
Demand based State Aware Channel
Reconfiguration Algorithm for Multi-Channel

Multi-Radio Wireless Mesh Networks
A Antony Franklin

Elec. and Telecom. Res.
Institute (ETRI), South Korea

Athula Balachandran
School of Computer Science

CMU, USA

C. Siva Ram Murthy
EuMI Visiting Scholar
CSE, IIT Madras, India

Mahesh Marina
School of Informatics

University of Edinburgh, UK

Abstract—Efficient utilization of Multi Channel - Multi Radio
(MC-MR) Wireless Mesh Networks (WMNs) can be achieved only
by intelligent Channel Assignment (CA) and Link Scheduling
(LS). Due to the dynamic nature of traffic demand in WMNs,
the CA has to be reconfigured whenever traffic demand changes,
in order to achieve maximum throughput in the network. The
reconfiguration of CA requires channel switching which leads to
disruption of ongoing traffic in the network. The existing CA al-
gorithms for MC-MR WMNs in the literature do not consider the
channel reconfiguration overhead that occurs due to this channel
switching. In this paper, we propose a novel reconfiguration
framework that considers both network throughput and recon-
figuration overhead to quantitatively evaluate a reconfiguration
algorithm. Based on the reconfiguration framework, we propose
an online heuristic algorithm for CA called Demand based State
Aware channel Reconfiguration Algorithm (DeSARA) that finds
the CA for the current traffic demand by considering the existing
CA of the network to minimize the reconfiguration overhead. We
show through simulations that DeSARA outperforms both static
CA and fully dynamic CA in terms of total achieved throughput.

I. I NTRODUCTION

Wireless Mesh Networks (WMNs) have become a cost-
effective option for wide scale deployment in last mile wireless
networks [1]. WMNs consist of two kinds of network elements
namely, mesh routers and mesh clients. While the mesh routers
form the backbone, the mesh clients are the users that generate
traffic in the network. Apart from clients communicating with
the Internet, there are a number of user applications such as
video conferencing and VoIP (Voice over IP) that result in
communication between clients. As more and more clients
are added to WMNs, there is a requirement to improve the
transport capacity of the backbone.

The transport capacity of the backbone network can be in-
creased by using multiple orthogonal (non-overlapping) chan-
nels for simultaneous transmissions and thereby, improving
channel spatial reuse. To tap the full potential of multiple
channels, the mesh routers are equipped with multiple radios.
Raniwalaet al. [2] showed that there is a non-linear increase
in capacity with the increase in number of radios in a Multi
Channel - Multi Radio (MC-MR) wireless network. Though
there is a potential increase in capacity due to the usage of
MC-MR in WMNs, a poor Channel Assignment (CA) scheme
can lead to under-utilization of the network. Intelligent CA

schemes need to be adopted in order to spatially separate the
nodes transmitting in the same channel as far as possible. Nev-
ertheless, owing to the constraint on the number of channels
and the number of radios available at each router, the co-
channel interference cannot be completely avoided.

A network employing multiple access techniques such as
CSMA/CA for transmission of data is not bandwidth efficient
due to the contention resolution mechanism employed for
the channel access. Using efficient Link Scheduling (LS),
the network can be made contention free thus utilizing the
capacity of the network completely. This requires a link
level synchronization among the nodes. As the mesh routers
are static, link level synchronization between them can be
achieved easily.

The distributed algorithms for CA and routing [3], [4], [5]
improve the network performance in terms of throughput but
they are not optimal in terms of offered load. There are several
works on interference aware CA aimed at minimizing the
bandwidth lost in collisions [6], [7], [8]. All these works do
not take into account the dynamic nature of the traffic demand
in the network and hence these solutions cannot utilize the
network resources efficiently. Considering the traffic demand
in finding CA and LS in a MC-MR WMNs is beneficial
in terms of achieved throughput as shown in [9], [10]. In
a practical scenario, the traffic demand keeps changing with
time and the WMN must be able to adapt to the changes
by modifying the bandwidth allocation to the links. Under
dynamically varying traffic conditions the CA designed to
optimally suit one traffic demand may not optimally suit the
other. If we use the optimal CA for every traffic demand
in the network, without considering the current state of the
network, it will lead to lot of reconfigurations and will heavily
disrupt the ongoing traffic in the network. In [11], the authors
have shown that though the channel switching time of the
interface cards are in the order of micro seconds, the average
traffic disruption time due to channel reconfiguration is in the
order of seconds. If these reconfigurations happen frequently,
the loss of packets and under utilization of the network
will make WMNs very unreliable. Hence, there is a need
for simultaneously improving the utilization of the network
resources and reducing the disruption of the traffic due to
reconfiguration of CA.

