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Abstract—We consider for the first time available bandwidth
estimation (ABE) in the context of 802.11n, which is fast replacing
the legacy 802.11a/b/g networks. We experimentally show that
the frame aggregation (FA) feature of 802.11n is the dominant
one among 802.11n features affecting the ABE. Using an indoor
802.11n wireless testbed, we compare three ABE tools (WBest,
DietTopp and pathChirp) in various cross-traffic scenarios.
We find that FA significantly hurts the accuracy of all ABE
tools; DietTopp and pathChirp are relatively more robust than
WBest. Because faster available bandwidth estimation and less
intrusiveness are desirable properties of any ABE tool and WBest
satisfies them relatively better than the other two tools, we conduct
an in-depth investigation into the harmful effect of FA on ABE
using WBest. This in turn led us to come up with two key design
principles to counter FA effects: (1) treating aggregated probes as
one jumbo probe; and (2) generating a larger number of probes.
We then develop an enhanced version of WBest termed WBest+
that incorporates these principles. Our evaluation shows that the
new version is effective in achieving accurate ABE in the presence
of FA.

I. INTRODUCTION

End-to-end available bandwidth estimation (ABE) has a wide
range of uses including adaptive application content delivery;
transport-level transmission rate adaptation and admission con-
trol; traffic engineering and peer node selection in peer-to-
peer/overlay networks [1], [2]. For instance, adaptive media
streaming services (e.g., [3], [4], [5], [6]) keep multiple bitrate
versions of each video with different encodings and stream
the content to a client with a bitrate that closely matches the
available bandwidth along the end-to-end path to the client.
Media servers therefore typically employ bandwidth estimation
techniques (e.g., packet-pair) within their streaming protocols
(e.g., [7]) to accurately estimate available bandwidth for adap-
tive streaming and enhanced user experience.

As Internet access increasingly happens from wireless en-
abled devices (laptops, tablets and smartphones), the need for
available bandwidth estimation over paths with wireless links
– especially WiFi links – takes greater importance given that
people spend most of their time indoors where WiFi is prevalent
(e.g., homes). The WiFi technology based on the 802.11 suite of
standards has evolved significantly in the past decade and a half
in view of its widespread use and the growing demand for wire-
less speeds to match wired Ethernet. The current in the 802.11
series of standards is 802.11n [8], which can provide throughput
above the MAC layer nearly reaching 400 Mbps. The follow-
on standards in the making (e.g., 802.11ac [9]) promise gigabit

wireless speeds. While the physical layer enhancements such as
the use of multiple antennas and channel widths are responsible
for increased physical layer bit-rates in 802.11n and 802.11ac,
MAC layer enhancements especially frame aggregation (FA)
are key to translating those bit-rates to higher throughputs above
the MAC layer [10]. Frame aggregation, as the name suggests,
aggregates several frames together and amortizes the protocol
overhead (e.g., headers, inter-frame spaces, backoff) over the
set of aggregated frames, thereby significantly improving MAC
protocol efficiency.

Our main goal in this paper is to study the impact of frame
aggregation feature in 802.11n on end-to-end available band-
width estimation. As available bandwidth estimation typically
involves the use of active measurement with probing packets
(packet pairs, packet trains, etc.), the flow of probing packets
can be affected by the use of frame aggregation, which is the
rationale underlying our goal. While there exists a substantial
body of work (e.g., [11], [12], [13], [14], [15], [16], [17])
examining available bandwidth estimation with 802.11 wireless
links, it only considers the case of legacy 802.11 networks
(802.11a/b/g) which are fast becoming out-of-date. We begin
to address this deficiency in this paper by shedding light on the
effect of FA – a key feature of current 802.11n – on available
bandwidth estimation.

Towards this end, we conduct a measurement based study
using an indoor 802.11n wireless testbed. For our study, we
consider WBest [13], DietTopp [12] and pathChirp [18] as three
representative yet widely different ABE tools given that all
three of them have been previously evaluated in the legacy
802.11a/b/g context. A more detailed justification behind the
choice of these specific tools is given in §II. We study their
available bandwidth estimation accuracy in the presence of
802.11n frame aggregation across a wide range of cross-traffic
scenarios.

Our study leads to the following contributions and findings:
• We consider available bandwidth estimation in the 802.11n

context for the first time, and show that frame aggregation
is the most dominant feature among 802.11n features
affecting ABE (§II-C).

• Our comparison of different ABE tools in various cross-
traffic scenarios focusing on the impact of FA leads to the
following observations (§IV):

– The FA feature significantly hurts the accuracy of all
ABE tools considered.

– DietTopp and pathChirp, the tools that follow the978-1-4799-4657-0/14/$31.00 c© 2014 IEEE



Probe Rate Model (PRM), are relatively more robust
in the presence of FA compared to WBest that belongs
to the Probe Gap Model (PGM) category.

– Different cross-traffic scenarios affect the ABE tools
differently. We also find that with FA underestimation
is more predominant across all tools and scenarios.

