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Abstract—The 802.11n standard introduces a number of new
MAC and PHY features to achieve high throughput and relia-
bility. We conduct a comprehensive characterization of 802.11n
performance with respect to its constituent features across a
wide variety of scenarios with the aid of 802.11n wireless LAN
testbed based measurements and statistical techniques including
regression analysis. Our results show that different 802.11n
features are interdependent when optimizing performance met-
rics such as throughput; the nature of interdependence as well
as their relative impact are scenario dependent. We show the
feasibility of online sender-side interference type detection, a key
part of identifying the operational scenario for comprehensive
802.11n link adaptation, via a supervised machine learning based
classifier. Finally, we highlight the unfairness problem of 802.11n
networks that is linked to the frame aggregation feature.

I. INTRODUCTION

Wireless LANs (WLANs) around the world are currently
in the process of transitioning to use equipment based on the
IEEE 802.11n standard [1], a high performance successor to
the older 802.11a/b/g standards. The primary goal that led
to the development of 802.11n was to achieve 100Mbps+
throughput above the MAC layer, nearly a 3-fold increase from
that achievable through earlier 802.11a/g standards. A key
physical (PHY) layer enhancement in 802.11n to realize this
goal is the so-called MIMO, or the use of multiple antennas.
Majority of 802.11n hardware available currently supports two
antennas and two MIMO features, namely spatial division
multiplexing (SDM) and space-time block coding (STBC) —
SDM is aimed at improving throughput through the use of
multiple concurrent data streams through different antennas,
whereas STBC is for enhancing reliability by transmitting a
single data stream across multiple antennas with redundancy.
Besides MIMO, 802.11n also incorporates a channel bonding
feature to permit doubling the channel width to 40MHz from
the 20MHz width common in 802.11a/b/g systems. Other PHY
enhancements include short guard intervals and replacement of
a 802.11a/g bit-rate with a higher modulation and coding rate.
Most of the above features along with the resulting bit-rates
(in Mbps) are shown in Table I. LGI in the table refers to
the long guard interval1. Note that SDM or STBC are not
explicitly shown in the table — SDM option is implicitly
chosen when more than one spatial streams are used, whereas
STBC feature can be explicitly enabled when a single stream
is used. Although PHY enhancements seem to be the key

1The short guard interval alternative is more efficient and is needed for
300Mbps bit-rates with 2 antennas but is supported in practice only for 40MHz
channel width. So we limit our attention only to LGI.

MCS Spatial Modulation Coding 20MHz 40MHz
Index Streams Scheme Rate w/ LGI w/ LGI

0 1 BPSK 1/2 6.50 13.50
1 1 QPSK 1/2 13.00 27.00
2 1 QPSK 3/4 19.50 40.50
3 1 16-QAM 1/2 26.00 54.00
4 1 16-QAM 3/4 39.00 81.00
5 1 64-QAM 2/3 52.00 108.00
6 1 64-QAM 3/4 58.50 121.50
7 1 64-QAM 5/6 65.00 135.00
8 2 BPSK 1/2 13.00 27.00
9 2 QPSK 1/2 26.00 54.00
10 2 QPSK 3/4 39.00 81.00
11 2 16-QAM 1/2 52.00 108.00
12 2 16-QAM 3/4 78.00 162.00
13 2 64-QAM 2/3 104.00 216.00
14 2 64-QAM 3/4 117.00 243.00
15 2 64-QAM 5/6 130.00 270.00

TABLE I: (A subset of) 802.11n physical layer features and
their corresponding bit-rates.

sources of improved performance with 802.11n, the actual
throughput seen above the MAC layer is limited by the
protocol overhead, more so than with 802.11a/b/g. So 802.11n
includes two key MAC layer features called frame aggregation
and block acknowledgements to improve the MAC efficiency
by enabling multiple back-to-back frame transmissions upon
each successful channel access.

From Table I, we see that there are 32 different parameter
settings for a link from a PHY perspective (16 MCS indices
and 2 channel widths). Combined with the simplest MAC layer
setting of whether or not to enable frame aggregation, we
have 64 possible configurations to choose from to optimize
the performance of a link. The best choice for a link, as with
PHY rate adaptation in legacy 802.11a/b/g networks, maybe
dependent on the scenario witnessed by the link at a given
point in time in terms of channel and interference conditions.
How to best select the settings for the various available features
for a given 802.11n scenario to optimize link performance is
the 802.11n link adaptation problem.

