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Summary

We develop an on-demand, multipath distance vector routing protocol for mobile ad hoc networks. Specifically, we
propose multipath extensions to a well-studied single path routing protocol known as ad hoc on-demand distance
vector (AODV). The resulting protocol is referred to as ad hoc on-demand multipath distance vector (AOMDV). The
protocol guarantees loop freedom and disjointness of alternate paths. Performance comparison of AOMDV with
AODV using ns-2 simulations shows that AOMDV is able to effectively cope with mobility-induced route failures.
In particular, it reduces the packet loss by up to 40% and achieves a remarkable improvement in the end-to-end
delay (often more than a factor of two). AOMDV also reduces routing overhead by about 30% by reducing the
frequency of route discovery operations. Copyright © 2006 John Wiley & Sons, Ltd.
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1. Introduction

A mobile ad hoc network is a mobile, multihop
wireless network that does not rely on any pre-
existing infrastructure. Mobile ad hoc networks
are characterized by dynamic topologies due to
uncontrolled node mobility, limited and variable shared
wireless channel bandwidth, and wireless devices
constrained by battery power. One of the key challenges
in such networks is to design dynamic routing protocols
that are efficient, that is, consume less overhead.

A new class of on-demand routing protocols
(e.g., DSR [1,2], TORA [3], AODV [4,5]) for
mobile ad hoc networks has been developed with
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the goal of minimizing the routing overhead. These
protocols reactively discover and maintain only the
needed routes, in contrast to proactive protocols (e.g.,
DSDV [6]) which maintain all routes regardless of their
usage. The key characteristic of an on-demand protocol
is the source-initiated route discovery procedure.
Whenever a traffic source needs a route, it initiates a
route discovery process by sending a route request for
the destination (typically via a network-wide flood) and
waits for a route reply. Each route discovery flood is
associated with significant latency and overhead. This
is particularly true for large networks. Therefore, for
on-demand routing to be effective, it is desirable to
keep the route discovery frequency low.
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Among the on-demand protocols, multipath proto-
cols have a relatively greater ability to reduce the route
discovery frequency than single path protocols. On-
demand multipath protocols discover multiple paths
between the source and the destination in a single route
discovery. So, a new route discovery is needed only
when all these paths fail. In contrast, a single path
protocol has to invoke a new route discovery whenever
the only path from the source to the destination fails.
Thus, on-demand multipath protocols cause fewer
interruptions to the application data traffic when routes
fail. They also have the potential to lower the routing
overhead because of fewer route discovery operations.

In this paper, we develop a new on-demand
multipath protocol called ad hoc on-demand multipath
distance vector (AOMDV). AOMDV is based on a
prominent and well-studied on-demand single path
protocol known as ad hoc on-demand distance vector
(AODV) [4,5]. AOMDV extends the AODV protocol
to discover multiple paths between the source and
the destination in every route discovery. Multiple
paths so computed are guaranteed to be loop-free and
disjoint. AOMDV has three novel aspects compared
to other on-demand multipath protocols. First, it does
not have high inter-nodal coordination overheads like
some other protocols (e.g., TORA [3], ROAM [7]).
Second, it ensures disjointness of alternate routes via
distributed computation without the use of source
routing. Finally, AOMDV computes alternate paths
with minimal additional overhead over AODV; it does
this by exploiting already available alternate path
routing information as much as possible.

The remainder of the paper is organized as follows.
Section 2 reviews the AODV protocol. In Section 3,
we develop the AOMDV protocol. We also discuss the
loop freedom and disjointness properties of AOMDV
in this section. Section 4 compares the performance
of AODV and AOMDV using ns-2 simulations. We
discuss related work in Section 5. Section 6 presents
our conclusions.

2. Ad hoc On-Demand Distance
Vector Routing

AODV [4,5] is an on-demand, single path, loop-free
distance vector protocol. It combines the on-demand
route discovery mechanism in DSR [1] with the concept
of destination sequence numbers from DSDV [6].
However, unlike DSR which uses source routing,
AODV takes a hop-by-hop routing approach. Below
we give an overview of some key features of the AODV

protocol required for the development of AOMDV in
the following section.

