each plot in Fig. 4 refers

to a different resource orchestration interval (from 1 hour

to 8 hours, plus the case where adaptive interval lengths are

used). In all cases, GreenRAN outperforms all other solutions,

reducing daily energy costs by up to 14% with respect to

the best competitor, and up to 33% to a traditional fully

distributed D-RAN processing approach. When looking at

gains during individual reorchestration intervals, savings can

reach 25% over SotA, and 42% over D-RAN. The rightmost

plot shows that adaptive intervals yield minimum energy

consumption: in this case, GreenRAN achieves a 22000-KWh

power consumption for the whole network under consideration.

A closer analysis reveals the origin of gains obtained by

GreenRAN. Each cost bar is indeed split into the contributions

to total energy consumption due to processing cost (PC) and

migration cost (MC), at both ES and CS. Interestingly, we

observe that all strategies that consider both ES and CS for

processing tend to take advantage of both edge and Telco cloud

resources. Therefore, and contrary to common opinion, it is not

always best to offload as many RAN functions as possible to

CS, if an edge cloud is available. The reason is that some EPMs

are always active to process PHY functions: as such EPMs

have sufficient capacity to accommodate higher layer functions

as well, they are a more convenient option than activating new

CPMs. For this same reason Greedy suffers from inefficient

resource utilization, as it tries to offload all functions to CS.

Further, the energy cost breakdown demonstrates that legacy

SotA approaches that are oblivious to migration costs do

yield a reduced PC compared to GreenRAN because of

their close-to-full-capacity server consolidation which is an

artifact of considering each reorchestration interval in isolation.

However, their advantage disappears when factoring in the

cost of migrations: in other words, awareness of previous

orchestrations can lead to sacrificing on optimal packing to

reduce the overall energy consumption.

B. Impact of Reorchestrating over Adaptive Intervals

Fig. 4 lets us observe the advantage of employing adaptive

resource reorchestration intervals. As noted earlier, smaller

intervals may cause excessive migrations, while longer intervals

cause CPU resources to stay unnecessarily reserved at PMs

even when the load decreases in time. An adaptive selection

of the reorchestration interval solves the problem, and leads

to substantial energy consumption reductions, as shown in

the rightmost plot in Fig. 4. Note that the weaknesses of the

benchmarks outlined previously persist with adaptive intervals.

C. Analysis of Associations and Splits Chosen

We now delve deeper in our analysis, by providing insights on

what associations and splits are chosen by GreenRAN and why.



Fig. 5. Heatmap showing fractional CPU load at 18 different edges in ESs (left three) and 1 Telco cloud at CS. (right three). Benchmarks include D-RAN
(left), Greedy (middle) and GreenRAN (right) at 6 different epochs of adaptive interval length. Each edge at ES consists of 4 EPMs with Cepm = 32 RCs.
The Telco cloud consists of 28 CPMs with Ccpm = 64 RCs. Also, Cmh = 10 Gbps. Darker colors denote higher loads; light yellow are turned-off PMs.

1) Load at ES EPMs and CS CPMs: Fig. 5 shows the

number of PMs that are turned on, and their CPU load, for

various approaches at different epochs. In the left three plots,

D-RAN shows higher load at EPMs while Greedy yields the

lowest load at EPMs; these results are expected as the two

solutions have opposing goals. A more efficient strategy does

not try to push all processing to the CS, hence EPMs show

a higher utilization under GreenRAN than with Greedy; in

other words, GreenRAN favors DU-EPM associations over

CU-CPM associations. EPMs with zero load (denoted in light

yellow) are turned off, hence consume no energy. An opposite

trend is observed in CPMs, in the right three plots of Fig. 5,

where a reduced number of CPMs are active under GreenRAN:

our solution tries to maximize usage of an EPM or CPM once

turned on, while keeping other PMs powered off.

2) Selected Split: To better understand the splits chosen

by GreenRAN, we plot heatmaps of the fraction of vRAN

functions that are offloaded to CS in Fig 6 (left). Each row

refers to a different orchestration approach. Our solution adopts

an intermediate strategy between the extremes represented by

D-RAN and Greedy: it prefers processing more functions at

ES even when the PUE of CS is better than that of ES [43].

The behavior is especially evident when offloading a new VNF

to CS may lead to turning on a CPM: instead of switching on

a new CPM, an association with an EPM is preferred, subject

to multiplexing opportunities available at the EPM (Fig. 5). In

conclusion, these results confirm our previous intuition that

greedily offloading as much computation as possible to the CS

is not necessarily the best approach if edge clouds are available.

D. Effect of Different Edge Cloud and MH Configurations

To conclude our performance evaluation, we explore how

GreenRAN behaves under a combination of different edge site

configurations (i.e., number and capacity of EPMs) and of MH

link capacities. This analysis is helpful to mobile operators

in deploying vRAN infrastructure with a reduced redundancy.

Fig. 6 (right) shows the heatmap of energy consumption at

Fig. 6. Left: Heatmap showing fraction of vRAN functions processed at CS at
6 different adaptive intervals on 32 core EPMs and 15 Gbps MH bandwidth.
Right: Heatmap showing total energy consumption (Etot(t), in KJoules) for
different combinations of ES configurations and MH bandwidths.

various EPM sizes and MH bandwidths. We clearly see that

the MH bandwidth plays a crucial role in determining the

fraction of VNFs processed at the edge. In presence of little

MH bandwidth, since most of the processing stays at the

edge, small sized EPMs cannot benefit from the multiplexing

opportunity at the edge, hence consume higher energy. As

the MH bandwidth increases, the overall energy consumption

reduces, due to VNFs moving towards the more efficient Telco

cloud. Moreover, under large MH provisioning, smaller EPMs

turn more energy efficient as they operate close to full capacity.

On the other hand, a large EPM size surprisingly consumes

more energy in presence of a low MH bandwidth. We ascribe

the effect to the fact that multiple EPMs can be turned on

even if some of them are underutilized, owing to heavy

processing at the edge. This leads to an increase in the

static energy consumption. The phenomenon disappears as

the MH bandwidth increases up to a certain level. However,

further increments in the MH bandwidth do not reduce energy

consumption: unlike Greedy, the GreenRAN solution does

not use the available MH bandwidth entirely to offload all

processing to CS. To summarize, mobile operators opting for

high capacity MH links or large EPM sizes (which entail high

CAPEX) may not necessarily be making the best choice.

VII. Conclusions

We modeled energy consumption problem in the virtualized

RAN setting as an integer quadratic program, jointly optimizing

processing and migration energy consumption. Our solu-

tion, GreenRAN, is grounded on well-known heuristics, and

achieves considerable energy savings over relevant benchmarks.

The distributed nature of our algorithm enables fast and efficient

computation of optimal CU-DU functional splits and BS-PM

associations for a metro-scale vRAN scenario. A detailed

analysis of our results showed that, in a vRAN setting, it is not

always efficient to greedily offload all processing to the Telco

or central clouds, and that the best strategy processes most

functions in the far-edge whenever available. Among multiple

far-edge cloud configurations and MH capacities, our results

showed that deploying a high capacity MH link plus high-

performance (many-core) edge servers is not always the best

combination, as the two resources serve opposing purposes.
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