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Abstract—We present a mobile crowdsensing approach for
urban WiFi characterization that leverages commodity smart-
phones and the natural mobility of people. Specifically, we report
measurement results obtained for Edinburgh, a representative
European city, on detecting the presence of deployed WiFi APs via
the mobile crowdsensing approach. They show that few channels
in 2.4GHz are heavily used; in contrast, there is hardly any
activity in the 5GHz band even though relatively it has a greater
number of available channels. Spatial analysis of spectrum usage
reveals that mutual interference among nearby APs operating
in the same channel can be a serious problem with around 10
APs contending with each other in many locations. We find
that the characteristics of WiFi deployments at city-scale are
similar to that of WiFi deployments in public spaces of different
indoor environments. We validate our approach in comparison
with wardriving, and also show that our findings generally match
with previous studies based on other measurement approaches.
As an application of the mobile crowdsensing based urban WiFi
monitoring, we outline a cloud based WiFi router configuration
service for better interference management with global awareness
in urban areas.

I. INTRODUCTION

Significant interest in mobile phone sensing in recent years
can be attributed to several factors, including: their ubiquitous
nature; rapid evolution toward smartphones with several built-
in sensors; carried by humans, making them natural to be
used for “mobile” sensing; and the possibility of leveraging
the cloud via several available connectivity options for com-
puting power, storage and “centralization”. Not surprisingly
then, mobile phone sensing applications have been realized or
envisioned in diverse domains (e.g., transportation, social net-
working, health monitoring) [1], [2]. When a group/community
of participants (a crowd) is engaged with suitable incentives,
mobile phone sensing becomes even more compelling for
continual and fine-grained spatio-temporal monitoring of the
phenomenon of interest in a cost-effective manner. Indeed, as
Xiao et al. note in [3], the focus of mobile sensing research and
applications is shifting towards mobile crowdsensing, which is
defined as “individuals with sensing and computing devices
collectively share data and extract information to measure
and map phenomena of common interest” [4]. Several mobile
crowdsensing applications have been developed and deployed
(e.g., [5], [6]) and it remains a very active area of research.

We consider the application of the mobile crowdsensing
paradigm to wireless network monitoring. Besides the many
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sensors, modern mobile phones feature several wireless net-
work interfaces as connectivity options (e.g., cellular, WiFi,
Bluetooth, NFC). Discussions of mobile phone sensing have
been mostly centered around the use of built-in sensors and/or
specialized add-on sensors (e.g., GasMobile [5], CellScope1,
NETRA2) with connectivity options serving as a means for
data sharing (see [2], for example). We expand this commonly
held view to treat network interfaces also as sensors. GPS,
which is an integral part of all smartphones today, presents
an example of a network interface that sits at the boundary
of these two views — GPS is seen as a location sensor for
mobile phone sensing applications whereas it is actually a RF
communication system in which GPS receiver on a phone uses
signals transmitted from satellites for localization. Technical
specifications of some smartphones do acknowledge this view.
See [7], for example. A more obvious example is the use
of cellular interface on smartphones for crowdsourcing based
active/passive measurement of mobile networks as in [8], [9].
As yet another example, in a recent work [10], we developed
a system that exploits the WiFi interface on smartphones
for low-cost and automated monitoring of WiFi networks in
indoor environments like enterprises and public buildings (e.g.,
shopping malls).

In this paper, we focus on mobile crowdsensing based
characterization of WiFi deployment and configuration in
urban areas at a city level using the WiFi interface on smart-
phones as a measurement sensor. Specifically, we report results
from a mobile crowdsensing based WiFi measurement study
conducted in Edinburgh, leveraging participants with mobile
phones traveling on public transport buses. Our findings and
contributions are as follows:

• WiFi spectrum usage is quite unevenly distributed
across 2.4GHz and 5GHz unlicensed bands as well as
among various channels within the 2.4GHz (section
IV.A).

• Many WiFi access points (APs) contend on the same
channel with around 10 other APs (and their clients)
in the nearby vicinity, thereby potentially experience
severe interference. This is a result of the common
practice of uncoordinated and non-adaptive channel
assignment to home WiFi routers which are often left
to use preset factory configuration settings for channel
etc. (section IV.B).

• We also look into the distribution of open APs, which
could be leveraged for vehicular WiFi access [11].

1http://cellscope.berkeley.edu/
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We observe that the availability of open APs along
contiguous road segments is limited to few parts near
the city center (section IV.C).