2.1. Route Discovery and Route Maintenance

In on-demand protocols, route discovery procedure is
used by nodes to obtain routes on an ‘as needed’ basis.
In AODV, route discovery works as follows. Whenever
a traffic source needs a route to a destination, it initiates
a route discovery by flooding a route request (RREQ) for
the destination in the network and then waits for a route
reply (RREP). When an intermediate node receives the
first copy of a RREQ packet, it sets up a reverse path
to the source using the previous hop of the RREQ as
the next hop on the reverse path. In addition, if there is
a valid route available for the destination, it unicasts a
RREPback to the source via the reverse path; otherwise,
it re-broadcasts the RREQ packet. Duplicate copies of
the RREQ are immediately discarded upon reception at
every node. The destination on receiving the first copy
of a RREQ packet forms a reverse path in the same
way as the intermediate nodes; it also unicasts a RREP
back to the source along the reverse path. As the RREP
proceeds towards the source, it establishes a forward
path to the destination at each hop.

Route maintenance is done by means of route error
(RERR) packets. When an intermediate node detects a
link failure (via a link-layer feedback, e.g.), it generates
aRERRpacket. TheRERRpropagates towards all traffic
sources having a route via the failed link, and erases all
broken routes on the way. A source upon receiving the
RERR initiates a new route discovery if it still needs the
route. Apart from this route maintenance mechanism,
AODV also has a timer-based mechanism to purge stale
routes.

2.2. Sequence Numbers and Loop Freedom

Sequence numbers in AODV play a key role in
ensuring loop freedom. Every node maintains a
monotonically increasing sequence number for itself.
It also maintains the highest known sequence number
for each destination in the routing table called the
‘destination sequence number.’ Destination sequence
numbers are tagged on all routing messages. They
are used to determine the relative freshness of two
pieces of routing information generated by two
nodes for the same destination—the node with a
higher destination sequence number has the more
recent routing information. The AODV protocol
prevents routing loops by maintaining an invariant that
destination sequence numbers along any valid route
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Fig. 1. AODV route update rules. A node i applies these rules whenever it receives a route advertisement for destination d from
a neighbor j. The variables seq numd

i , hop countdi , and next hopd
i denote the destination sequence number, the hop count and

the next hop, respectively, for destination d at node i.

monotonically increase towards the destination [4].
This idea is again elaborated below because AOMDV
also uses a similar invariant for loop freedom.

In AODV, a node can receive a routing update via
a RREQ (RREP) packet either forming or updating a
reverse (forward) path. In the rest of the paper, we
refer to such routing updates obtained via RREQs or
RREPs as ‘route advertisements.’ The update rules
in Figure 1 are invoked by a node upon receiving
a route advertisement. It is easy to see how these
rules aid in maintaining loop freedom. Consider the
tuple (−seq numd

i , hop countdi ) where seq numd
i rep-

resents the sequence number for destination d at node
i, and hop countdi represents the hop count from node i

to destination d. Define (−seq numd
i , hop countdi ) >

(−seq numd
j , hop countdj ) if and only if either

seq numd
i < seq numd

j , or seq numd
i = seq numd

j

and hop countdi > hop countdj (i.e., lexicographic

ordering among (−seq numd
i , hop countdi ) tuples).

AODV route update rules (Figure 1) impose a
total ordering among nodes on any ‘valid’ route
to a destination d, based on lexicographic ordering
among (−seq numd

i , hop countdi ) tuples, implying
loop freedom. Note that the update rules in Figure 1
ensure loop freedom even in the presence of link
failures due to an additional mechanism. In AODV,
when a link failure from node i to node j breaks a
prior valid route from i to destination d, node i locally
increments seq numd

i and sets hop countdi to ∞. This
prevents i from later forming a route to d through a
previously upstream node, thus making AODV loop-
free at all times.

3. Ad hoc On-Demand Multipath
Distance Vector Routing

Our objective in this section is to extend the AODV
protocol to compute multiple disjoint loop-free paths
in a route discovery. We assume that every node

has a unique identifier (UID) (e.g., IP address), a
typical assumption with ad hoc routing protocols.
For simplicity, we also assume that all links are
bidirectional, that is, a link exists between a node i to j

if and only if there is a link from j to i. AOMDV can be
applied even in the presence of unidirectional links with
additional techniques to help discover bidirectional
paths in such scenarios [8].

3.1. Protocol Overview

AOMDV shares several characteristics with AODV.
It is based on the distance vector concept and uses
hop-by-hop routing approach. Moreover, AOMDV
also finds routes on demand using a route discovery
procedure. The main difference lies in the number
of routes found in each route discovery. In AOMDV,
RREQ propagation from the source towards the
destination establishes multiple reverse paths both
at intermediate nodes as well as the destination.
Multiple RREPs traverse these reverse paths back to
form multiple forward paths to the destination at the
source and intermediate nodes. Note that AOMDV also
provides intermediate nodes with alternate paths as
they are found to be useful in reducing route discovery
frequency [9].