The key to designing a comprehensive solution for the
802.11n link adaptation problem is an understanding of the
impact of different 802.11n features on performance in differ-
ent link scenarios as well as interdependencies among those
features. Gaining that understanding is the aim of this paper.
Briefly, our methodology to address this goal is as follows.
Using an indoor 802.11n wireless LAN testbed, we experi-



mentally measure link performance with respect to different
metrics (including throughput, packet loss and fairness) when
using different settings for 802.11n features and under a wide
range of link scenarios, including those that model adjacent
channel interference. To gain insight from the large number of
measurements so collected and to understand the relative im-
pact of different 802.11n features on WLAN performance, we
use regression analysis. Specifically, we use categorical regres-
sion [2] since 802.11n features are better viewed as categorical
(nominal) variables. For understanding the interdependencies
among various 802.11n features in different scenarios, we use
the response surface methodology (RSM) [3].

Key findings of our study are:

• Regression based analysis is valuable in easing the
characterization of the impact of different features on
performance.

• The relative impact of different 802.11n features on
performance (throughput, packet loss and fairness) is
scenario dependent. For example, SDM is beneficial
in terms of throughput only for high quality links
and even that reduces in presence of adjacent channel
interference (ACI), whereas channel bonding has a
greater impact in scenarios with ACI.

• We find that different features are interdependent with
respect to throughput and the nature of interdepen-
dence varies between scenarios. For instance, there
is lesser degree of interdependence with poor quality
links and in presence of interference because fewer set
of features have majority of the impact on throughput.

• As a step towards practical and comprehensive link
adaptation mechanism design, we show the feasibility
of inferring interference type at a node online using
throughput measurements and a supervised machine
learning based classifier.

• We highlight the unfairness problem of 802.11n net-
works that is linked to the frame aggregation feature.

Our work improves upon earlier experimental studies of
802.11n networks [4], [5], [6], [7], [8], [9], [10] in two
respects: (1) It is comprehensive in the set of features, metrics
and range of scenarios considered. Table VI captures the focus
of previous work. (2) In terms of the underlying goal — to
capture important 802.11n features for performance optimiza-
tion in different link scenarios and their mutual interaction.
We also highlight the fairness issue with 802.11n that has not
received much attention in the literature so far.

The rest of this paper is structured as follows. In the next
section, we describe the various elements of our methodology
to perform the characterization study as stated above. Sec-
tion III presents our results as listed under the aforementioned
key findings and discusses them. Section IV discusses related
work and conclusions are provided in Section V.

II. METHODOLOGY

Our overall goal in this paper is to characterize the in-
teraction between 802.11n features (frame aggregation, SDM
vs. STBC, channel bonding, etc.) and their relative impact on

link/WLAN performance across a wide range of scenarios,
differing in channel and interference conditions. In this section,
we describe the various elements of our methodology.

A. Indoor 802.11n Wireless LAN Testbed

In order to do the aforementioned characterization experi-
mentally, we have deployed a 802.11n wireless LAN testbed in
the Informatics Forum building at the University of Edinburgh.
The testbed consists of 8 nodes in total of which 6 form an
infrastructure 802.11n WLAN with one access point (AP) and
5 stations. Fig. 1 shows the locations of these 6 nodes on the
building floor plan. The placement of these nodes was done
to realize diverse set of link qualities as reported in the next
section. As described in the next section, the other 2 testbed
nodes are setup to be another co-located 802.11n WLAN to
realize different interference conditions.

Each node in our testbed is actually a combination of a
laptop and an embedded router board. Laptop is equipped
with Centrino Duo 1.66GHz processor, 1GB RAM and Gigabit
Ethernet interface and is setup to run Ubuntu 10.04 OS with
Linux kernel version 2.6.32. The router board is a Ubiquiti
RouterStation Pro2 with 680MHz CPU, 128MB memory and
4 Gigabit Ethernet interfaces. The board hosts an 802.11n
wireless interface card, specifically the MikroTik R52Hn 2x2
MIMO miniPCI card with an Atheros AR9220 chipset3. The
miniPCI card on the board is connected to two dual band
omnidirectional antennas. The laptop and router board of each
node are connected through their Gigabit Ethernet interfaces
and bridged via the Wireless Distribution System (WDS). We
use this particular setup with the laptop acting as the traffic
source/sink because we found the link throughput to be limited
by CPU on the board when it is used as a traffic source/sink
and at the same time operates at 802.11n top speeds. Note that
this platform bottleneck issue has been reported previously in
the literature [11]. Fig. 2 shows a picture of our testbed node.
On the board, we use the open-source ath9k driver4.