• We find that observations about WiFi deployments in
public areas of several different indoor environments
match that of WiFi deployment characteristics at city-
scale (section IV.D).

• We validate our measurement approach by comparing
it against a carefully done wardriving study and obtain
similar qualitative results (section IV.E).

• Our results from urban WiFi characterization based
on mobile crowdsensing are in agreement with other
previous studies following different measurement ap-
proaches (section V).

• We outline a cloud based WiFi spectrum management
service for WiFi APs in urban areas (e.g., home
wireless routers) that can make use of results from
mobile crowdsensing based urban WiFi monitoring for
better interference management (section VI).

Compared to the fixed infrastructure approach (e.g., Ar-
gos [12]), which relies on static deployment of WiFi monitor-
ing sniffers, and the common practice of using wardriving [13],
our mobile crowdsensing approach offers the promise of fine-
grained and continual WiFi monitoring on a city-scale at low
cost with comparable results to other approaches (section II).

II. RELATED WORK

In this section, we discuss the fixed infrastructure and
wardriving approaches that were previously employed for
urban WiFi characterization and contrast them with our mobile
crowdsensing approach.

Fixed Infrastructure. In this approach, a set of monitoring
devices are positioned across the area of interest. Argos [12]
is an urban WiFi monitoring system that exemplifies this
approach. It is based on a deployment of stationary set of
2.4GHz sensors (sniffers); these sniffers are interconnected
wirelessly as a mesh network operating on a separate 900MHz
channel. The contribution of Argos lies in efficient mechanisms
for coordinated channel sampling by multiple sensors and
collection of monitoring traffic, both aimed to cope with the
limited backhaul mesh capacity.

The study reported in [14] presents another example fol-
lowing this approach; here the measurement data is manually
retrieved from monitoring equipment3 deployed for a day at
some chosen locations spanning different WiFi environments
(houses, apartments, cafes and shopping centers).

From a characterization and monitoring perspective, the
requirement for deployment of dedicated infrastructure makes
this approach expensive, especially for fine-grained spatio-
temporal mapping.

Wardriving [13]. This has been the most common approach
taken for urban WiFi characterization. It typically involves
group of wardrivers, each carrying a specialized laptop-class

3A laptop with GPS receiver and two USB dongles – AirPcap Nx and
WiSpy DBx.

WiFi and GPS equipped device running wardriving software
(e.g., inSSIDer [15]) and possibly with custom antenna, going
around the city to locate existing WiFi APs. During this
operation, wardriving software is often the only application
running on the device [13]. There exist public databases like
WiGLE [16] to aggregate data from wardriving campaigns.
The approach underlying the study reported in [17], where
measurements are collected while walking around in select
London neighborhoods, can also be seen to fall under this
category.

Typical use of wardriving data and the resultant mapping
of WiFi APs is for localization (e.g., Skyhook, Place Lab), as
a more reliable, faster and energy-efficient alternative to using
GPS. [11] reports another use case for wardriving that is aimed
at assessing the feasibility of vehicular Internet access via open
WiFi APs; their companion website [18] shows a map of APs
found from the wardriving exercise in the Boston area. Like
typical wardriving studies, [11] also makes use of a custom
hardware/software platform.

As the authors in [19] note, wardriving is an expensive
and tedious operation. As such it maybe impractical for fine-
grained and continual WiFi monitoring.

Mobile Crowdsensing. This is the approach we take. It bears
similarity to wardriving but eases the burden on the participants
and makes use of off-the-shelf smartphones with measurement
software running in the background. Thus it has the potential
to enable cost-effective, fine-grained and continual spatio-
temporal wireless monitoring.

The use of crowdsensing for mobile cellular network
measurement has received considerable attention. For exam-
ple, the problem of useful yet scalable crowdsourcing based
mobile network measurement is tackled in [8], [20] while
OpenSignal [9] and Mobiperf [21] represent passive and ac-
tive crowdsourced mobile network measurement systems with
freely available mobile apps.

For WiFi, [22] is an existing work that uses mobile
crowdsourced datasets. Specifically, it reports analysis and
comparison of mobile Internet access performance between
WiFi and cellular connections using speedtest mobile
app based active performance measurements (download/upload
speeds and latency). In contrast, our objective is to use mobile
crowdsensing for characterization of urban WiFi deployments.

Pazl [10] aims at WiFi monitoring within indoor environ-
ments (enterprises, shopping malls) via mobile crowdsensing,
and addresses the associated challenge of locating measure-
ments via a hybrid localization mechanism that combines
pedestrian dead reckoning with WiFi fingerprinting. Our pri-
mary target in this paper is instead on outdoor cityscale mea-
surement where GPS based phone/measurement localization
can be fairly reliable (see next section).