• Keeping in mind that PGM based tools like WBest are
better suited for fast ABE needed for adaptive multimedia
streaming services, our motivating use case, we take a
deeper look at the FA effect on the working of WBest and
come up with the two general principles of jumbo probes
and a larger number of probes that together make up
our solution approach for improved ABE in the presence
of FA (§V). We then develop an enhanced variant of
WBest which incorporates our approach and show that it is
indeed effective in achieving robust and accurate ABE over
FA-enabled 802.11n networks. Although our approach is
evaluated only in the context of WBest, we believe that it
is more widely applicable.

II. BACKGROUND AND MOTIVATION

A. Frame Aggregation (FA)

Frame aggregation is a MAC layer enhancement and a
mandatory feature of 802.11n/ac to improve protocol effi-
ciency, i.e., to translate the physical layer bit-rates to com-
parable throughputs above the MAC layer. Protocol effi-
ciency is a major concern underlying the design of 802.11n
because of two reasons: (1) physical layer bit-rates with
802.11n are up to an order of magnitude higher compared
to the earlier legacy standards of 802.11a/b/g (54Mbps vs.
600Mbps); (2) the protocol overhead (medium access, header
overhead, inter-frame spaces) has a more harmful effect
on higher layer throughput at higher physical layer rates.

PHY HDR A-MPDU

Subframe 1 Subframe NSubframe 2...
MPDU Delimiter PaddingMPDU

Fig. 1. A-MPDU type frame aggrega-
tion.

The idea behind FA is
simple: spread the proto-
col overhead over several
frames. For FA to be ef-
fective, it needs a compan-
ion feature called block ac-
knowledgments (similar to
the selective ACK feature of
TCP).

802.11n specifies two types of frame aggregation: the Aggre-
gate MAC Protocol Data Unit (A-MPDU) and the Aggregate
MAC Service Data Unit (A-MSDU). A-MPDU corresponds to
aggregating multiple MPDUs (subframes) in the MAC layer,
where MPDU (subframe) refers to a valid 802.11 MAC frame
with MAC header, one IP packet as payload and a frame
check sequence (FCS). A-MSDU, on the other hand, aggregates
several IP packets above the MAC layer and puts them into one
MAC frame with a common MAC header and FCS. A-MPDU
is the most widely supported and popular option, so we only
focus on A-MPDU frame aggregation and simply refer to it as

frame aggregation or FA in the rest of the paper. The A-MPDU
type FA is illustrated in Figure 1.

B. Available Bandwidth Estimation (ABE)

The available bandwidth on a link is the unused capacity
on that link available for new flows. The available bandwidth
on a path (or end-to-end available bandwidth) is the minimum
available bandwidth across all links on the path. The link
determining the path’s available bandwidth is commonly re-
ferred to as the tight link [19]. Clearly, the end-to-end available
bandwidth is upper bounded by the path capacity, which is the
maximum data rate that can be supported by the path. A path’s
capacity is limited by the link with the smallest capacity (also
called the narrow link).

On wireless links (including ones based on 802.11), link
capacity is dependent on the maximum reliable physical layer
bit-rate and that is in turn dependent on the channel condition
at the time of measurement. Moreover, the effective capacity
of a 802.11 link above the MAC layer is much lower than the
actual link capacity due to overhead related to protocol headers,
inter-frame spaces and backoffs. In this paper, we use the
term ‘capacity’ to refer to effective capacity. Besides capacity,
the available bandwidth is dependent on the utilization of the
link/path by traffic from existing flows on any link (wireless or
wired) on the end-to-end path; this traffic is commonly referred
to as the cross-traffic. As cross-traffic can be time-varying, so
is available bandwidth. Because of contention based access
to the shared wireless medium in 802.11 networks, the type
and amount of cross-traffic has a potentially big influence on
the available bandwidth. Note that depending on the nature of
cross-traffic the tight link needs not necessarily be the narrow
link.

In this paper, we limit our focus to the active measurement
approach. While passive measurement of available bandwidth
or utilization (through measuring busy and idle times [20], [21],
[22]) may be appropriate for the last hop path segment with
802.11 wireless link, it requires cooperation of intermediate
access points (APs) for end-to-end ABE, making it less prac-
tical than the active measurement approach. Moreover, passive
techniques usually rely on lower level information from the
system or device drivers which may require superuser privileges
(e.g., for packet captures) or device driver manipulation.

Most active ABE techniques can be classified as belonging
to one of two models [23], [15], [17], [2]: 1) Probe Gap Model
(PGM) and 2) Probe Rate Model (PRM). We briefly describe
each of them in the following.

1) Probe Gap Model: This model relies on the observation
that successive probe packets traversing a tight link undergo
increased dispersion in time due to cross-traffic. The rate of
cross traffic (alternatively, the utilization of the tight link) is
estimated via increase in dispersion experienced by back-to-
back probe packets. Available bandwidth is then computed
using the estimated cross-traffic rate and capacity; the latter is
either assumed to be known or separately estimated. Examples
of PGM based tools include: Spruce [23] and WBest [13].