B. 802.11n Settings

We consider almost all 802.11n features — frame aggrega-
tion (FA), MIMO (SDM/STBC), channel bonding (ChB) and
all available modulation and coding rates. The only exception
is the short guard interval (SGI), which is only supported for
40MHz channels in the AR9220 chipsets. We disabled SGI
in our experiments for consistency. Note that we consider the
effect of enabling STBC for MCS indices 0-7 shown in Table I
while MCS indices 8-15 in Table I always refer to the use
of SDM. Similar approach was also taken in [8]. In order to
separately see the impact of using SDM/STBC from the use of
different modulation and coding rates, we use the term MCS
in majority of the paper to only refer to the use of the eight
modulation and coding rates shown in Table I and number
them 0 – 7. The use of SDM or STBC features is explicitly
shown separately.

To determine the channels of operation for our experiments,
we surveyed the testbed area using the WiSpy spectrum

2http://www.ubnt.com/rspro
3http://www.mikrotik-store.eu/media/files public/ejuissqr/R52Hn-

Brochure.pdf
4http://linuxwireless.org/en/users/Drivers/ath9k



Fig. 1: Physical layout of nodes in the 802.11n WLAN testbed
— the blue coloured node is the AP and red ones numbered
(1)-(5) are stations.

Fig. 2: Picture of a node in our 802.11n WLAN testbed.

analyzer5 to look for unused channels in both 2.4GHz and
5GHz bands since 802.11n can use either. We found that
only channels 149 – 161 in the 5GHz band were free of any
activity at all times, so decided to use only those channels for
our experiments. Also, unless specified otherwise, the transmit
power for 802.11n cards is at the default setting (25dBm).

For traffic generation, we use iperf6 UDP traffic sessions
between AP and one or more client stations. Packet size
is fixed at iperf default value, which is 1500 bytes. Every
experiment reported in this paper is repeated multiple times
and the average value across those multiple experiment runs
is taken as the measurement result.

C. Performance Metrics

We consider three metrics to quantify 802.11n link/WLAN
performance: throughput, packet loss and fairness. Throughput
of a link a running iperf UDP session is measured at the server
(receiver) side. Aggregate throughput is used as the measure
when multiple links in the WLAN are concurrently active.
Packet (frame) loss is computed using MAC layer statistics at
the sender side. Specifically, packet loss is measured as the

5http://www.metageek.net/products/wi-spy/
6http://iperf.sourceforge.net

difference between frames sent and successfully transmitted
frames as a percentage of the frames sent. For quantifying
fairness, we use the well-known Jain’s index:

f(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

where xi is the throughput of the ith link and n the total
number of concurrently communicating links.

D. Statistical Techniques

1) Categorical Regression: We use categorical regression
in sections III.B and III.E to study the relative impact of
802.11n features on performance. Standard multiple regression
works best with continuous predictor variables. Categorical
regression was developed as a method for linear regression
for categorical predictor variables [2]. It relies on a method
called optimal scaling that finds optimal numerical values to
categorical values and in the process transforming categorical
data into numerical data. The transformations of categorical
variables are estimated simultaneously with the estimation of
the regression coefficients using an alternate least squares pro-
cedure that maximizes the squared multiple regression coeffi-
cient, R2, on the transformed variables. As a result, categorical
regression results in transformed categorical variables that have
values with numerical properties and are optimal for describing
the relation between the response variable and predictors.
Goodness of a categorical regression can be assessed with
respect to a desired level of significance (typically, 0.05). If
the p-value of the ANOVA is lower than the desired level then
we consider the regression result to be statistically significant.

Pratt’s measure [12] is a way to quantify the importance
of each predictor and is seen as much more useful metric
than the standardized regression coefficient. Pratt’s measure
for each predictor variable is computed by taking the product
of its regression coefficient and its zero-order correlation (i.e.,
the correlation between the transformed predictor and the
transformed response in the categorical regression). These
products add to R2, so importance values are usually divided
by R2 so that they add up to 1.

2) Response Surface Methodology: We use response sur-
face methodology (RSM) [3] in section III.D to examine the
interdependence among various 802.11n features with respect
to a performance metric of interest like throughput. In RSM,
the response variable y (e.g., throughput) is modeled as a
function of the predictor variables xi, 1 ≤ i ≤ k as shown
in the following equation:

y = f(xi), i = 1, . . . , k

Broadly speaking, RSM involves two phases. In the first
phase, the function f is approximated as a quadratic function
of the form:

y = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix
2
i +

k∑
i<j=2

∑
βijxixj + ε

In the second phase, optimization is performed on the
approximated function to determine values for the predictor



variables that optimize the response. RSM has been previously
used in the wireless networking context. For example, Vadde
et al. [13] have used RSM to optimize the interaction between
routing and MAC layers in mobile ad hoc networks.