2

To the best of our knowledge, none of the works in the
literature considers the reconfiguration overhead in CA. In
this work, we propose a novel reconfiguration framework to
quantitatively evaluate a reconfiguration algorithm and show
the significance of reconfiguration overhead in CA. This recon-
figuration framework considers both the achieved throughput
and the reconfiguration overhead to quantify the performance
of a reconfiguration algorithm. We also present an online
heuristic algorithm called Demand based State Aware channel
Reconfiguration Algorithm (DeSARA) for dynamically recon-
figuring the CA under varying traffic conditions. We show
the performance of DeSARA in different network and traffic
scenarios using simulations.

II. SYSTEM MODEL AND ASSUMPTIONS

In this paper, we limit our study to the mesh routers which
form the backbone. Hereafter, the term node is used to refer to
a mesh router. Similarly, we use the terms traffic matrix and
traffic demand interchangeably throughout this paper.

A. Network Model

The network is represented in the form of anundirected
graph G = (V , E), whereV = {n1, n2, . . . , nV } represents
the set of nodes in the network andE represents the set
of wireless links.G represents the topology of the network,
having all potential transmission links represented by edges.
Each nodeni hasKni

radios installed in it. These radios can
operate simultaneously independent of each other. Logically,
to operate them simultaneously, they need to be tuned to
orthogonal channels. We assume thatC = {c1, c2, . . . , cC}
be the set of orthogonal channels available in the network
and their individual maximum capacity asCmax. We denote
by V , E, and C the cardinality of the setsV , E , and C,
respectively. Note that ifC < max

n∈V
(Kn), then some radios

can not be used, hence we assume thatC > max
n∈V

(Kn). The

number of available orthogonal channels depends on the radio
frequency spectrum used. IEEE 802.11a and IEEE 802.11g
support 12 and 3 orthogonal channels, respectively. An edge
e ∈ E exists between a node pairi, j iff the nodesi and j

are in the transmission range of each other. The assumption of
an undirected graph implies that the transmission range of the
radios is equal. There are a total ofT slots for transmission
and the links must be scheduled to transmit in these slots.
We denote the slot schedules byXt

e,c ∈ {0, 1}. Xt
e,c = 1 if

an edgee ∈ E is assigned a slott ∈ {1, 2, . . . , T} in the
channelc ∈ C. Let FG be theConflict Graphof G. Each edge
e in G is represented by a nodeme in FG. An edge exists
between nodesme, me′ in FG if e, e′ ∈ E in G interfere with
each other (based on the interference model considered). The
adjacency matrix representation of the graphFG is called as
Link Interference Matrix (LIM) [7]. LIMe,e′ denotes if edges
e and e′ interfere or not. We define a binary vectorWe,c to
denote the channel assignment at edges.We,c is 1 if channelc
is assigned to the edgee. Similarly, we define a binary vector
Yn,c to denote the channel assignment at nodes.Yn,c is 1 if
channelc is assigned to one of the radios of noden.

B. Traffic Model

The traffic demand is modeled as a matrixT in which each
entry tij represents the traffic (data rate) between the node
pair i, j. We assume that a source-destination pair (node pair)
can transmit data in more than one alternate path simultane-
ously and that the traffic isinfinitely divisible. The alternate
paths between every source-destination pair, discovered by the
routing algorithm, are given byfe

ij,k ∈ {0, 1} wherei, j ∈ V ,
e ∈ E , andk denotes thekth path between node pairi, j. If the
kth path between node pairi, j passes through the edgee then
the variablefe

ij,k = 1 elsefe
ij,k = 0. The throughputbetween

node pairi, j (denoted byxij) is given by
∑

k xij,k where
xij,k is the achieved throughput on thekth path between node
pair i, j. The alternate paths are precomputed by k-shortest
paths algorithm [12].