2) Probe Rate Model: This model is based on the notion
of self-induced congestion. The essential idea is that when the
probe traffic rate exceeds the available bandwidth of a path,
the measured reception rate of probes starts lagging behind
their sending rate (or equivalently, the inter-probe arrival times
measured at receiver keep increasing). The maximum probe
traffic rate at which this transition occurs is taken as the avail-
able bandwidth estimate. PRM based tools usually are iterative
spanning several rounds to probe at different rates. Several
tools such as Pathload [24], DietTopp [12] and pathChirp [18]
belong to this category. These tools differ in their probing traffic
patterns and receiver-side statistical analysis mechanisms.

We in our study choose WBest, DietTopp and pathChirp
because they represent the two different ABE models (PGM
and PRM) described above and also because they are known to
work well in Wi-Fi environments. WBest has been specifically
designed for (legacy) 802.11 wireless LANs and represents the
PGM class of ABE tools. DietTopp, on the other hand, falls
in the PRM class of tools and has been considered in various
evaluation studies of ABE over 802.11 wireless LANs (e.g.,
[12], [14]). We include pathChirp, which also belongs to the
PRM category, as it has been shown to yield good results in
some ABE evaluation studies in wireless network settings (e.g.,
[15], [25]). Moreover, DietTopp and pathChirp, though both are
from the same PRM class, differ in their probing traffic pattern,
thereby allowing us to understand the relative effectiveness of
different probing patterns. In addition, all three of them are
publicly available. We next briefly describe these tools.

WBest. It consists of two steps. In the first step, a number of
probe packet pairs are sent to estimate the effective capacity.
The second step then transmits a probe packet train at the
estimated effective capacity rate to estimate the available band-
width. Finally, the packet loss rate experienced by the probe
train is used to correct the estimated available bandwidth.

DietTopp. As a typical PRM based tool, it operates over
multiple rounds, transmitting a probe packet train with an
increased rate in each successive round. The highest sending
rate with a matching receiving rate is reported as the available
bandwidth estimate.

pathChirp. pathChirp employs a different probing traffic pat-
tern called a chirp, consisting of multiple exponentially spaced
probe packets of the same size, to improve efficiency and
accuracy over the earlier TOPP [26] and Pathload tools. Wide
range of rates can be probed within a single chirp, thereby
improving efficiency. It performs statistical analysis at the
receiver to estimate available bandwidth from multiple chirps.

C. Why Frame Aggregation?

Before we conduct our in-depth measurement study, we first
elaborate on the rationale behind our choice to focus on frame
aggregation among the various new features introduced as part
of 802.11n that also include channel bonding (CB) and spatial
division multiplexing (SDM).

Figure 2 shows absolute errors for the different ABE tools
used when each of these three features is disabled relative to

the case where all of them are enabled. Clearly, the absence
of FA leads to the most reduction in ABE error for all tools,
thus demonstrating that FA has the biggest impact on ABE in
comparison with SDM and CB.

We therefore focus on FA and take an in-depth look at its
impact on available bandwidth estimation with various ABE
tools and in different cross-traffic scenarios. To isolate the effect
of FA on ABE, we disable other 802.11n features including
SDM and CB in the remainder of this paper and leave the
characterization of the impact of those other features on ABE
for future work. For the same reason, we factor out the link
quality and rate diversity-related effects by ensuring all links
operate reliably at the maximum bit-rate possible without SDM
(i.e., MCS index 7 in 802.11n which corresponds to 65Mbps
physical layer bit-rate).

D. Related Work

The available bandwidth estimation topic has received much
attention from the research community with many ABE
tools developed, mostly for wired networks (e.g., TOPP [26],
Pathload [24], pathChirp [18], Spruce [23]) but some specifi-
cally for wireless networks (e.g., WBest [13]). There also exist
several comparison studies of ABE tools for wired networks,
some in the context of a new proposal (e.g., [18], [23]) while
in other cases comparing a larger number of ABE tools in a
common set of scenarios (e.g., [1], [27], [2]).

Lakshminarayanan et al. [11] were among the first who
highlighted the unique challenges posed by 802.11 wireless
networks to capacity and available bandwidth estimation due to
use of multiple physical bit-rates, shared access and contention.
More recently, a detailed analysis of the impact of multiple
access contention related delays with 802.11 CSMA/CA on
active bandwidth measurements is presented in [16].

A number of experimental performance evaluation studies
have focused on available bandwidth estimation with wireless
links, most of them in the context of 802.11 wireless LANs
and mesh networks (e.g., [12], [13], [14], [15]) but a few
also consider cellular networks (e.g., [25]). Koutsonikolas and
Hu [17] consider both 802.11 and cellular links in their study.

However, none of the above examine available bandwidth
estimation in now commonplace 802.11n wireless networks, the
main focus of our work.