For our purpose of understanding mutual interaction among
802.11n features, we limit our attention only to the first phase
of RSM. Roughly speaking, our focus is on the statistically
significant xixj terms in the above quadratic functional form.
Specifically, we examine the ANOVA table resulting from the
first phase of RSM and look at each pairwise combination
of predictors to see if their p-value is lower than a desired
level of significance (0.05) and if so, we conclude that the
interaction between the predictors in that pair to be statistically
significant. We use the SYSTAT tool7 for our RSM based
study. Note that we do not use RSM to study relative impact of
different features because it does not have a suitable measure
of importance like Pratt’s measure with categorical regression.

3) Machine Learning Classifiers: For our study on inter-
ference type classification in section III.C, we consider four
commonly used yet very different supervised machine learning
classifiers: naive Bayes, multinomial logistic regression, k-
nearest neighbors and C4.5 decision tree. Here we briefly
describe each of them. The Naive Bayes classifier is based
on the Bayes rule of conditional probability. It makes use
of all the features contained in the data, and analyses them
individually as though they are equally important and inde-
pendent of each other. Multinomial logistic regression (also
known as maximum entropy classifier) is commonly used as
an alternative to Naive Bayes classifier as it does not assume
statistical independence of features. C4.5 decision tree belongs
to a family of decision tree algorithms that decide on the
response (class in our case) for a new sample based on the
values of features in the available data. The k-nearest neighbors
algorithm classifies based on closest training examples in the
feature space. We use the Weka data mining tool8 for Naive
Bayes, k-nearest neighbors (IBk in Weka) and C4.5 (J48 in
Weka). For logistic regression, we use IBM SPSS tool 9.

III. RESULTS

A. Baseline Results

We begin our characterization study by verifying that links
in our testbed have diverse link qualities, thus allowing us to
experiment over a whole spectrum of channel conditions. For
this we pick a particular configuration of values of 802.11n
features for every link: frame aggregation and channel bonding
are enabled, STBC is disabled and the default rate adaptation
algorithm with ath9k driver (minstrel ht) is used. Note that the
minstrel algorithm chooses between all 16 MCS values shown
in Table I and also adapts the aggregated frame length size via
a hardcoded table depending on the chosen MCS value.

We measure the RSSI and throughput of different links,
one at a time and in the absence of any interference. Results
are shown in Fig. 3, which confirm that our node placement
results in sufficiently different link qualities and throughputs
across links. Our long-term RSSI measurements for these links

7http://www.systat.com/
8http://www.cs.waikato.ac.nz/ml/weka/index.html
9http://www.ibm.com/software/analytics/spss/
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Fig. 3: RSSI and throughput variation across links in the
testbed for a specific setting of values for 802.11n features.
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Fig. 4: Multiplexing Gain across different links and MCSs.

over several days (not reported here due to space limitations)
additionally show that RSSI variation for each of these links
remains within a few dB of the values shown in Fig. 3
even during day times when there is human mobility in the
environment.

We now characterize the multipath environment in the
testbed area and the opportunity available for spatial multiplex-
ing by measuring the multiplexing gain [9] for different MCSs
and links. For this experiment, we disable frame aggregation,
channel bonding, STBC and the automatic rate adaptation
algorithm. Results shown in Fig. 4 are along expected lines
— multiplexing gain drops with worsening link quality and
increasing modulation and coding rates.

Having done the confirmatory experiments focusing on link
qualities and the environment, we now begin to look at the
impact of other settings for 802.11n features while still using
the minstrel rate adaptation algorithm and considering one
link at a time with no interference. Since 3 features (frame
aggregation, channel bonding and STBC) are considered each
having two possible values (on/off), we have 8 possible con-
figurations per link and 40 different configurations across all 5
links in the testbed. Results shown in Fig. 5 let us make certain
observations such as frame aggregation is beneficial always
regardless of link quality and channel bonding is helpful except
when link quality is poor. We cannot assess the effect of
choosing STBC versus SDM, however. This is due to the use of
the automatic rate adaptation algorithm. But disabling the rate
adaptation algorithm would mean introducing a new variable
MCS (0-7) as discussed in the last section, which in turn has
the effect of increasing the overall number of configurations
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Fig. 5: Impact of frame aggregation, channel bonding and
STBC/SDM on throughput with the default rate adaptation
algorithm in use.

to analyze by 8-fold to 320 across all links. Note that this
increase in possibilities is without having any interference
in the scenarios; adding interference effects would further
increase the possibilities by several fold, which motivates the
need for an analysis approach that aids in easily understanding
the impact of different features without the tedium of manually
going through all possibilities.