C. Assumptions

We assume the existence of atraffic profiler at every mesh
node that observes the current traffic (data rate) for each
destination in the network at a fixed interval and communicates
the information to a centralized agent [6]. We also assume that
link level synchronization exists among the nodes. Due to the
static nature of the WMNs and the presence of a centralized
agent, link level synchronization can be achieved easily. Many
works in WMNs have assumed the existence of link level
synchronization among the nodes [4], [9].

D. Reconfiguration Framework

The network utilization after a reconfiguration due to the
arrival of a traffic matrix can be captured by the achieved
throughput (Tp) and is represented byTp =

∑∑

1≤i<j≤V

xij .

Let Prij,k = 1 if an edge on thekth path between
nodesi, j is reconfigured, otherwisePrij,k = 0. Then the
reconfiguration overhead (R), which is the sum of flows
that are disrupted due to a reconfiguration, is represented by
R =

∑ ∑

1≤i,j≤V

∑

k Prij,k × xij,k.

Let α denote the time between arrival of two successive
traffic matrices andβ denote the time required to successfully
complete a reconfiguration. The values ofα and β can be
obtained from the underlying network. The value ofα solely
depends on the kind of network traffic generated by the users.
Whereas the value ofβ depends on factors such as the kind
of hardware used (the switching time of the radios) and the
mechanism used to transmit the reconfiguration information
to the nodes. Then the amount of effective data transfered
(EDT) by a reconfiguration algorithm for a traffic demand can
be measured byEDT = (α × Tp− β ×R).

III. O NLINE RECONFIGURATION ALGORITHM

In this section, we propose a reconfiguration algorithm
called Demand based State Aware channel Reconfiguration Al-
gorithm (DeSARA) for dynamic adaptation to changing traffic
demands. For everyα units of time, DeSARA finds a new CA
and LS for the current traffic demand considering the existing
state (CA) of the network. The main objective of DeSARA

3

is to increase the total achieved throughput of the network by
minimizing the reconfiguration overhead. DeSARA consists
of three major steps namely Channel Assignment (CA), Link
Scheduling (LS), and Flow Allocation (FA).

A. Channel Assignment

As mentioned earlier, the routing algorithm gives a set of
alternate paths that are represented by the binary variables
fe

ij,k. Now, we have to find the amount of traffic that can be
sent in each of these paths between every source-destination
pair. The optimal flow allocation on these paths can be done
only after CA and LS. But the CA is highly dependent
on the FA. This leads to a cyclic inter-dependency between
CA and FA. We break this inter-dependency by assigning
probabilities to the routes (lower hop count must be given
higher probability) which denote the likelihood of a particular
route to be included in the final route selection. We represent
the hop count ofkth path betweeni, j pair asHopCountij,k.

The probabilitiesPij,k assigned to the paths are as follows:

Pij,k =
ρij,k

∑

k′

ρij,k′

, where ρij,k =
1

HopCountij,k
(1)

Based on these probabilities the expected load on each path
and the expected load on each edge can be calculated as
follows:

ExpPath(ij, k) = Pij,k × tij (2)

Exp(e) =
∑

1≤i<j≤V

∑

k

(fe
ij,k × ExpPath(ij, k)) (3)

We define another useful quantityExpReg(e) for each edge
e ∈ E which captures the expected load in the interference
region of edgee. This consists of the expected load on edge
e and on all the edgese′ ∈ E that could potentially interfere
with edgee.