The core of the AOMDV protocol lies in ensuring
that multiple paths discovered are loop-free and
disjoint, and in efficiently finding such paths using
a flood-based route discovery. AOMDV route update
rules, applied locally at each node, play a key role in
maintaining loop-freedom and disjointness properties.
Here we discuss the main ideas to achieve these
two desired properties. Next subsection deals with
incorporating those ideas into the AOMDV protocol
including detailed description of route update rules
used at each node and the multipath route discovery
procedure.

AOMDV relies as much as possible on the routing
information already available in the underlying AODV
protocol, thereby limiting the overhead incurred in
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discovering multiple paths. In particular, it does
not employ any special control packets. In fact,
extra RREPs and RERRs for multipath discovery and
maintenance along with a few extra fields in routing
control packets (i.e., RREQs, RREPs, and RERRs)
constitute the only additional overhead in AOMDV
relative to AODV.

3.1.1. Loop freedom

AODV route update rules (Figure 1) limit a node
to have at most one path per destination. Therefore,
modifications to these route update rules are needed
to have more than one path per destination at a node.
These modifications, however, should be done in such
a way that loop freedom is not compromised. Two
issues arise when computing multiple loop-free paths
at a node for a destination. First, which one of the
multiple paths should a node offer or advertise to
others? Since each of these paths may have different
hop counts, an arbitrary choice can result in loops.
Second, which of the advertised paths should a node
accept? Again, accepting all paths naively may cause
loops.

Figure 2 illustrates these problems using simple
examples. In Figure 2(a), node D is the destination
and node I has two paths to D—a five hop path via
node M (I – M – N – O – P – D), and a direct one
hop path (I – D). Suppose that I advertises the path
I – M – N – O – P – D to node J and then the path
I – D to node K. Then both J and K have a path to
D through I, but each of them has a different hop
count. Later, if I obtains a four hop path to D from
L (L – K – I – D), I cannot determine whether L is
upstream or downstream to itself, as only the hop count
information is included in the route advertisements
(as noted in Subsection 2.2, route advertisements in
our context refer to RREQ and RREP packets). So I

forms a path via L resulting in a loop. Such a situation
occurs because a node (I here) advertises a shorter
path (I – D) when it also has an alternate longer path
(I – M – N – O – P – D).

Figure 2(b) shows another potential loop situation.
Here node D is the destination. Node J has a three
hop path to D via K (J – K – I – D). Node L also
has a three hop path to D via M (L – M – N – D).
Suppose I obtains a four hop path to D from L. In
this case, I cannot ascertain whether or not L is an
upstream node because J can also provide a four hop
path to D. Therefore, accepting a longer path after
having advertised a shorter path to neighbors may cause
a routing loop.

Based on the above discussion, we formulate below
a set of sufficient conditions for loop-freedom. These
conditions allow multiple paths to be maintained at a
node for a destination.

3.1.1.1. Sufficient Conditions

1. Sequence number rule: Maintain routes only for
the highest known destination sequence number.
For each destination, we restrict that multiple paths
maintained by a node have the same destination
sequence number. With this restriction, we can
maintain a loop freedom invariant similar to AODV.
Once a route advertisement containing a higher
destination sequence number is received, all routes
corresponding to the older sequence number are
discarded. However, as in AODV, different nodes
(on a path) may have different sequence numbers
for the same destination.

2. For the same destination sequence number,
(a) Route advertisement rule: Never advertise a

route shorter than one already advertised.
(b) Route acceptance rule: Never accept a route

longer than one already advertised.

Fig. 2. Examples of potential routing loop scenarios with multiple path computation.
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To maintain multiple paths for the same sequence
number, AOMDV uses the notion of an ‘advertised
hop count.’ Every node maintains a variable called
advertised hop count for each destination. This variable
is set to the length of the ‘longest’ available path
for the destination at the time of first advertisement
for a particular destination sequence number. The
advertised hop count remains unchanged until the
sequence number changes. Advertising the longest path
length permits more number of alternate paths to be
maintained. In Subsection 3.2, we will formally define
the advertised hop count along with a description of the
actual route update rules. We will also present a proof
of loop freedom in Subsection 3.3.1.

3.1.2. Disjoint paths

Besides maintaining multiple loop-free paths,
AOMDV seeks to find disjoint alternate paths. For our
purpose of improving fault tolerance using multiple
paths, disjoint paths are a natural choice for selecting
an effective subset of alternate paths from a potentially
large set because the likelihood of their correlated
and simultaneous failure is smaller compared to
overlapping alternate paths. We consider two types
of disjoint paths: link disjoint and node disjoint. Link
disjoint set of paths between a pair of nodes have no
common links, whereas node-disjointness additionally
precludes common intermediate nodes.