B. Throughput and Packet Loss Performance

Led by the discussion at the end of the previous sub-
section, we consider regression analysis as an effective ap-
proach to ease the characterization of the relative impact of dif-
ferent 802.11n features on performance in different scenarios.
Given that the features under consideration are all categorical
— nominal to be specific (e.g., frame aggregation ON or OFF)
— categorical regression [2] is the most appropriate statistical
analysis method for the problem at hand. See section II.D for
a brief overview of categorical regression. For the regression
based analysis in the rest of this sub-section and in section
III.E, we use the widely used statistical analysis tool SPSS
which implements categorical regression in the function named
CATREG.

Now with the aid of categorical regression, it is less
of a concern to expand the scenarios we consider to in-
clude interference effects. Specifically, we consider co-channel
interference (CCI) and adjacent channel interference (ACI)
conditions besides the no interference case that was the sole
focus so far. This will effectively increase the number of
scenarios being considered to 15 (3 types of interference x
5 different link qualities). To realize CCI and ACI effects
we make use of 2 additional nodes mentioned in section
II.A to create an interfering link belonging to a co-located
802.11n WLAN with a single station. To capture the worst
case CCI and ACI effects, we place the interfering link in close
proximity (< 3 meters) to the AP shown in Fig. 1, effectively
making every link under test in the testbed to experience strong
CCI/ACI interference. To create CCI10, we use same channel

10We defer the study of another type of CCI where multiple links within
the same WLAN are concurrently active until section III.E where we consider
fairness.

Scenario Link 1 Link 2 Link 3 Link 4 Link 5
NI 0 0 0 0 0

CCI 0 5 ∗ 10−15 0 0 0
ACI 0 2 ∗ 10−10 0 5 ∗ 10−9 0

TABLE II: Significance of throughput categorical regression
model for each of the scenarios.

Scenario Link 1 Link 2 Link 3 Link 4 Link 5
NI 0 0 0 0 0

CCI 0 8 ∗ 10−11 0 0 0
ACI 0 0 0 0 2 ∗ 10−9

TABLE III: Significance of packet loss categorical regression
model for each of the scenarios.

(149) for both the link under test (which can be one of the links
between AP and stations (1)-(5) in Fig. 1) and the interfering
link. To generate ACI, we assign adjacent channels to the link
under test and the interfering link (channels 149 and 153,
respectively when channel bonding is disabled and channels
149 and 157 otherwise). Similar measurement setup to create
CCI/ACI effects was used in [8]. Note that we conduct the
experiments which consider interference effects also during
late nights to avoid human mobility related experimental noise.
Also note that for CCI and ACI cases, we only focus on
throughput and packet loss results for the link under test.

Results from applying categorical regression on throughput
with respect to various 802.11n features (frame aggregation,
etc.) for each of the 15 scenarios independently is shown
in Fig. 6. Note that we show the results in terms of Pratt’s
importance measure (see section II.D) for natural interpretation
of relative impact of various features. To associate confidence
in the different regression models and verify their validity,
we need to examine their significance levels, which need to
be < 0.05 to be valid (as discussed earlier in section II.D).
Significance levels for all throughput regression models are
shown in Table II. Regression results and significance levels
corresponding to the packet loss metric are shown in Fig. 7
and Table III, respectively. Note that significance levels for all
models across both metrics satisfy the validity criterion. We
have also manually verified this via detailed inspection of raw
measurement results.

Note that in Figs. 6 and 7, “+” (“-”) sign indicates positive
(negative) impact of a variable on the metric in question. For
example, “+” sign with frame aggregation for link 1 in Fig. 6
(a) means that enabling frame aggregation benefits throughput.
Interpretation of these signs for MIMO and MCS are somewhat
different. For MIMO, “-” sign suggests the use of STBC and
SDM otherwise. Note that MCS in these figures represents
only modulation and coding rates (8 different possibilities as
shown in Table I) as already mentioned in section II.B and
“+” sign for MCS suggests the use of higher modulation and
coding rate and lower otherwise.