ExpReg(e) = Exp(e) +
∑

e′∈E

(LIMe,e′ × Exp(e′)) (4)

The effective data transmitted on an edgee during α units
of time if it is assigned channelc is as follows:

If there is no reconfiguration

EffecData(e, c) =
α × Cmax × Exp(e)

ExpChan(e, c)
(5)

else if there is reconfigurationEffecData(e, c)

=
α × Cmax × Exp(e)

ExpChan(e, c) + Exp(e)
− β × Reconf(e) (6)

whereExpChan(e, c) is the expected load on channelc at edge
e (i.e., sum of the expected loads on edges in the interference
region of edgee which are assigned channelc). Reconf(e)
is the total amount of flow that will be affected if this edge is
assigned a new channel and is given by

Reconf(e) =
∑∑

1≤i,j≤V

∑

k

xold
ij,k × fe

ij,k,

Algorithm 1 Channel Assignment Algorithm
1: Input: A GraphG = (V, E), Exp(e), ExpReg(e), for each linke ∈ E and

W curr
e,c - the existing channel assignment

2: Output: The New Channel Assignment for edges,W new
e,c

3: SetW new
e,c ← 0 ∀e ∈ E, c ∈ C /* Initialize theW new

e,c variables*/
4: Let E′ ← E , SatNodes← Φ
5: while E′ is not emptydo
6: if SatNodes is emptythen
7: Find the edgee ∈ E′ in G with largestExpReg(e). In case of a tie

choose the one with highExp(e).
8: Find theExpChan(e, c) at edgee
9: Find theEffecData(e, c) for each channel at edgee

10: Choosec with the maximumEffecData(e, c). In case of tie choosec
with minimum ExpChan(e, c).

11: cx ← c, W new
e,cx

← 1, E′ ← E′ − {e} /*Assign channelcx to e*/
12: Yi,cx ← 1, Yj,cx ← 1 where e = (i, j) /*Assigning the

chosen channel to the incident nodes*/
13: /*Check for saturation of radios on the incident nodes*/
14: if

PC
c′=1

Yi,c′ = Ki then
15: SatNodes←− SatNodes ∪ {i}
16: end if
17: if

PC
c′=1

Yj,c′ = Kj then
18: SatNodes←− SatNodes ∪ {j}
19: end if
20: else{SatNodes is not empty}
21: /*Assign the remaining edges of the currently saturated nodeswith the last

channel chosen*/
22: while SatNodes is not emptydo
23: Set i← GetOneElement(SatNodes)
24: Construct UnassignedEdges(i) = {e|e ∈ E , i ∈ Inc(e),

W new
e,c = 0 ∀c ∈ C}

25: for all e ∈ UnassignedEdges(i) do
26: /*Assign the last assigned channelcx to the other edges*/
27: W new

e,cx
← 1, SatNodes ← SatNodes − {e}, Yi,cx ← 1,

Yj,cx ← 1 wheree = (i, j)
28: /*Check if the other incident node is saturated*/
29: if

P

C

c′=1
Yj,c′ = Kj then

30: SatNodes←− SatNodes ∪ {j}
31: end if
32: end for
33: SatNodes← SatNodes− {i}
34: end while
35: end if
36: end while

wherexold
ij,k is the existing traffic on thekth path between node

pair i, j.

The CA algorithm is given in Algorithm 1 whose compu-
tational complexity isO(E2C). The underlying logic of our
CA algorithm is to try to minimize the co-channel interference
among edges with high expected load.

We construct a setE ′ which is initialized to E and a
set SatNodes which is initialized to empty. As the edges
are assigned channels, they are removed from the setE ′.
This is repeated untilE ′ is empty (i.e., all the edges are
assigned a new channel). For channel assignment, we choose
the edgee with the highestExpReg(e). In case of a tie,
we choose the edge with the highest expected load. The
reason for usingExpReg(e) as a criterion for choosing edge
is that, it represents the edge with the highest potential to
interfere with other edges. After choosing an edge for channel
assignment, we assign a channel with the highest value of
EffecData(e, c) to that edge. In case of a tie, the channel
with least value ofExpChan(e, c) will be chosen. Once the
channel is assigned to an edge, the last radio in either or both
incident nodes may be utilized and the node(s) is(are) called
saturated. We add a saturated node to the setSatNodes.
In any iteration, if theSatNodes is non empty, then there

4

are some nodes that becamesaturatedin the previous step.
The links incident on these saturated nodes that are yet to be
assigned a channel, cannot be assigned a new channel due
to the lack of a radio. So, the last assigned channel (in the
previous iteration, which led to the saturation of the node)is
then assigned to all those links.