Unlike the general disjoint paths problem found in
graph theory and algorithms literature, our notion of
disjointness is limited to one pair of nodes and does
not consider disjointness across different node pairs.
Specifically, we guarantee that at any node P , for a
destination D, all paths that can be traced from P to
D are disjoint. This does not necessarily mean that
all paths that exist in the network leading to D are
disjoint. For clarity, we illustrate this difference using
an example in Figure 3. Note that our restricted notion
of disjointness is sufficient from the fault tolerance
perspective and is in fact used in most disjoint multipath
routing protocols [10–12].

In finding disjoint paths, we do not explicitly
optimize either cardinality or length of alternate paths.
In fact, as will be elaborated in Subsection 3.2.2 while
describing the detailed protocol operation, the number
and quality of disjoint paths discovered by AOMDV
is largely determined by the dynamics of the route
discovery process; however, it is possible to control
these attributes by placing a limit on number and
length of alternate paths maintained at each node (see
Subsection 4.3.1). Our approach is justified given the

Fig. 3. Paths maintained at different nodes to a destination
may not be mutually disjoint. Here D is the destination. Node
A has two disjoint paths to D: A – B – D and A – C – D.
Similarly, node E has two disjoint paths to D: E – C – D
and E – F – D. But the paths A – C – D and E – C – D are

not disjoint; they share a common link C – D.

short-lived nature of paths in mobile ad hoc networks
and arguably higher overheads associated with
distributed computation of optimal (e.g., maximum
cardinality, shortest) set of alternate disjoint paths.

AOMDV can find either link or node disjoint
paths. Here we present the main idea behind link
disjoint path computation, but postpone the proof
until Subsection 3.3.2. A simple modification of this
mechanism that computes node disjoint paths will also
be discussed in Subsection 3.3.2.

In distributed routing algorithms of the distance
vector type, a node forms paths to a destination in-
crementally based on paths obtained from downstream
neighbors towards the destination. So finding a set of
link disjoint paths at a node can be seen as a two step
process: (1) identifying a set of downstream neighbors
having mutually link disjoint paths to the destination;
(2) forming exactly one path via each of those
downstream neighbors. Note that the second step is
trivial—the node simply needs to ensure that every path
has a unique next hop, which is a purely local operation.
However, performing the first step requires knowledge
of some or all downstream nodes on each path.

In a typical distance vector protocol (including
AODV), a node only keeps track of the next hop and
distance via the next hop for each path. This limited one
hop information is insufficient for a node to ascertain
whether two paths obtained from two distinct neighbors
are indeed link disjoint (Figure 4). Thus, additional
information is required for each path to check for
link disjointness. As one possibility, every node could
maintain complete path information for every path
as with source routing. In such a case, checking link
disjointness becomes straightforward. However, this
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Fig. 4. Next hop information is insufficient to guarantee link
disjointness. Here D is the destination. Node A has a path
via I to D (A – I – D). Similarly, node B also has a path via
I to D (B – I – D). Node P knowing only the next hops A
and B cannot determine whether paths from A and B to D
(A – I – D and B – I – D, respectively) are link disjoint. So
if P forms paths via A and B then the resulting set of paths
from P are not link disjoint even though the next hops (A and

B) are distinct.

solution has a high overhead of communicating and
maintaining complete path information at each node.

We develop a mechanism that does not require
complete path information at each node, yet guarantees
link disjointness. Specifically, the proposed mechanism
requires the maintenance of last hop information for ev-
ery path (in addition to next hop). Here, the last hop of a
path from a node P to a destination D refers to the node
immediately preceding D on that path. For a single hop
path, next hop is D and last hop is the node P itself.
For a two hop path, the next hop is also the last hop.

The following simple and straightforward
observation is the basis of our mechanism to
find link disjoint paths: If two paths from a node P to
a destination D are link disjoint, then they must have
unique next hops as well as unique last hops.‡ Note that
the converse of this observation is not necessarily true.
However, the converse also holds true in general with
an additional restriction: if every node on a path ensures
that all paths to the destination from that node differ
in their next and last hops (Figure 5). This implication
provides us with a tool to determine whether two paths
via two unique downstream neighbors are link disjoint.
They simply need to have unique last hops. Figure 6
highlights the role of last hop information, and Figure 7
illustrates the computation of the link disjoint paths.