1) MCS Impact: From a throughput perspective, we ob-
serve that surprisingly MCS is the most important factor in
the no interference case for all link qualities but its impact
becomes negative with worsening link quality suggesting a
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Fig. 6: Relative impact of 802.11n features on throughput performance in terms of Pratt’s importance measure (section II.D) in
different scenarios (channel quality and interference conditions).
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Fig. 7: Relative impact of 802.11n features on packet loss performance in terms of Pratt’s importance measure (section II.D) in
different scenarios (channel quality and interference conditions).

lowering of modulation and coding rate (Fig. 6 (a)). Latter
is expected as higher modulation/coding rates require higher
SNR which is not true for poor quality links. The importance
of MCS in the CCI case relatively increases as a consequence
of other factors such as frame aggregation becoming less
important. In the presence of ACI, the effect of MCS be-
comes negative quickly with worsening link qualities because
transmission activity from the interfering link in the adjacent
channel increases the noise floor and reduces the SNR, making
the lowered modulation and coding rate to be more effective.
Results in Fig. 7 show that MCS is the dominant factor in
reducing packet loss in almost all scenarios (combinations of
interference types and link qualities) since lower modulation
and coding rate increases link robustness.

2) MIMO (SDM/STBC) Impact: Benefit of SDM (which in
our case is equivalent to using double streams) for throughput
is limited to only very good quality links. Even that is less
true in presence of ACI. STBC is more beneficial in such
cases. This can be explained by the fact that transmission
power is equally divided between the different antennas. With
2 antennas, this means power is effectively halved (reduction
by 3dBm). Effective reduction of transmission power for each
stream makes SDM more vulnerable when link quality is
marginal. STBC is relatively more robust for marginal to poor
quality links due to the redundancy it injects into a single

stream. This also explains the beneficial effect of STBC on
packet loss in most cases (Fig. 7).

3) Channel Bonding Impact: In terms of throughput, re-
sults show that use of channel bonding is less effective for poor
quality links. This can be explained by a similar reasoning to
that discussed for SDM vs. STBC above. Specifically, trans-
mitting over a wider channel reduces per-subcarrier transmit
power. This effect of channel bonding has also been observed
in previous work [7], [8]. In presence of ACI, we observe that
the importance of channel bonding relatively grows, especially
for better quality links. This could be a result of the interfering
link itself getting negatively affected because of the ACI from
the link under test. From a packet loss perspective, channel
bonding is generally harmful except for best quality link and
ACI scenario when it has a very positive effect. We believe
similar reason as the one just mentioned applies here as well.

4) Frame Aggregation Impact: Impact of frame aggrega-
tion on throughput is largely along expected lines — longer
frames are not effective with worsening link quality. Results
show that this fact holds even in presence of interference.

Packet loss results are relatively more interesting. They
show that the impact of frame aggregation is almost negligble
compared to that of MCS and STBC. This can be explained as
follows. Because of the block ACK mechanism and selective



sub-frame retransmission, frame aggregation can recover from
losses efficiently. But on the other hand, using a high MCS
or SDM could make losses go out of control of the ARQ
mechanism with or without frame aggregation.

C. Differentiating Interference Types

Results in the previous sub-section suggest that relative
impact of different features changes depending on the inter-
ference type a link experiences. For example, MCS becomes
more important in presence of CCI whereas channel bonding
influence grows in the ACI case. To exploit these observations
in the context of a link adaptation mechanism, it is important
for a sending node of a link to be able to detect the type
of interference it is experiencing at a given point in time
(this includes no interference case as well). Motivated by
this, we assess the effectiveness of differentiating between
interference types using a supervised machine learning clas-
sifier model. Classes for this model are different interference
types (no interference, CCI, ACI) and feature vector could
be < FA,ChB,MIMO,MCS, Throughput >. Using mea-
surements like those we obtained for this characterization
study, one could train a supervised machine learning classifier
model providing it with feature vector and known class infor-
mation. During the operational phase, a link could measure
its current throughput and combine it with current settings for
various 802.11n features and query that interference classifier
model, which would output the most likely interference type,
statistically speaking.

We implemented the above idea considering several dif-
ferent classifiers described in Section II.D. Results are shown
in Table IV. We observe that logistic classifier provides with
the best result with an average accuracy of 98% across all
link qualities, suggesting that it is indeed possible for a sender
node to indirectly infer the type of interference experienced
by its links. Together with link quality measurements (which
are relatively easier to obtain), the scenario of operation can
be inferred and best settings for that scenario can be applied.
Investigation of a 802.11n link adaptation algorithm based on
this idea is a key aspect for future work. Also note that it is
harder to infer the interference type for higher quality links,
possibly because there are more combination of features that
influence the performance differently when the link quality is
better, making the feature space larger and classification harder.

Another interesting observation is that Naive Bayes clas-
sifier performs the worst among all the classifier algorithms
considered. Since the assumption of independence between
features in the feature vector is a unique aspect of Naive Bayes,
its poor accuracy could be attributed to this assumption not
holding true, which suggests interdependence among features.
We explore this issue further in the next subsection.