B. Link Scheduling

Once the channels are assigned for current traffic demand,
LS must be done for efficient resource sharing. We provide
a greedy heuristic algorithm for the LS. The slots must be
allotted in such a way that any two interfering links sharinga
common channel must not be given the same slot. Hence, the
total of T slots must be divided among the interfering links
sharing the same channel. The division can be made on the
basis of expected loads calculated for each edge. We calculate
a tentative fraction of slots that needs to be provided to each
edge in the following manner:

Frac(e) =
Exp(e)

∑

e′∈E

(LIMe,e′ × We′,c × Exp(e′))
, (7)

wheree ∈ E , c ∈ C, andWe,c = 1

Algorithm 2 Link Scheduling
1: Input: LIM , W new

e,c , Frac(e), T and conflict graphFG

2: Output: The slot schedules,Xt
e,c

3: Sort the edges in the decreasing order of the interference degree in their conflict
graphFG. Let (e1, e2, . . . , eE) denote the sorted order

4: for i = 1 to E do
5: N(ei) = ceil(T · Frac(ei)), the maximum number of time slotsei will

be active
6: Let ei = (u, v). allocated← 0, t← 0.
7: Let c ∈ C be the channel allocated to edgeei

8: while allocated ≤ N(ei) andt ≤ T do
9: if Xt

e′,c
= 0 ∀e′ ∈ E andLIMe,e′ = 1 then

10: Xt
e,c ← 1, allocated + +, t + +

11: end if
12: end while
13: end for

The number of slots can be calculated byN(e) = ⌈T ×
Frac(e)⌉. Since we use a ceiling function, this indicates the
maximum number of slots that can be alloted to linke. Our LS
algorithm is presented in Algorithm 2 and its computational
complexity isO(ET). The edges are sorted in the descending
order of their interference degree in their conflict graphFG.
We start allotting slots to the edge with the highest degree.
For each edgee, we check its interfering edges for free slots
and assign them to the current edgee. This process continues
until slots are alloted to all the edges.

C. Flow Allocation

Now, we need to do flow allocation in order to decide the
amount of traffic to be sent on each of the alternate paths that
are provided by the routing algorithm. The capacityCap(e)
of an edge is the total available bandwidth alloted to the edge
by LS and is given by

Cap(e) =
∑

c∈C

∑

t∈{1,2,...,T}

Xt
e,c

T
× Cmax (8)

At each edgee, we find the bandwidth share for each flow
passing through that edge using the expected load on each
path given in Eq. 2.

Share(e, i, j, k) =
ExpPath(i, j, k)

Exp(e)
× Cap(e) (9)

The bottleneck capacity (Bottleneck(i, j, k)) on a pathk

for a source-destination pairi, j is the minimum of residual
capacities of all the edges in pathPath(i, j, k). Based on this
Bottleneck(i, j, k), the required bandwidth for each flow is
alloted to all the edges on that path. Once the bandwidth is
alloted to the flows in each edge, there may be unalloted band-
width available between a source-destination pairi, j. This
can be calculated bytij −AllocatedF lowij . The augmenting
paths for each source-destination pairi, j can be used to find
the unallocated bandwidth.

AugPathsij = {< ij, k > |

fij,k = 1 ∧ Bottleneck(ij, k) > 0} (10)

The remaining bandwidth is alloted to source-destination pairs
that can accommodate more traffic. The flow allocation algo-
rithm is given in Algorithm 3 and its computational complexity
is O(E2V 2).

Algorithm 3 Flow Allocation
1: Input : The slot allocationXt

e,c from the link scheduling algorithm
2: Output : The flow allocation between each nodeAllotedF lowij

3: Calculate the capacityCap(e) of each edge fromXt
e,c

4: Calculate the share of each flow on each of the edgeShare(e, ij, k)
5: Initialize Residual CapacityResCape of each edge toCap(e)
6: Let E′ ← E
7: while E′ is not emptydo
8: Find the edgee ∈ E′ in G with highestExp(e).
9: FlowAllocable← min(Share(e, ij, k), tij , Bottleneck(ij, k))