III. METHODOLOGY

Frame aggregation can affect the available bandwidth esti-
mation (e.g., by causing multiple probe packets to get packed
inside a single frame). Our broad aim is to characterize the
impact of FA on end-to-end ABE in various 802.11n wireless
LAN (WLAN) scenarios. For this study, we choose three
representative active measurement tools for ABE (as already
noted in the previous section): WBest, DietTopp and pathChirp.
Testbed. We take an experimental approach using an indoor
802.11n wireless LAN testbed (illustrated in Figure 3) that em-
ulates typical 802.11 WLAN deployments in home and hotspot
environments in a simplified form. It consists of two co-located
Wi-Fi networks—the available bandwidth estimation occurs
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Fig. 2. Relative impact of key 802.11n features (FA, channel bonding (CB) and spatial division multiplexing (SDM)) on the accuracy of different ABE tools
in Scenario 1 (see Figure 3).
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Fig. 3. Schematic of testbed and various cross-traffic scenarios.

from a server to a client (node A) in the left network while
the right network causes interfering traffic. In the left network,
two 802.11n clients (nodes A and B) are connected to 802.11n
enabled access point AP1 over a real wireless channel and
AP1 is connected to server S via a Gigabit Ethernet link. The
Gigabit link is chosen to reflect the recent increased availability
of high-speed broadband services [28], thus rendering even
802.11n wireless access links bandwidth-limited in our setting
(wireless link capacity is 60Mbps with FA only enabled). In
the right network, node C is connected to another server via
access point AP2. All the 802.11n hardware in our testbed is
based on Atheros chipsets and is used via the the ath9k wireless
driver. To avoid external interference from other operational
WiFi networks in the surrounding environment of our testbed,
we set both AP1 and AP2 (and as a consequence for all
client nodes A, B and C as well) to operate on channel 149 in
5GHz band which we identified to be unused by other external
networks.

Cross-traffic scenarios. As the extent of FA influence on
ABE potentially depends on the nature of cross traffic, we
consider a wide range of cross-traffic scenarios, reflecting some
of the key types of cross-traffic that would occur in practice.
These scenarios are illustrated in Figure 3 and described below.
The first three scenarios model various types of cross-traffic
within a single AP WLAN setting, whereas the last two model
cross-traffic due to interference from a co-located WLAN. We
consider probing traffic in the downstream direction to WLAN
client (node A) for all scenarios to reflect a case where a
multimedia streaming server wants to determine the available
bandwidth to a user. The level/amount of cross-traffic in each
scenario is a variable parameter. In all scenarios, cross-traffic
is generated as a UDP flow using the well-known Iperf [29]
tool with default packet size of 1470 bytes and a specified
generation rate to realize different levels of cross-traffic.

• Scenario 1: Single node case. In this scenario, there are two
flows destined to node A from server S; one is a probing
measurement flow using one of the three ABE tools considered
(WBest, DietTopp or pathChirp) and the other is a cross traffic
flow (cross-traffic 1 in Figure 3). This scenario models cross-
traffic that reflects other downstream application traffic such as
P2P file download.
• Scenario 2: Cross-traffic to Node B. Different from Scenario
1, this scenario models a situation where another user (node
B) within the WLAN (e.g., a home WiFi network) competes
with node A for network bandwidth, for instance, via file
downloading or web browsing application traffic. It is the only
source of cross-traffic in this scenario and shown as cross-
traffic 2 in Figure 3.
• Scenario 3: Cross traffic from Node B. Cross-traffic (denoted
as cross-traffic 3 in Figure 3) passes through AP1 from B
to S. Thus, as opposed to Scenario 2 where AP1 arbitrates
channel access to both measurement and cross-traffic clients,
B and AP1 contend for channel access in this scenario.
• Scenario 4: Hidden terminal case. AP1 and AP2 are outside
the communication range of each other but their associated
client nodes (A and C) are close enough to hear each other
and transmissions from both APs.
• Scenario 5: All-to-all interference case. All nodes (access
points AP1 and AP2 and their associated clients A and C) hear
from and talk to each other. This scenario models a commonly
occurring situation with neighboring home WiFi networks with
overlapping coverage areas. Note that in Scenarios 4 and 5, the
only source of cross-traffic is from the other server to node C
via AP2.

Obtaining ground truth. For each of the cross-traffic scenar-
ios, we need true available bandwidth to assess the accuracy
of different ABE tools under consideration. For this, we follow
an approach similar to that taken in [17]. For Scenarios 1–3,
we use backlogged Iperf UDP flow (for 100 seconds) on the
probing measurement flow path to find out the true capacity
and subtract the level of cross-traffic injected to obtain the true
available bandwidth. In Scenarios 4 and 5 with interference
traffic from another WLAN, the actual available bandwidth is
computed as the throughput obtained for a backlogged Iperf
UDP flow on the probing measurement flow path while cross-
traffic on the interfering path is present at the specified level.
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Fig. 4. Accuracy of DietTopp,WBest and pathChirp in Scenario 1 at varying
levels of cross-traffic. The median relative error across all cross-traffic levels
for DietTopp, WBest and pathChirp are 4%, 14% and 16% respectively when
FA is OFF; and 39%, 83% and 24% when FA is ON.

Metrics. Our primary focus is on studying the accuracy of dif-
ferent ABE tools in the presence of FA in different cross-traffic
scenarios and levels of cross-traffic. We consider the following
two metrics to quantify accuracy of a tool: (1) absolute error
computed as |Estimated−True|, i.e., the absolute difference
between the estimated and true available bandwidth values; (2)
relative error computed as (Estimated− True)/True. Each
data point in our plots is an average of at least 20 runs and the
error bars show standard deviations.