D. Interdependence among 802.11n Features

To verify the existence of interaction among different
features for optimizing throughput or packet loss metrics, we
revisit the categorical regression results from section III.B and
consider interpreting the importance values of each feature
independently to choose an appropriate setting for that feature.
For example, for ACI – Link 2 scenario, looking at Fig. 6 (c),
we could take the importance values to imply choosing the

Classifier Link 1 Link 2 Link 3 Link 4 Link 5
Logistic Regression 97.7% 97.7% 98.2% 99.1% 100%

k Nearest Neighbours 82.8% 87.1% 87.7% 88.8% 84.4%
C4.5 Decision Tree 63.8% 73% 80.3% 91.1% 82.2%

Naive Bayes 53.7% 53.9% 67% 86.76% 65.1%

TABLE IV: Interference type classifier accuracy for different
link qualities and classifier algorithms.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

MCS index

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

(a) ACI link 2

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

MCS index

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 
FA−ON ChB−ON SDM
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(b) CCI link 4

Fig. 8: Example scenarios for throughput suggesting interde-
pendence among features.

features as follows: frame aggregation, channel bonding and
STBC enabled, and a low to moderate modulation and coding
rate. However, raw measurement results for this scenario
shown in Fig. 8(a) suggest a different setting of features for
obtaining optimal throughput: frame aggregation OFF, channel
bonding ON, SDM and reasonably high modulation and coding
rate. As another example, consider CCI - Link 4 scenario
from Fig. 6 (b) and the corresponding raw measurement
results showing the optimal configuration (Fig. 8(b)). Both
these examples reinforce the fact that there exists potential
interdependence among various features that prevents them to
be treated in isolation when we aim to optimize performance.

In order to quantify whether interdependence among fea-
tures exists we use the first phase of the response surface
methodology (RSM) as described in section II.D to identify
significant pairwise interactions among 802.11n features given
a link scenario. Table V summarizes pairwise interactions
found to be statistically significant after examination of the
ANOVA table resulting from applying RSM. This table con-



NI CCI ACI
Link 1 FA-ChB FA-ChB FA-ChB

ChB-MIMO ChB-MIMO ChB-MIMO
ChB-MCS ChB-MCS ChB-MCS
FA-MIMO FA-MIMO FA-MIMO

MIMO-MCS MIMO-MCS MIMO-MCS
FA-MCS FA-MCS FA-MCS

Link 2 FA-ChB FA-ChB FA-ChB
MIMO-MCS ChB-MIMO ChB-MIMO

FA-MCS MIMO-MCS ChB-MCS
FA-MCS MIMO-MCS

Link 3 FA-ChB MIMO-MCS ChB-MIMO
MIMO-MCS MIMO-MCS

Link 4 ChB-MCS MIMO-MCS MIMO-MCS
MIMO-MCS

FA-MCS
Link 5 FA-ChB MIMO-MCS MIMO-MCS

FA-MIMO
MIMO-MCS

TABLE V: Pairwise interdependence among 802.11n features
in different scenarios.

firms that there is interdependence among features in every
scenario, indicating features that must be jointly selected. From
a practical viewpoint, results in Table V suggest that for good
quality links all features need to be selected together, whereas
for marginal to poor quality links and in the presence of
interference it is sufficient to consider interaction between only
a subset of the features. This observation is consistent with
regression results in Fig. 6, which show that few features have
majority of the impact in poor quality links.

E. Fairness

Fairness in the context of 802.11n has not received much
research attention. As an example to illustrate the fairness
issue, Fig. 9 shows throughput share over time between links
(2)-(4) in our testbed when they are simultaneously active in
the 802.11n mode and 802.11a mode, respectively. Settings for
this experiment are similar to the baseline results presented in
Fig. 3. Unfairness with 802.11n is quite apparent, with higher
quality links taking a greater share of the throughput at the
expense of poor quality links. This is because higher quality
links can use higher MCS values which in turn causes selection
of larger aggregated frame sizes, thus making higher quality
links occupy the channel for long periods.

Like with throughput and packet loss results (in Figs. 6 and
7), we have carried out categorical regression based analysis
of the impact of different 802.11n features on fairness. For this
we consider two scenarios, one where all links have similar and
good link quality (see Fig. 10 a), and another corresponding
to the node placement shown in Fig. 1. Results for fairness
and aggregate throughput are shown in Figs. 10 (b) and (c).
We see that relative impact of 802.11n features on fairness
varies depending on the network scenario and is different from
that on aggregate throughput. Due to space limitations, further
discussion of these results is omitted.