10: /*Updating the residual capacity of the edge and the flow allocated*/
11: ResCape ← ResCape − FlowAllocable
12: AllocatedF lowij ← AllocatedF lowij + FlowAllocable

13: end while
14: /*Find if there are any augmenting paths*/
15: AugPathSet ← {< i, j > |∃AugPathsi,j∧tij−AllocatedF lowij >

0}
16: while AugPathSet is not emptydo
17: Find tuple < i, j > in AugPathSet with maximum tij −

AllocatedF lowij

18: while ∃ an element< ij, k > in AugPathsij do
19: AllotedF lowij ← AllotedF lowij + Bottleneck(ij, k)
20: ∀e ∈ Path(ij, k)ResCape ← ResCape − Bottleneck(ij, k)
21: end while
22: AugPathSet ← AugPathSet − tuple < ij >

23: end while

IV. SIMULATION RESULTS

In this section, we study the performance of our proposed
online reconfiguration of CA and LS algorithm (DeSARA)
using simulations. We compare DeSARA withStatic Channel
Assignment (SCA)and Dynamic Channel Assignment (DCA)
to show the importance of considering current CA in channel
reconfiguration. In SCA, we use the distributed channel assign-
ment algorithm SAFE (Skeleton Assisted partition FrEe) [3]
to find the channel assignment for the network and use the
link scheduling and flow allocation algorithms proposed for
DeSARA. SAFE is a load unaware channel assignment algo-
rithm which finds a feasible channel assignment ensuring the

5

connectivity of the network. In DCA, we use the same channel
reconfiguration algorithm in DeSARA without considering the
reconfiguration overhead while choosing the best channel. So,
we calculate theEffecData(e, c) based on Eqn. 5 for all the
channels.

A. Generation of Traffic Sequences

As the correlation between successive traffic demands af-
fects the performance of reconfiguration algorithms, we pro-
pose a traffic generation model to generate correlated traffic
matrices. We generate a traffic sequence by initially generating
a random traffic matrix and then generate the subsequent traffic
matrices in the following manner:

• ρ1 ∈ [0, 1] fraction of flows (randomly chosen among
(

V
2

)

flows) are changed in subsequent traffic matrices.
• The selected flows are perturbed by a fractionρ2 ∈ [0, 1]

from their previous value.
The set of traffic matrices generated in this manner exhibit
some correlation between consecutive traffic matrices. Lower
values of ρ1 and ρ2 imply higher correlation between the
consecutive traffic matrices. All these traffic matrices are
normalized to1. The load of a given traffic demand is the sum
of traffic between all the source-destination pairs (

∑ ∑

1≤i<j≤V

tij).

So, the traffic sequence for a specific load is obtained by
generating a traffic sequence as mentioned above and scaling
each of the traffic matrices to the required value of load.

B. Simulation Parameters

We study the performance of our proposed online heuristic
algorithm in two different network topologies namely, a regu-
lar topology (7× 7 grid with 150m between nodes in vertical
and horizontal direction) and a random topology (50 nodes
uniformly placed in1000m×1000m terrain). The transmission
range of each node is set to200m. The topology of the
network is formed by adding an edge between two nodes iff
they are in the transmission range of each other. TheLIM is
generated using the protocol interference model. We generate5
paths of the least hop count between any two node pairs in the
network using the multi-path routing algorithm given in [12].
The various parameters that are relevant to the simulation are
given in Table I. The simulation results are obtained for15
different runs and plotted with a confidence level of95%.

TABLE I
PARAMETERS USED IN THE SIMULATION

Parameter Value Parameter Value
Number of Radios (K) 2 (Grid), 5 (Random) Number of Slots 30

Number of Channels (C) 3 (Grid), 6 (Random) Traffic Matrices 300

Channel Capacity (Cmax) 11 Mbps ρ1 ,ρ2 0.3,0.3

α 100secs β 1sec

C. Throughput with Traffic Matrices

To show that the reconfiguration algorithm reduces the
overhead, we measured both throughput and reconfiguration
overhead for each traffic matrix in regular topology and is
shown in Fig. 1 and Fig. 2, respectively. It is clear from
Fig. 1 that the throughput achieved by DCA, and DeSARA

is significantly higher compared to that of SCA. This is due
to the fact that the SCA does not consider the current traffic
demand. It shows the importance of considering the traffic
demand in CA. Fig. 2 shows that the reconfiguration overhead
is reduced significantly by DeSARA as it tries to minimize the
number of reconfigurations in the network. As DCA does not
consider the existing CA and tries to find the best CA for
the network, it incurs more reconfiguration overhead. Fig. 3
shows the aggregate data transfered with the traffic matrices.
DeSARA performs better than both DCA and SCA.