In order to implement the above idea, we need to
maintain the last hop information for every path in the

‡ This observation also holds true for node disjoint paths.

routing table. RREQs and RREPs in AOMDV must also
carry the last hop information. Note that the last hop
on the route will actually be the first hop taken by these
routing packets. The detailed operation of the protocol
is described in the following subsection.

3.2. Detailed Protocol Description

In this subsection, we describe the protocol in four
components: routing table structure, route discovery,
route maintenance, and data packet forwarding. Here
we describe the link disjoint version of the protocol
in detail, so all references to disjointness actually
imply link disjointness. As we will discuss in
Subsection 3.3.2, a straightforward modification to this
protocol yields node disjoint paths instead.

3.2.1. Routing table

Figure 8 shows the difference in the routing table
entry structure between AODV and AOMDV. AOMDV
route table entry has a new field for the advertised
hop count. Besides a route list is used in AOMDV
to store additional information for each alternate path
including: next hop, last hop, hop count, and expiration
timeout. As already discussed, last hop information is
useful in checking the disjointness of alternate paths.

Consider a destination d and a node i. Whenever
the destination sequence number for d at i is
updated, the corresponding advertised hop count is
initialized. For a given destination sequence number,
let hop countdik denote the hop count of kth path (for
some k) in the routing table entry for d at i, that is
(next hopd

ik, last hopd
ik, hop countdik) ∈ route listdi .

When i is about to sends its first route advertisement
for d, it updates the advertised hop count as follows:

advertised hop countdi := max
k

{hop countdik}, i �= d

:= 0, otherwise.

Whenever a node receives a route advertisement,
it invokes the AOMDV route update rules listed in
Figure 9. Note that lines (1) and (10) in Figure 9
ensure loop freedom, whereas lines (12) and (15) check
for link disjointness. Proofs for loop freedom and
disjointness properties along with related discussions
are deferred until Subsection 3.3.

3.2.2. Route discovery

As in AODV, when a traffic source needs a route to
a destination, the source initiates a route discovery
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Fig. 5. Idea behind link disjoint path computation. (a) The two paths shown from P to D satisfy the differing next and last hop
condition. But they are not link disjoint. However, note that the intermediate node I does not satisfy the condition. If all nodes
on every path satisfy the condition, then the paths will be link disjoint. In that case, only one path is possible (see Subpart (b)).

However, in subpart (c) two link disjoint paths are possible.

Fig. 6. Role of last hop information. Here D is the destination.
Node J has two link disjoint paths to D via X and Y . Since a
node cannot have two paths with the same next hop, node I
will form only one path via J with last hop being either X or Y .
Suppose I forms a path via J with the last hop X; this prevents
the path via Y from being propagated upstream. When I
advertises its path to D with the last hop X to upstream nodes
A and B, each of them forms a path via I with the last hop
X. P determines that paths from A and B to D are not link
disjoint, as they have the same last hop X. So, P forms only

one path (say via A).

Fig. 7. Illustration of link disjoint path computation. Here D
is the destination. Node I determines that the paths X – D
and Y – D are trivially link disjoint since both X and Y are
distinct neighbors of D. So I incrementally forms two link
disjoint paths to D via X and Y . Suppose I advertises the
paths via X and Y to A and B respectively. Note that each
path advertisement includes the last hop of the path. Then
paths from A and B to D are link disjoint as they have distinct
last hops (X and Y ). Now P can incrementally form two link

disjoint paths to D via A and B.

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:969–988
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Fig. 8. Routing table entry structure in (a) AODV and (b) AOMDV.

process by generating a RREQ. Since the RREQ is
flooded network-wide, a node may receive several
copies of the same RREQ. In AODV, only the first copy
of theRREQ is used to form reverse paths; the duplicate
copies that arrive later are simply discarded. Note that
some of these duplicate copies can be gainfully used to
form alternate reverse paths. Thus, all duplicate copies
are examined in AOMDV for potential alternate reverse
paths, but reverse paths are formed only using those
copies that preserve loop-freedom and disjointness
among the resulting set of paths to the source. This is as-
certained by applying the route update rules in Figure 9.

Fig. 9. AOMDV route update rules. A node i invokes these rules whenever it receives a route advertisement for a destination d
from a neighbor j. The variables seq numd

i , advertised hop countdi and route listdi represent the sequence number, the advertised
hop count and the list of routes, respectively, for destination d at node i (i �= d). The variables next hopd

ik and last hopd
ik represent

the next and last hops of kth path (for some k) in the routing table entry for d at i, that is, (next hopd
ik, last hopd

ik, hop countdik) ∈
route listdi .