In [23], the authors propose a system to detect and track
WiFi enabled smartphones using off-the-shelf AP hardware as
monitoring stations, a converse to the problem that we consider
which is to detect the presence of WiFi APs using commodity
smartphones.



(a)

Min Median Mean Max
Location Error (m) 4 8 9.6 1095

(b)

Total number of measurements (scans) 147488
Distinct measurement locations 11225
Distinct APs detected 13800
Distinct open access APs detected 2977

(c)

Fig. 1. (a) Mobile crowdsensing based WiFi AP scanning measurements
shown as a heatmap; (b) Location error statistics for the collected measurement
dataset; (c) Filtered measurement dataset summary.

III. METHODOLOGY

Our mobile crowdsensing based urban WiFi characteriza-
tion study is done using Android phones, specifically Samsung
Galaxy S III [7] phones which feature a 802.11a/b/g/n radio
that can operate in both 2.4GHz and 5GHz unlicensed bands.
We rely solely on passive scanning based measurement, lis-
tening to AP beacons. The information available at the user
level with the Android API for passive scans is limited to:
SSID, BSSID, channel, RSSI and the security scheme in use.
For the measurements, we use the freely available RF Signal
Tracker app [24], which keeps passively scanning for WiFi
access points (APs) in the background every three seconds
or on passing 5 meters; it locally stores the result of each
scan tagged with GPS location and timestamp on the phone
in a CSV file. As this app does not log location errors and is
not open source, we have a developed an auxiliary app that
runs alongside and records location errors. Measurement data
from phones is subsequently transferred to a back-end server
where custom python scripts are used to import the data into
a database, which then is used for further querying, analysis
and mapping of data.

As mentioned at the outset, our urban WiFi characterization
focuses on the city of Edinburgh, which is a typical European
city [25] — smaller in size and densely populated, especially
in the center. For proof-of-concept and wider spatial coverage
with fewer participants in a short measurement period, we
focus on a measurement scenario where participants are travel-
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Fig. 2. Relative usage of different channels across 2.4GHz and 5GHz bands
by the detected APs.

ling on public transport vehicles. Specifically, our measurement
results are obtained from phones carried by participants during
the times they travel at low to moderate speeds on buses
in the city operated by a local bus company called Lothian
Buses [26]. In this sense, it follows a participatory sensing
approach along the lines of earlier urban air/noise pollution
monitoring studies [5], [6]. Measurements reported in this
paper correspond to traveling over 31 buses over a 15 hour
period in total. Note that in principle crowdsourcing based
measurement can be done in a fully opportunistic manner,
covering all modes of movement including walking, standing,
etc. The limits we place are for above mentioned reasons.
Also note that there is an assumption underlying our study
that visible APs from next-door neighbors can also be seen
from the street and vice versa.

Fig. 1(a) shows the total set of measurements as a heatmap.
Red areas in the map indicate places where there is a high
density of APs as well as those places with multiple mea-
surements due to overlapping road segments between different
bus routes. Fig. 1(b) lists the location error statistics across
all measurements in our dataset. We observe that while the
maximum error can be over 1Km reflecting locations that do
not get a GPS fix, the error is under 50m in 95% of the cases.
To obtain reliable spatial distribution of APs on the map, we
filtered out the 5% of the measurements with location errors
greater than 50m. Fig. 1(c) presents a summary of the resultant
dataset. From closer inspection, we observe that majority of
the APs correspond to home WiFi networks interspersed with
the rest (e.g., WiFi hotspots).

IV. RESULTS

A. Spectrum Usage

We begin by looking at the channel usage of WiFi APs
in our dataset. Fig. 2 shows the relative usage of different
channels across 2.4GHz and 5GHz bands. Clearly, the channel



Fig. 3. Map of distinct APs detected.

usage is quite uneven, dominated by channels 1, 6 and 11 in
the 2.4GHz band. We attribute this primarily to users leaving
their APs to use factory settings, which commonly focus on
channels 1, 6 and 11 given that they are non-overlapping.
Among the rest of the channels, channel 7 is the next most
common channel which we find is due to the fact that WiFi
APs corresponding to one of the ISPs (identified based on
their SSID) are always set to use channel 7. The very little
perceived use of 5GHz channels may be partly due to the
relatively poor propagation characteristics at 5GHz and our
measurement from outdoors while APs are almost always
located indoors. Nevertheless, we do not expect our conclusion
on the unevenness of channel usage to change qualitatively
given results discussed later in this section on the nature of
WiFi deployments seen in different indoor environments and
laptop-based wardriving measurements.
We explore this observed non-uniform channel use further in
the next subsection, particularly looking at spatial variation in
spectrum usage and its implication for potential interference
levels.