We also touch upon two other metrics commonly considered
when evaluating an ABE tool, namely measurement dura-
tion/latency and intrusiveness (measurement overhead). Note
that the method used for obtaining true available bandwidth
(i.e., via a backlogged Iperf UDP flow) is not suitable for ABE
in practice because it is highly intrusive in terms of overhead
compared to ABE tools with carefully chosen probing traffic
(packet pairs, trains or chirps).

IV. PERFORMANCE OF CURRENT ABE TOOLS IN
FA-ENABLED 802.11N SCENARIOS

In this section, we compare WBest, DietTopp and pathChirp
in various cross-traffic scenarios focusing on the impact of FA
on their accuracy.

A. Scenario 1: Single node case

In Scenario 1, contention and interference among multiple
links is absent, so FA can have a more pronounced effect.
We evaluate the accuracy of WBest, DietTopp and pathChirp
with(out) FA. All other 802.11n features are disabled. Results
are shown in Figure 4. The amount of cross-traffic is varied
and shown as percentage values on the x-axis with respect to
the path capacity. For 100% cross-traffic rate, some of the tools
under test did not converge so results are only reported till 80%
cross traffic rate.
ABE accuracy when FA is OFF. Figure 4(a) illustrates that
DietTopp, WBest and pathChirp achieve good ABE accuracy
across most cross traffic rates; DietTopp performs better than
WBest and pathChirp. DietTopp suffers at most 18% error at
80% cross traffic rate (i.e., 80% of capacity) while WBest
has 43% error at the same rate. DietTopp and WBest tend
to underestimate ABE. pathChirp, on the other hand, exhibits
overestimation, which coincides with the conclusion in [27].
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Fig. 5. Accuracy of the three tools in Scenarios 2 and 3 at varying levels of
cross-traffic. True capacity is 30Mbps for FA-OFF and 60Mbps for FA-ON.
The median relative error across all cross-traffic levels for DietTopp, WBest
and pathChirp are: 1%, 40% and 1% when FA is OFF in Scenario 2; 72%,
92% and 45% when FA is ON in Scenario 2; 1%, 12% and 10% when FA is
OFF in Scenario 3; 46%, 52% and 51% when FA is ON in Scenario 3.

Also note that the relative error metric somewhat amplifies
the error values with increasing cross-traffic rates as true
value of available bandwidth (i.e., denominator in relative error
computation) correspondingly decreases.

ABE accuracy when FA is ON. Compared to the FA OFF
case, enabling FA increases estimation error by at least 20%
for DietTopp and 53% for both WBest and pathChirp even in
an idle link with no cross-traffic (i.e., at 0% cross-traffic rate).
The estimation error increases up to 60% for DietTopp and
100% for WBest as the amount of cross traffic increases (WBest
reports 0Mbps available bandwidth when cross traffic rate gets
larger than 50%). One notable observation is that pathChirp
initially underestimates ABE at lower cross-traffic rates, works
most accurately at 50% cross-traffic rate and then begins to
overestimate ABE. On the other hand, other tools consistently
output less ABE than the ground truth.

B. Scenarios 2 and 3: Cross-traffic to/from node B

We now study Scenarios 2 and 3 with wireless contention.
Recall from §III and Figure 3 that the only difference between
Scenario 2 and Scenario 3 is the direction of cross-traffic.

FA OFF case. From Figures 5(a) and 5(c), we see that DietTopp
and pathChirp (both PRM based tools) work better than WBest
(a PGM based tool) in most cross traffic rates in both scenarios.
pathChirp is most stable in Scenario 2 while it experiences
highest overestimation errors with higher cross-traffic rates in
Scenario 3. Similar behavior is seen with DietTopp in both
scenarios, which is somewhat different from the observation
made in Figure 4(a). However, this is not too surprising because
it is known that PRM based tools like DietTopp report the



fair share bandwidth rather than available bandwidth in case
of a fair wireless link [14]. Thus, DietTopp overestimates
the available bandwidth by reporting the fair share when the
cross traffic rate is more than 50% of the capacity. Another
notable observation is that WBest in Scenario 2 exhibits stable
estimation performance till 30% cross traffic rate but becomes
very erroneous quickly, yielding -100% error from 65% cross
traffic rate. On the other hand, in Scenario 3, as the amount of
cross traffic increases (at the mark of 50% cross traffic rate), the
further underestimation with WBest stops, the estimation error
becomes smaller and the tool eventually produces overestimates
at 80% cross traffic rate.