D. Total Achieved Throughput with Load

Fig. 4 and Fig. 5 show the total achieved throughput with
load in regular and random topologies, respectively. As the
offered load increases, the total achieved throughput linearly
increases for low load and saturates at higher load. For a
given network with a fixed number of radios and channels,
DCA and DeSARA are able to achieve higher total throughput
than SCA. The state aware reconfiguration algorithm DeSARA
performs better than DCA due to the fact that it minimizes
the reconfiguration overhead. Both regular and grid topolo-
gies show similar performance comparisons between these
algorithms. Between the regular and random topology, the
regular topology is able to achieve higher total throughput
compared to random topology. In our simulation studies, we
considered only2 radios and3 orthogonal channels for regular
grid topology but5 radios and6 channels for random topology.
The grid topology with less number of radios and channels is
able to achieve the same performance as that of the random
topology with more number of radios and channels. This
shows the effect of topology on total achieved throughput.

E. Effect of Correlation between Traffic Matrices

To study the effect of correlation between traffic matrices,
we measured the total achieved throughput for a sequence
of 300 traffic matrices with different values ofρ1 and ρ2.
With lower values ofρ1 and ρ2 there is a higher correlation
between consecutive traffic matrices and vice versa. We varied
both of them together to change the correlation between
consecutive traffic matrices. For each value ofρ1 andρ2, the
total achieved throughput is measured for15 different runs
of all the algorithms in a regular grid topology. From Fig. 6,
we can see a reduction in the total achieved throughput as
the correlation between consecutive traffic matrices decreases
(increase inρ1 andρ2). Here too, we can note that DeSARA
performs better than SCA and DCA.

V. CONCLUSION

For a successful deployment of MC-MR WMNs, the mesh
routers should be able to reconfigure according to the changing
traffic demands. But, the adaptation to changes in traffic
demand requires reconfiguration of CA and LS for the efficient
utilization of network resources. The channel switching in-
volved in the reconfiguration of CA, necessitate the need foran
efficient reconfiguration algorithm that minimizes the recon-
figuration overhead. In this paper, we proposed a framework

6

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 D

at
a

T
ra

ns
fe

rr
ed

 (
M

b)

Traffic

SCA
DCA

DeSARA

Fig. 1. Total Data Transfered with the Number of
Traffic Matrices.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 D

at
a

T
ra

ns
fe

rr
ed

 (
M

b)

Traffic

SCA
DCA

DeSARA

Fig. 2. Reconfiguration Overhead with the Num-
ber of Traffic Matrices.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 D

at
a

T
ra

ns
fe

rr
ed

 (
M

b)

Traffic

SCA
DCA

DeSARA

Fig. 3. Aggregate Date Transfered with the
Number of Traffic Matrices.

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500

T
ot

al
 A

ch
ie

ve
d

T
hr

ou
gh

pu
t (

M
bp

s)

Load (Mbps)

SCA
DCA

DeSARA

Fig. 4. Total Achieved Throughput with Load in
a 7× 7 Grid Topology.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500

T
ot

al
 A

ch
ie

ve
d

T
hr

ou
gh

pu
t (

M
bp

s)

Load (Mbps)

SCA
DCA

DeSARA

Fig. 5. Total Achieved Throughput with Load in
a Random Topology of50 Nodes.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
ot

al
 A

ch
ie

ve
d

T
hr

ou
gh

pu
t (

M
bp

s)

Traffic parameters ρ1,ρ2

SCA
DCA

DeSARA

Fig. 6. Total Achieved Throughput with Different
Values ofρ1 andρ2 in a Grid Topology.