B. Spatial Distribution of Spectrum Usage

Fig. 3 shows the map of detected APs, colored differently
depending on the set of channels used. Besides confirming
the channel usage pattern from Fig. 2, the red patches on the
map highlight the closeness between APs using one of three
popular channels (1, 6 and 11), thereby the potential for high
interference. Fig. 4(a) provides a quantitative equivalent of the
map in Fig. 3 and shows that more than half of the locations
“see” more than 10 APs. Statistics in Fig. 4(b) confirm the
same.

Since Fig. 4(a) and Fig. 4(b) correspond to the spatial
distribution of AP density over all channels, they do not
directly represent levels of interference in any one channel.
This information is shown in Fig. 5 for the three mostly
commonly used channels (1, 6 and 11). The striking aspect
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Fig. 4. (a) AP density spatial distribution; (b) AP density statistics across all
measurement locations.
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Fig. 5. Per channel spatial distribution of AP densities.

is that the spatial distributions of AP density for each of these
channels are similar to the aggregate distribution spanning all
channels shown in Fig. 4(a). Hence we can actually infer that
in over half of the locations we are likely to find more than 10
APs on any of the three heavily used channels. The same result
is illustrated in Fig. 6 on a map. It shows the locations with
10 or more APs configured to use the most common channel
at that location with the size of each circle representing the
number of APs at a location — larger the size of the circle,
more the number of APs that could potentially interfere with
each other (or their associated clients).

C. Open Access Points

Here we look into the question of “open” APs which
could be exploited for public and vehicular wireless Internet
access in cities. In our measurement dataset, we find that
open APs constitute around 20% of the total number of APs
detected (2977 vs. 13800). And a large fraction of these open
APs (nearly 76%) are served by a single ISP — British
Telecom (BT), making it plausible to view them all to be
part of a single administrative domain from a vehicular client
perspective for seamless roaming. This argument is made
stronger by the fact that BT in the UK has a partnership
with the Fon WiFi community network [27], making every
BT broadband customer automatically a member of the Fon
network. However, the spatial distribution of open APs along
roads (Fig. 7) suggests that the presence of contiguous set of
APs with overlapping coverage areas is limited to few areas in
the very center of the city, limiting the possibility of seamless
vehicular WiFi Internet connectivity via open APs.

D. Comparison with Indoor Environments

We study the characteristics of public WiFi deployments in
indoor environments as a way to increase the confidence in our
findings from outdoor measurements concerning the nature of
urban WiFi networks. For this purpose, we developed a custom
mobile application called IndoorScanner based on Funf [28].
The need for a different measurement app for indoors is
motivated by the fact that GPS does not reliably work indoors
and given that RF Signal Tracker app used for our outdoor
measurements relies on GPS for locating measurements. In

Fig. 7. Map of open APs detected.

contrast, IndoorScanner requires the user to select the measure-
ment location on a digital map of the indoor environment (e.g.,
floor map, building layout) in a manner similar to traditional
site survey procedure for WiFi fingerprinting based localization
systems. Note that these indoor measurements were one off and
gathered by a single user, hence we did not need to employ
Pazl [10] for this purpose.

We consider several different indoor environments located
in different parts of the city for this study. These include: three
different shopping centers, a large hospital, a supermarket, and
a small shop. We carefully measure in public places inside
these environments looking for the presence of WiFi networks.
As shown in Fig. 8(a), WiFi use in indoor environments
happens largely in the 2.4GHz band just as seen from outdoor
measurements (cf. Fig. 2). Fig. 8(b) shows that maximum
number of APs at a location using the same channel can be as
high as 37, which is similar to what is obtained from outdoor
measurements (cf. Fig. 5).

E. Comparison with Wardriving and Device Effect

To validate the mobile crowdsensing approach taken in
this paper, we compared it against a laptop based wardriving



Fig. 6. Map illustrating likely high interference locations (with more than 10 mutually interfering APs).