FA ON case. WBest behaves similarly as shown in FA
OFF case (see Figure 5(a) and 5(c)) in both Scenarios 2
and 3 although its performance in FA ON case is worse
than in FA OFF case. pathChirp exhibited overestimation
trends in the FA OFF case whereas in the FA ON case
it underestimates available bandwidth for most cross traffic
rates in both scenarios. One unique phenomenon from Fig-
ures 5(b) and 5(d) is that DietTopp shows different behav-
iors between Scenario 2 and Scenario 3. More specifically,
its behavior in Scenario 2 follows a similar trend to the
corresponding FA OFF case, whereas underestimation be-
comes worse as the cross traffic rate increases in Scenario 3.
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To understand
why, we analyze the
behavior of DietTopp
at 80% cross-traffic
rate in Scenarios
2 and 3 (150%
overestimation
error in the former
scenario while 70%
underestimation error
in the latter as shown
in Figure 5(b) and
Figure 5(d)). Figure 6 shows how DietTopp estimates available
bandwidth based on measurement samples. In the figure, each
point represents one measurement sample given the sending
rate of a probe train. The intersection of y = 1 line with the
trend line (obtained by linear regression of the measurements
points) is the available bandwidth (denoted as ‘Estimated AB’
in Figure 6) estimated by DietTopp [12]. As mentioned before,
in Scenario 2 where the AP coordinates the wireless medium
access for both measurement and cross-traffic, the fair share
nature of DietTopp is preserved. As a result, the receiving
rates of 28–34Mbps are observed in the Scenario 2. These
receiving rate samples form the regression line (presented in
green color) that meets the y = 1 line at 32Mbps sending
rate. Therefore, we have an over-estimate as the true available
bandwidth is 12Mbps. On the other hand, the wireless channel
is not equally shared in Scenario 3. The intersection of the
y = 1 line with the regression line (presented in red color)
constructed with the data points of the receiving rates of only
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(c) FA-OFF, Scenario 5
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(d) FA-ON, Scenario 5
Fig. 7. Accuracy of the three tools in Scenarios 4 and 5. The median relative
error across all cross-traffic levels for DietTopp, WBest and pathChirp are:
8%, 24% and 3% when FA is OFF in Scenario 4; 27%, 59% and 33% when
FA is ON in Scenario 4; 2%, 25% and 9% when FA is OFF in Scenario 5;
26%, 63% and 47% when FA is ON in Scenario 5.

16–20Mbps is found at a negative sending rate, thus leading
to an under-estimate.

C. Scenarios 4 and 5: Interference cases

We now present results for Scenarios 4 and 5. Figure 7 shows
results for interfering traffic only till 20Mbps (the maximum
traffic rate supported in Scenario 4 when FA is OFF) for
consistency across both scenarios and with(out) FA.

FA OFF case. Figures 7(a) and 7(c) show that both DietTopp
and pathChirp achieve less than 20% error overall across both
scenarios. On the other hand, WBest quickly loses its accuracy
as the amount of cross traffic increases; the average error with
interfering traffic of 20Mbps is almost 40%. This shows that
WBest is more susceptible to interference than other tools.
We also observe that DietTopp appears to be more robust in
Scenario 5 than Scenario 4.

FA ON case. All three tools become more erroneous as com-
pared to FA OFF case in both scenarios. DietTopp experiences
at least 3× higher error in Scenario 4 with FA ON than with FA
OFF, and at least 5× higher in Scenario 5. Similarly, pathChirp
exhibits 3× worse accuracy as compared to FA OFF case.
Moreover, there is no noticeable difference in accuracy of the
tools between the two scenarios.

D. Summary

We make three key observations from this section:

• FA has a detrimental impact on the accuracy of all the three
tools (DietTopp, WBest and pathChirp). In many instances, the
estimation errors increased by at least three times with FA
compared to the case when FA is OFF.
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Fig. 8. (a) Accuracy of capacity estimation with WBest; (b) CDF of dispersion times from 30 probe pairs used for WBest’s capacity estimation phase; (c)
Accuracy of WBest with known capacity for varying probe train sizes and cross-traffic levels. All cases correspond to Scenario 1 when FA is ON.

• With FA ON, PRM based tools, DietTopp and pathChirp,
generally outperform PGM based tools (WBest). As we show
in the next section, frame aggregation distorts the dispersion
times. PGM based tools which rely on packet dispersion times
are therefore adversely affected.
• The tools behave differently in different scenarios. This is
particularly evident between Scenarios 2 and 3. As the cross
traffic amount increases, WBest completely fails to estimate
available bandwidth in Scenario 2 (100% error because it only
produces 0Mbps at some point onwards; we will look into this
in the next section) but it achieves lesser error (about less than
70%) in Scenario 3. When FA is ON, DietTopp also shows
very different behaviors between those two scenarios: overes-
timation vs. underestimation. Somewhat surprisingly, however,
underestimation is more dominant than overestimation across
all the tools.

V. TOWARDS MORE ACCURATE ABE IN PRESENCE OF
FRAME AGGREGATION

A. A Closer Look at the Problem using WBest

The previous section revealed that while the accuracy of
all ABE tools is adversely affected by FA, the PRM based
tools (DietTopp and pathChirp) fare relatively better. However
measurement latency is an issue for PRM tools. For instance,
for DietTopp and pathChirp, we find that the measurement
period can range from 5 to 11 seconds. On the other hand,
WBest representing PGM tools does estimation in less than
a second. Faster ABE is crucial because applications such as
multimedia services need available bandwidth estimate in a
short time scale to effectively tune the streaming rate. So, even
though WBest is seen to be more erroneous, given its faster
measurement property, we choose to take a closer look at its
behavior to better understand the effect of FA and identify the
root causes of the problem. Also as noted at the outset, a packet
pair technique similar to one used in WBest is already adopted
in MS media server applications [7].