IV. RELATED WORK

The work of Shrivastava et al. [4] is the earliest attempt to
analyze some of the key characteristics of 802.11n. Their study
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Fig. 9: Illustration of unfairness with 802.11n compared to
802.11a.

Features Interference

Number STBC ChB MCS FA CCI ACI
of Streams

[4] – – " " " " –
[5] " – " " " " –
[6] – – " " " – –
[7] – " " " – " –
[8] " " " " – " "

[9] " – – " – " –
[10] " " " " – " –

TABLE VI: 802.11n features varied and interference cases
considered in previous work.

highlights the negative impact of legacy devices on 802.11n
performance and also that channel bonding creates interference
due to channel leakage. More recently, Deek et al. [8] have
come to the same conclusion on the side effect of channel
bonding. Both [8] and [7] focused on the impact of channel
bonding. Arslan et al. [7] observed that channel bonding may
be harmful even in the absence of interference for poor quality
links; our results re-confirm this observation. Deek et al. [8]
performed a thorough investigation of the impact of channel
bonding under different types of interference and suggest the
use of 20MHz channel separation in case of simultaneous
transmissions between high quality links using 40MHz chan-
nels to counter the channel leakage issue mentioned above.
Note that in [8] and [7], frame aggregation is disabled, which
is a key shortcoming given that frame aggregation is a crucial
feature affecting throughput in 802.11n networks [14].

Pelechrinis et al. [6] investigated the impact of packet size,
channel width and transmission rate on 802.11n link perfor-
mance. They observed that performance of SDM is highly
sensitive with higher modulation and coding rates even in
absence of interference, and that high rates are very susceptible
to external interference and/or noise. They also suggest joint
adaptation of MAC layer parameters as a way to avoid the
throughput reduction with smaller packet sizes.

Pefkianakis et al. [5] discovered the non-monotonicity in
the increase of throughput with increase in MCS index (Table
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Fig. 10: Relative impact of 802.11n features on fairness and aggregate throughput performance in different network scenarios.

I). They then proposed a new rate adaptation algorithm called
MIMO Rate Adaptation (MiRA) algorithm that takes the non-
monotonicity observation into account. Specifically, MiRA
zigzags between single and double stream modes in the process
of adapting the bit-rate. MiRA also use frame aggregation
and block ACKs to detect and differentiate between collisions
and channel errors. It does not, however, adapt the frame
aggregation feature for the sake of throughput optimization.

More recently, Lakshmanan et al. [9] proposed a metric
based on the multiplexing gain in order to adapt the bit-
rate. Additionally, they observed that higher throughput can
be achieved using a single stream for some link qualities and
that 802.11n links are more susceptible to interference.

Nguyen et al. [10] proposed a 802.11n bit-rate adaptation
algorithm termed RAMAS. It takes advantage of the mono-
tonic relation between loss and modulation types to avoid
random rate sampling and adapts the modulation scheme,
number of streams, channel width and guard interval. They
also consider fairness but their focus is limited to comparing
RAMAS with other rate adaptation algorithms fairness. Ta-
ble VI summarizes the 802.11n features studied or adapted
and interference cases considered in previous work.

V. CONCLUSION

In this paper, we have experimentally studied how 802.11n
features affect performance (throughput, packet loss and fair-
ness) and interact with each other across a wide range of
scenarios differing in channel and interference conditions.
We employed categorical regression based analysis for easing
characterization of relative impact of different features. We
believe that this type of analysis should prove valuable even
for other 802.11 standards in the making (e.g., 802.11ac).
We have also assessed the potential pairwise interdependence
among different 802.11n features in various link scenarios
via response surface methodology. Our analysis showed that
different features impact performance differently depending on
the network scenario determined by channel and interference
conditions; same is true about their mutual interaction. As a
step towards practical and comprehensive 802.11n link adap-
tation, we showed the feasibility of identifying interference
type online at sender side using throughput measurements
and a supervised machine learning based classifier. We have
also highlighted the unfairness problems peculiar to 802.11n.

Expanding the scope of our characterization study to make it
more comprehensive with additional scenarios and applications
is an aspect for future work. Besides, in the future we intend
to work on a detailed specification of holistic 802.11n link
adaptation mechanism that incorporates interference differen-
tiation component presented in this paper, leverages insights
from our analysis and with wider applicability (e.g., multi-AP
802.11n network scenarios). We also plan to investigate the
constrained optimization of throughput while ensuring fairness
in the context of 802.11n link adaptation.
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