(a) Spectrum usage

(b) Max AP density per channel

Fig. 8. WiFi scanning measurement results from different indoor environ-
ments.

study. Specifically the validation experiment was carried out
over a Edinburgh University shuttle bus that connects two
university campuses (one in the city center and the other in
south Edinburgh), 2.7Kms apart. For the wardriving part of the
experiment, we used a customized Lenovo T420 laptop with
GPS and running only inSSIDer WiFi scanning software [15].
Two different smartphones, Samsung Galaxy S III and Google
Nexus One, both running the RF Signal Tracker app in the
background were used for mobile crowdsensing. Note that all
other measurement results reported in this paper were obtained
with Samsung Galaxy S III phones while Google Nexus One
phone is used in this experiment to understand the device
effect.

During the journey, 429 APs were detected by inSSIDer
with the laptop while Galaxy S3 and Nexus One could detect
384 and 404 APs respectively. This shows that commodity
smartphone based mobile crowdsensing approach can detect
nearly all (> 90%) APs that can be seen by the wardriv-
ing laptop. This is remarkable considering that laptops are
equipped with better antennas and radios with higher receive
sensitivities, a fact confirmed by higher RSSI values obtained
with laptop in the experiment (Fig. 9). RSSI values for the two
phones indicate device diversity (in terms of radio, antenna and
platform design) and partly explain differences in the number
of networks detected between them. Note that some of the
differences in scanning results between the three cases stem
from differences in channel hopping sequence and duration
between different devices and software, which are outside our
control in all 3 cases compared. Overall, the results from
this experiment demonstrate that mobile crowdsensing with
commodity smartphones can yield similar results to those
obtained via carefully conducted wardriving campaigns.
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V. PUTTING OUR FINDINGS INTO PERSPECTIVE

In this section, we compare our findings with other related
studies on WiFi characterization and end-user performance
assessment in the urban context.

Akella et al. [29] analyze several wardriving datasets and
observe that up to 85 APs could be within close proximity of
each other for an assumed interference range of 50m. They
also find that more than 40% APs are configured to channel 6
in one of the datasets. Our results are qualitatively similar but
obtained using a different, mobile crowdsensing, approach.

Two recent studies reported in [14] and [17], both com-
missioned by the UK communications regulator Ofcom, are
closely related to our work in terms of the underlying goals
to characterize WiFi usage in urban areas across unlicensed
2.4GHz and 5GHz bands and in different environments. Recall
from our discussion in section II that these studies use different
approaches from the mobile crowdsensing approach we take —
[14] relies on a fixed measurement infrastructure, whereas [17]
is wardriving based. Nevertheless, they report observations
similar to our findings described in the previous section. We
elaborate on some of these below for concreteness.

In [17], WiFi channel usage measurements across 2.4GHz
and 5GHz via walk around surveys in central London neigh-
borhoods show that majority of APs are configured to one of
the three non-overlapping channels (1, 6, 11) in 2.4GHz band
as shown in Fig. 10. This is precisely what we also found
in Edinburgh although with a different measurement approach
(cf. Fig. 2). An additional interesting observation made in [17]
is that public WiFi hotspots are deploying their APs in 5GHz
channels, which suggests the increased use of 5GHz band in
future.

[14] studies the usage in 2.4GHz and 5GHz unli-
censed bands and WiFi performance in different environments
(houses, apartments, cafes and shopping centers) with the help
of fixed installations of monitoring equipment at various se-
lected locations. Similar to our study, it concludes that 2.4GHz
band is more heavily occupied (10 times or more) than 5GHz
band; it identifies this to be mostly due to WiFi transmissions
in 2.4GHz and not because of other types of 2.4GHz usage
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Fig. 10. No. of APs detected in different channels across 2.4GHz and 5GHz
bands with walk around survey in central London [17].

such as Bluetooth, ZigBee and microwave ovens. It also has
similar conclusions about rather high AP densities in some
cases. Fig. 11 shows a sample of the results from [14] for
reference.

Fig. 11. AP densities across different environments as reported in [14] via
fixed monitoring kit at different locations.

The above discussion attests to the validity and reliability of
commodity smartphone based mobile crowdsensing approach
for urban WiFi characterization and monitoring. It is even more
remarkable that we are still able to obtain similar conclusions
despite the inability to obtain lower level metrics such as
channel utilization and number of MAC retransmissions with
the current APIs on smartphones.