In the rest of this section, we first do an in-depth analysis on
how FA impacts the performance of WBest. We then propose
our approach for accurate ABE in presence of FA and apply
it to WBest as a case study. Recall that WBest consists of two
phases: capacity estimation and available bandwidth estimation.
It sends out 30 packet pairs to estimate capacity and uses a
packet train with 30 packets to estimate available bandwidth

based on the capacity estimate. We start by examining the
capacity estimate phase in presence of FA.
Analysis of capacity estimation phase. Our analysis shows
that packet pair technique used for capacity estimation in
WBest yields either underestimates (half of the true capacity)
or extreme overestimates (21–31× higher than the true). This
is mainly because probes in a pair either arrive together in an
aggregated frame or separately in different frames. Both these
patterns harm capacity estimation — separate arrival of a packet
pair means that probes in the pair do not experience the benefit
of FA (doubling the capacity as compared to the legacy 802.11);
on the other hand, aggregation trips the capacity estimator with
a small dispersion time which leads to too much overestimation.
Figure 8(a) shows such trends. True capacity is 60Mbps, but
estimates are only 30Mbps until 30% cross traffic rate. From
that point onwards, WBest suddenly yields 1.3–1.9Gbps as its
capacity estimate (note the log-scale for the y-axis). For deeper
understanding, we choose two data points: 0% and 50% cross
traffic rates and analyze the CDF of dispersion times from the
30 probe packet pairs (shown in Figure 8(b)). When there is
no cross traffic, almost 90% of packet pairs have larger than
300µs dispersion time (because they do not get aggregated).
With 50% cross traffic, on the other hand, 93% of dispersion
times are less than 41µs (due to aggregation). We confirmed
the segregation and aggregation phenomena by looking into the
packet traces captured over the air using AirPcap [30].
Analysis of available bandwidth estimation phase. In this
analysis, to shield WBest from the impact of wrong capacity
estimate, we modify WBest so that it is configured with the true
capacity (60Mbps) and let it only carry out the ABE stage. In
addition, we also vary the length of packet train to see what
impact different train lengths may have on the accuracy.

From Figure 8(c), we first learn that the modified version
only obtains under-estimates regardless of the cross traffic
rate and the length of probe train. Note that under-estimation
with increasing cross-traffic rates has been seen before in
Figure 4(b). Our second observation is that we obtain more
accurate estimates as we increase the probe train length —
we see an extra 22% improvement (e.g., from -40% error to
-18% error in case of 0% cross traffic rate). This is related
to average dispersion time of probes. Note that the available
bandwidth estimate value in WBest is inversely proportional to
the the average dispersion time [13]. Fewer number of probes
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in the train result in smaller number of aggregated probes,
thereby making it more likely to observe large gaps between
probes. On the other hand, as the probe count increases, the
average becomes smaller due to higher probability of probe
aggregation. We confirmed this trend by analyzing WBest
dispersion time logs. In our experiments, 30 probes produce an
average dispersion time of 258.5µs and 100 probes 228.2µs
in the 0% cross traffic case. Similarly we find, in 35% cross
traffic case, an average dispersion time of 290.28µs for 100
probes and 356.41µs for 30 probes. Thus, we see that the
underestimation can be reduced by increasing the probe count.

B. Our Approach for Mitigating FA Effects

Our analysis on WBest in the previous subsection showed
that FA can cause widely different dispersion times depending
on whether probe packets can get aggregated or not. Directly
using such dispersion times in the capacity or available band-
width estimation can end up causing under-/over-estimations.
While we have seen this happen in WBest’s capacity estimation
phase, the same applies even for the available bandwidth
estimation. Another observation is that a larger number of
probes are helpful in getting better estimates. Based on these
observations, we identify two key principles for accurate ABE
in the presence of FA: i) treating aggregated probes as one
jumbo probe and ii) increasing the number of probe packets.
These two principles make up our solution approach. We will
describe each of them below before applying them to WBest.

1) Treating aggregated probes as one jumbo probe. As
we already studied, FA creates minute gaps between probes,
which makes WBest overestimate capacity too much. However,
the small probe gaps are not a symptom that is unique to
FA. Interrupt coalescing done in modern computer systems
is another source with the same effect. Existing approaches
including those used to mitigate interrupt coalescing related
measurement noise (e.g., [18], [24], [31]) perceive small dis-
persion times as abnormal samples and discard them. However,
given that FA actually plays a role of increasing capacity,
unlike interrupt coalescing, we cannot simply apply the same
approach to the FA problem. Doing so will mean considering
only large dispersion times; this can lead to underestimations,
which was seen in many cases of pathChirp (see Figures 4(b),
5(b), 5(d), 7(b) and 7(d)). Instead, we treat aggregated probes
as one jumbo probe. Our rationale behind this principle is
that if probes are aggregated, they are transmitted over the