When an intermediate node obtains a reverse path
via a RREQ copy, it checks whether there are one or
more valid forward paths to the destination. If so, the
node generates a RREP and sends it back to the source
along the reverse path; the RREP includes a forward
path that was not used in any previous RREPs for this
route discovery. In this case, the intermediate node does
not propagate the RREQ further. Otherwise, the node
re-broadcasts the RREQ copy if it has not previously
forwarded any other copy of this RREQ and this
copy resulted in the formation/updation of a reverse
path.

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:969–988
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When the destination receives RREQ copies, it also
forms reverse paths in the same way as intermediate
nodes. However, it adopts a somewhat ‘looser’ policy
for generating a RREP. Specifically, the destination
generates a RREP in response to every RREQ copy
that arrives via a loop-free path to the source even
though it forms reverse paths using only RREQ copies
that arrive via loop-free and disjoint alternate paths
to the source. The reason behind the looser RREP
generation policy at the destination is as follows. The
RREQ flooding mechanism, where each node locally
broadcasts aRREQ once, suppresses someRREQ copies
at intermediate nodes and duplicates other RREQ
copies. Figure 10 shows an example where the node
I duplicates the RREQ copy via A and suppresses the
RREQ copy via B. As a result, multiple disjoint paths
can get coalesced at intermediate nodes and appear
as a single path at the destination. Again referring to
Figure 10, destination D will only know about the path
S – A – I – X – D, but not S – B – I – Y – D. We call
this the ‘route cutoff’ problem. Clearly, the route cutoff
problem prevents the discovery of all disjoint reverse
paths. This in turn would severely limit the number
of disjoint forward paths found at the source if the
destination sends RREPs only along disjoint reverse
paths. Therefore, we let the destination send back a
RREP along each loop-free reverse path even though
it is not disjoint with previously established reverse
paths. Such additional RREPs alleviate the route cutoff
problem and increase the possibility of finding more
disjoint forward paths. See Figure 10 for an illustration.
Note that these additional RREPs do not require any
special action at intermediate nodes and the source for
ensuring disjointness of alternate paths as the rules
in Figure 9 independently applied at each node still
work.

Fig. 10. Benefit of additional RREPs by the destination. The
second copy of RREQ via B is suppressed at intermediate
node I. However, two copies of the first copy (via A) still
reach the destination D. D replies to both of them even though
reverse path is formed only via X (assuming the first copy
reaches D via X earlier). The two replies will merge at I
which will forward them along two disjoint paths (via A and

B). Thus S will obtain two link disjoint paths to D.

When an intermediate node receives a RREP, it
follows route update rules in Figure 9 to form a loop-
free and disjoint forward path to the destination, if
possible; else, the RREP is dropped. Supposing that
the intermediate node forms the forward path and has
one or more valid reverse paths to the source, it checks
if any of those reverse paths was not previously used to
send a RREP for this route discovery. If so, it chooses
one of those unused reverse paths to forward the current
RREP; otherwise, the RREP is simply dropped. Note
that our choice of forwarding the RREP along a unique
reverse path, as opposed to duplicating it along all
available reverse paths, does not hurt AOMDV route
discovery latency. This is because the latency of a
route discovery is determined by the amount of time
source has to wait before it obtains the first route, and
RREPs in AOMDV (as with AODV) use fairly reliable
ARQ-based unicast MAC layer transmissions. On the
contrary, duplicating theRREPwill cause a route cutoff
problem similar to that mentioned above, reducing the
number of disjoint paths found at the source.

3.2.3. Route maintenance

Route maintenance in AOMDV is a simple extension
to AODV route maintenance. Like AODV, AOMDV
also uses RERR packets. A node generates or forwards
a RERR for a destination when the last path to
the destination breaks. AOMDV also includes an
optimization to salvage packets forwarded over failed
links by re-forwarding them over alternate paths.
This is similar to the packet salvaging mechanism in
DSR [2].