There also exist several studies that examine the negative
impact of unplanned and uncoordinated urban WiFi deploy-
ments on end-user performance (e.g., [29], [30]), and those



that investigate optimized AP configuration (channel, transmit
power, etc.) and association mechanisms to mitigate such
performance degradation (e.g., [31]). Given our observations
concerning high density of APs in some locations, the analyses
on the impact of high AP densities with unplanned WiFi
deployments on end-user performance are particularly relevant.
For example, the authors in [30] experimentally investigate the
effect of AP density (equivalently, inter-cell interference) and
client density on performance of different applications such
as web and multimedia using the ORBIT testbed [32]. Their
results show that increasing number of clients to 125+ in a
single AP WiFi deployment scenario does not degrade the
collision rate and throughput much, which is similar to what
is reported in [33]. In contrast they find that in an unplanned
multi-AP WiFi deployment scenario increasing the number
of APs causes a significant increase in collision rate and
consequent high drop in throughput; for example, aggregate
throughput drops by 50% with only four interfering APs with
the same overall number of clients as in a single AP scenario.
Media streaming performance is also seen to take a big hit in
the presence of inter-cell interference. For the voice over IP
(VoIP) application, substantial performance degradation is seen
in the multi-AP scenario with just three APs — average latency
increases from 54ms in the single AP scenario to 304ms in
the scenario with four uncoordinated APs; jitter also increases
four-fold with the multi-AP scenario.

VI. DISCUSSION

The findings from our measurement study and the fore-
going discussion suggests that unplanned and uncoordinated
home or hotspot WiFi networks in urban areas can potentially
suffer from severe interference related performance degrada-
tion. This can be seen as a real world evidence to show
that vast research on self-organization mechanisms for channel
and transmit power allocation in unplanned WiFi deployments
(e.g., [31]) has not actually materialized. We observe that
the impediment for large-scale deployment of intelligent self-
organization mechanisms in practice may not be technical but
rather the lack of market incentives for their application. With
this in mind, we outline an alternative approach that may find
greater real world acceptance. The idea is for a mobile crowd-
sensing based urban WiFi monitoring system to continually
feed spectrum usage measurements to a cloud based back-
end, which takes the global awareness of spectrum usage and
interference conditions to determine the best channel for each
participating WiFi AP (home WiFi router). Such a spectrum
management service could be subscription based and tied to
the user’s broadband service plan — the user’s home WiFi AP
can be reconfigured on the fly via the ISP, informed by the
cloud based spectrum management service. Such managed and
coordinated spectrum management approaches are emerging
in other related domains such as efficient sharing of TV white
space spectrum among secondary users (see [34], for example).

Another application scenario for mobile crowdsensing
based urban WiFi monitoring is targeted toward outdoor small
cell public WiFi based hotspots run by several different op-
erators. The deployment of such hotspots is experiencing a
high growth and is seen to complement LTE small cells in an
overall solution to aid in better managing the steeply rising

mobile data traffic4. The emerging passpoint technology to
enable seamless roaming between public WiFi hotspots run
by different operators will play a role in their widespread
deployment and use, and in turn determine the need for
coordinated interference management.

Concerning incentives for user participation in mobile
crowdsensing based urban WiFi monitoring, real world evi-
dence suggests that smartphone users have sufficient incentives
to participate in crowdsourced mobile network measurement
campaigns. For instance, in a 3G crowdsourcing measurement
study [35] conducted by BBC in partnership with measurement
firm Epitiro, nearly 45,000 volunteers installed the measure-
ment app to participate within one month of announcement of
the study. As another example, OpenSignal [9], another firm,
with an app for crowdsourced mobile measurement has over
3 million people worldwide in over 200 countries collectively
reported over 4 billion measurement samples till date. If such
voluntary participation, offer of better connectivity or cheaper
service while on the move may provide an incentive for mobile
(smartphone/tablet) users to participate. We note that devising
suitable incentives for mobile crowdsensing is a topic in itself
and is currently receiving lot of attention in the research
community.

VII. CONCLUSIONS

In this paper, we have shown the value of mobile crowd-
sensing approach for urban WiFi characterization and monitor-
ing through a measurement study in the city of Edinburgh. Our
results indicate that the uncoordinated and inefficient spectrum
use is the source of potentially severe interference problems
that might be seen in practice at locations with high AP
densities. We have also found similarity between our outdoor
city-scale WiFi measurement results and characteristics of
WiFi deployments in several different indoor environments.
We have validated our approach against a carefully conducted
wardriving journey. Our results and findings are also in agree-
ment with other previous urban WiFi characterization studies
based on other measurement approaches. Finally we have
outlined a cloud based spectrum management service that
could leverage results from mobile crowdsensing based urban
WiFi monitoring for more effective interference management
in urban WiFi networks.
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