802.11n link as part of the aggregated frame and not as
individual probes. However, at an application level, probes are
already decapsulated from a frame, which makes it difficult to
identify which probes belonged to which frame. We reconstruct
aggregated probes by using an observation that probes in the
same frame tend to have a small interval between them. We
find that this approach accurately clusters probes. Now that
we have the notion of jumbo probes and have a way to
identify such probes at the application layer in the receiver,
the capacity (available bandwidth) is estimated by computing
instantaneous samples of capacity (available bandwidth) with
each received jumbo probe and applying a statistic across all
samples (e.g., maximum for capacity and average or median for
available bandwidth). Note that with our jumbo probe approach
individual dispersion times have no bearing on the bandwidth
estimations, thus contributing to robustness in the presence of
FA.

2) Increasing probe packet counts. With a small number of
probes, there is a possibility of probes getting aggregated in a
single frame and leading to few or no measurement samples at
the jumbo probe level. Thus, to overcome this issue, increasing
the number of probes is necessary. In addition, it was also
shown in §V-A that more probes help improving accuracy.
Choosing the right number of probes depends on several factors
including the probe generation model, 802.11n hardware etc.
Given this we take an empirical approach to determine the
number of probes required.

Case Study: application of our approach to WBest. We
modified both capacity estimation and ABE steps of WBest
to incorporate our proposed principles described above. We
empirically found out that a minimum of 100 probes are
required for capacity and ABE as we need to have enough
samples at the jumbo probe level. This probe count increase
roughly adds extra 35ms on average to the total ABE time
according to our evaluation. For capacity estimation, a total
of 100 probes are sent in bursts of 15 probes each (this burst
size is empirically determined); 100ms gap is imposed between
two successive bursts to avoid interference between them. This
ensures at least two jumbo probes. An instantaneous capacity
sample is obtained from each jumbo probe and maximum
of all such samples is used as the capacity estimate. In the
ABE phase, we send a single train of 100 probes (as opposed
to 30 with WBest) at the rate of estimated capacity. Unlike
vanilla WBest, we compute instantaneous available bandwidth
estimates for each successive pair of jumbo probes; this is more
similar to how Spruce [23] does ABE with packet pairs and is
less sensitive to dispersion time variations. Altogether, we call
this modified version WBest+.

Figure 9 shows capacity and available bandwidth estimation
for WBest+. Comparing the capacity estimation of WBest+
(noted as WBest+ (CE) in Figure 9) with WBest (Figure 8(a))
shows that our principles can improve capacity estimation
significantly even for high cross traffic rate. As for ABE, WBest
for lower cross traffic has 25Mbps to 30Mbps error, and it
only reports zero for cross traffic more than 50%. As WBest



(AB) and WBest+ (AB) curves in Figure 9 show, WBest+
still works better than WBest in terms of available bandwidth
estimation for most of the cross traffic rates. While WBest
seems to work better than WBest+ when cross traffic rate is at
its highest at 80% rate, it is just an artifact of WBest reporting
0Mbps available bandwidth (indicating that the vanilla WBest
completely fails to provide any estimate). We also found that
WBest+ outperforms DietTopp and pathChirp (achieving about
20% higher accuracy than DietTopp and 5% than pathChirp) by
looking into the median of relative errors across all cross traffic
rates (not shown for brevity). Although our proposed mitigation
approach (based on the principles of jumbo probes and a larger
number of probes) is only applied to WBest in this paper, we
believe it is more generally applicable (especially the jumbo
probe principle). Validating this assertion is an issue for future
work.

VI. CONCLUSIONS

The advent of 802.11n standard with its various features has
made high-speed wireless Internet access possible. We have
conducted the first investigation of the end-to-end available
bandwidth estimation (ABE) on paths with 802.11n links. In
particular, we have experimentally shown that frame aggre-
gation (FA), one of the features of 802.11n, has a major
impact on ABE accuracy in comparison with other 802.11n
features. Given this, we have experimentally studied the impact
of FA on ABE, considering three representative ABE tools
(WBest, DietTopp and pathChirp) and comparing their accuracy
in presence of FA in various cross-traffic scenarios.

Our results have shown that FA seriously harms the accuracy
of all ABE tools as it distorts their probing traffic patterns.
DietTopp and pathChirp belonging to the PRM class of tools are
relatively robust to FA but the measurement latency with them
is considerably longer to be suitable for some compelling ABE
applications like adaptive multimedia streaming services. So
we have conducted an in-depth analysis of the relatively faster
WBest, a representative of PGM tools, to better understand the
effect of FA on ABE tool behavior. This analysis has led us
to our solution approach that is rooted in two key principles—
treating aggregated probes as one jumbo probe and generating
a larger number of probes—for robust ABE in presence of
FA. We have developed an enhanced variant of WBest that
incorporates our approach; the evaluation results of this variant
confirm the efficacy of our proposed approach. As part of
future work, we would like to apply our approach to other
ABE tools (e.g., DietTopp and pathChirp) and also conduct a
detailed investigation of the impact of other 802.11n features
(e.g., channel bonding) on FA.
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