The timeout mechanism similarly extends from a
single path to multiple paths (Figure 8) although the
problem of setting proper timeout values is more
difficult for AOMDV compared to AODV. With
multiple paths, the possibility of paths becoming stale
is more likely. But using very small timeout values
to avoid stale paths can limit the benefit of using
multiple paths. In our experiments, we use a moderate
setting of timeout values and additionally use HELLO
messages to proactively remove stale routes. Thus, the
timeouts in the current version of AOMDV primarily
serve as a soft-state mechanism to deal with unforeseen
events such as routing table corruption and to a lesser
extent for promptly purging stale routes. In another
work [13], we have devised an adaptive timeout
selection mechanism for purging stale cached routes
in DSR [2], which can be applied to AOMDV with
appropriate modifications. As an alternative, timeout
selection can be based on analytical characterization

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:969–988



978 M. K. MARINA AND S. R. DAS

of link behavior in ad hoc networks [14]. In future,
we plan to investigate the benefit of such sophisticated
techniques for timeout selection.

3.2.4. Data packet forwarding

For data packet forwarding at a node having multiple
paths to a destination, we adopt a simple approach of
using a path until it fails and then switch to an alternate
path; we use paths in the order of their creation.

There are other alternatives for data packet
forwarding which concurrently use all paths. Though
we do not pursue these alternatives in this work, we
briefly discuss them below for completeness sake. With
‘diversity coding’ [15], an overhead is added to each
data packet (coding) and the resulting coded packet is
split into smaller blocks each of which is transmitted
along a different path. With adequate redundancy, this
scheme can improve the packet delivery probability
in highly dynamic mobile networks. This scheme can
also employed in a selective way to ensure delivery of
‘important’ packets.

In another alternative, alternate paths are used
simultaneously for ‘load balancing’ where data packets
are distributed over the available paths, thereby
improving the network utilization and end-to-end
delay. In addition to the well-known issues of adaptive
traffic splitting across multiple paths and dealing with
the possibility of packet re-ordering, effective load
balancing in ad hoc networks has to address the unique
problem of ‘route coupling’ arising from interference
between alternate paths [16]. Using an earlier version
of the AOMDV protocol, Reference [17] observes the
ineffectiveness of multipath routing for load balancing
in single channel mobile ad hoc networks due to route
coupling and the benefit of using multichannel CSMA
MAC protocols. Besides assistance from lower layers
such as the availability of multiple non-interfering
channels, it is also important to find alternate paths
suitable for load balancing. In particular, we need a
more restricted notion of disjointness than node or link
disjointness that additionally accounts for interference
among alternate paths. A recent work [18] addresses the
problem of selecting maximally zone-disjoint routes
to minimize route coupling in ad hoc networks with
directional antennas.

3.3. Protocol Properties

In this section, we prove the loop freedom and
disjointness properties of AOMDV, and discuss related
issues.

3.3.1. Loop freedom

The argument for AOMDV loop freedom is similar to
the one for AODV we gave in Subsection 2.2 except
that hop counts are now replaced with advertised hop
counts. Below we establish loop freedom more directly
from AOMDV route update rules somewhat along the
lines of Reference [4].

Theorem 1. AOMDV route update rules (Figure 9)
yield loop free routes.

Proof. The proof is by contradiction.
Suppose that a loop of size m, (i1, i2, . . . , im, i1)

forms in a route to a destination d. Note that nodes i

and j in the code in Figure 9 are two consecutive nodes
in the route, and

seq numd
i ≤ seq numd

j

Therefore, the following must be true among the nodes
in the loop so formed

seq numd
i1

≤ seq numd
i2

≤ · · · ≤ seq numd
im

≤ seq numd
i1

which implies

seq numd
i1

= seq numd
i2

= · · · = seq numd
im

= seq numd
i1

This in turn implies the following condition holds in
line 10 (Figure 9)

advertised hop countdi1
> advertised hop countdi2

> · · · >

advertised hop countdim > advertised hop countdi1

Then,

advertised hop countdi1 > advertised hop countdi1

which clearly is impossible. Thus, routes formed by
AOMDV are loop free. �

Note that AOMDV maintains loop freedom even in
highly dynamic scenarios when links (and routes) fail.
This is done in a similar manner as AODV, that is,
when all links from a node i leading to a destination d

break, then node i locally increments the seq numd
i and

sets the advertised hop countdi to ∞. Also the use of
destination sequence numbers makes AOMDV robust
to out-of-order packet delivery like AODV. Rare events
such as node reboots can also be dealt as in AODV [5].
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3.3.2. Path disjointness

In the following we prove the link disjointness of
alternate paths in AOMDV.

Theorem 2. If all nodes in the network have unique
identifiers (UIDs) and all nodes on a path from node
X to destination D have identical destination sequence
numbers, then alternate paths maintained by AOMDV
from X to D are link disjoint.

Proof. It is sufficient to prove that a pair of paths
from X to D are link disjoint. We can then apply the
same argument for every pair of paths between X and
D to prove that all alternate paths are link disjoint.