to evaluate a reconfiguration policy based on two conflicting
objectives: maximizing network utilization and minimizing
traffic disruption. We proposed a polynomially bound online
heuristic algorithm called Demand based State Aware channel
Reconfiguration Algorithm (DeSARA). DeSARA shows an
improvement of about15% in the total achieved throughput
compared to DCA (DCA does not consider the reconfiguration
overhead). This is mainly because DeSARA reduces the recon-
figuration overhead by about80%. We have shown through ex-
tensive simulations that DeSARA outperforms both SCA and
DCA in terms of total achieved throughput. As part of future
work, we plan to employ some traffic prediction techniques in
order to reduce the frequency of channel reconfiguration. Also,
we plan to implement our proposed reconfiguration algorithm
in a real WMN testbed and evaluate its performance.

ACKNOWLEDGEMENT

This work was supported by the Department of Science and
Technology, New Delhi, India.

REFERENCES

[1] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: A
Survey,” Computer Networks, vol. 47, no. 4, pp. 445–487, March 2005.

[2] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized Channel As-
signment and Routing Algorithms for Multi-Channel Wireless Mesh
Networks,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 8, no. 2, pp. 50–65, 2004.

[3] M. Shin, S. Lee, and Y. Kim, “Distributed Channel Assignment for
Multi-Radio Wireless Networks,” inProceedings of the IEEE Interna-
tional Conference on Mobile Adhoc and Sensor Systems (MASS 2006),
October 2006, pp. 417–426.

[4] X. Lin and S. Rasool, “A Distributed Joint Channel-Assignment,
Scheduling and Routing Algorithm for Multi-Channel Ad-hocWireless
Networks,” in Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM 2007), May 2007, pp. 1118–
1126.

[5] H. Wu, F. Yang, K. Tan, J. Chen, Q. Zhang, and Z. Zhang, “Distributed
Channel Assignment and Routing in Multiradio MultichannelMultihop
Wireless Networks,”IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 11, pp. 1972–1983, November 2006.

[6] K. N. Ramachandran, E. M. Belding, K. C. Almeroth, and M. M.
Buddhikot, “Interference-Aware Channel Assignment in Multi-Radio
Wireless Mesh Networks,” inProceedings of the IEEE International
Conference on Computer Communications (INFOCOM 2006), April
2006, pp. 1–12.

[7] A. K. Das, H. M. K. Alazemi, R. Vijayakumar, and S. Roy, “Optimiza-
tion Models for Fixed Channel Assignment in Wireless Mesh Networks
with Multiple Radios,” inProceedings of the IEEE Communication So-
ciety Conference on Sensor and Ad Hoc Communications and Networks
(SECON 2005), September 2005, pp. 463–474.

[8] A. P. Subramanian, H. Gupta, and S. R. Das, “Minimum Interference
Channel Assignment in Multi-Radio Wireless Mesh Networks,” in
Proceedings of the IEEE Communications Society Conferenceon Sensor,
Mesh and Ad Hoc Communications and Networks (SECON 2007), June
2007, pp. 481–490.

[9] H. Yu, P. Mohapatra, and X. Liu, “Channel Assignment and Link
Scheduling in Multi-Radio Multi-Channel Wireless Mesh Networks,”
Mobile Network and Applications, vol. 13, no. 1-2, pp. 169–185, 2008.

[10] A. A. Kanagasabapathy, A. A. Franklin, and C. S. R. Murthy, “A Load
Aware Channel Assignment and Link Scheduling Algorithm forMulti-
channel Multi-radio Wireless Mesh Networks,” inProceedings of the
Internataional Conference on High Performance Computing (HiPC),
2008, pp. 183–195.

[11] P. Li, N. Scalabrino, Y. M. Fang, E. Gregori, and I. Chlamtac, “How to
Effectively Use Multiple Channels in Wireless Mesh Networks?” IEEE
Transactions on Parallel and Distributed Systems. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2008.256

[12] E. de Queirós Vieira Martins and M. M. B. Pascoal, “A NewImplemen-
tation of Yen’s Ranking Loopless Paths Algorithm,”4OR: A Quarterly
Journal of Operations Research, vol. 1, no. 2, pp. 121–133, 2003.