Consider two paths from X to D formed according
to AOMDV route update rules (Figure 9). For ease of
reference, let us call themP1 andP2. Paths are defined
by the sequence of node identifiers from X to D. In
the routing table of X, P1, and P2 are identified by the
tuple < D, next hop, last hop >. Because of the update
rules, P1 and P2 have different next and last hops.

We want to show that P1 and P2 are link disjoint.
By way of contradiction, suppose that P1 and P2 are
not link disjoint. This means they have at least one
common link. Let I – J be such a link. By unique next
hop condition, node I can have only one path to D via
J in its routing table. This implies that I will propagate
upstream only one path to D that goes through J along
with the corresponding last hop, even though J may
have more than one path to D each with a different
last hop. This in turn implies that nodes upstream of I

sharing the link I – J cannot have more than one path
via I. Since X is upstream of I having two paths with a
common link I – J , this presents a contradiction. Thus,
the paths P1 and P2 must be link disjoint. �

In the above proof, we have assumed that nodes
on all alternate paths between node X and destination
D have the same destination sequence number as
rules for link disjointness are enforced under this
condition (see lines (10), (12) and (15) in Figure 9).
However, this condition may be violated sometimes
especially because of two optimizations in the AOMDV
protocol: (i) RREP generation by intermediate nodes
whenever feasible (see Subsection 3.2.2) to limit
route request flood; (ii) delayed propagation of RERRs
(see Subsection 3.2.3) to reduce route maintenance
overhead and postpone initiating a new route discovery
as long as possible. The violation of the condition
with the first optimization can be seen by considering
scenarios where a node simultaneously participates in
more than one session either as destination and source

in multiple sessions, or as destination for different
traffic sources. In the case of second optimization,
since not every route failure is promptly propagated
upstream by intermediate nodes, upstream nodes may
carry some invalid routes with an older destination
sequence number. Due to these optimizations, all nodes
may not have the most recent routing information at
all times, which in turn may cause temporary overlap
among alternate paths. However, we believe this is a
reasonable compromise given the prohibitive overhead
of constantly maintaining up-to-date information at
every node (using frequent destination-initiated routing
updates, e.g.).

3.3.2.1. Node disjoint paths. Unlike the link
disjoint case, ensuring the uniqueness of next and last
hops of alternate paths at every node is not sufficient to
guarantee node disjointness. For example, in Figure 7
even though every node ensures the uniqueness of
next and last hops, paths P – A – I – X – D and
P – B – I – Y – D are not node disjoint. However,
with an additional restriction we can obtain node
disjoint paths. The basic idea is as follows: If common
nodes in a set of link disjoint paths (such as I

in Figure 7) prevent other upstream nodes (such
as P in Figure 7) from having more than one
path through them, then we obtain node disjoint
paths. This can be achieved by stipulating that for
a given destination sequence number, every node
always advertises one single designated path to other
nodes. This is straightforward to do with a little
bookkeeping.

3.3.2.2. Unique path identifiers and data for-
warding on disjoint paths. Having unique path
identifiers is particularly useful when we want to
forward a data packet along a specific path. This
can be done by including the path identifier in the
packet and using that identifier at each intermediate
node to find the next hop from that node along the
specified path. A simple example of a unique path
identifier is the ordered sequence of nodes on a path
(source route).

In AOMDV, the last hop of a path serves as a unique
path identifier provided all nodes have up-to-date rout-
ing information. This means that knowing the last hop
of a path at a node is sufficient to construct the complete
path from that node till the destination by repeated path
lookups at each intermediate node using the last hop
and following the corresponding next hop pointers. The
uniqueness of the path identifier requires that there is no
ambiguity during the path lookup at any intermediate
node, that is, path lookup at a node with the unique
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path identifier does not return more than one next hop.
The last hop of a path in AOMDV obeys this property
because no node can have two paths for a destination
with different next hops but identical last hops.

4. Performance Evaluation

We study AOMDV performance using ns-2 [19]
simulations. Our main objective is to evaluate the
effectiveness of AOMDV relative to AODV in the
presence of mobility-related route failures. Other
objectives include: understanding the effect of traffic
pattern on the benefit of multiple paths, and evaluating
the number of alternate disjoint paths that can be found
using AOMDV.

4.1. Simulation Environment

We use a detailed simulation model based on
ns-2 [19]. The Monarch research group in CMU
developed support for simulating multi-hop wireless
networks complete with physical, data link, and MAC
layer models [20] on ns-2. The distributed coordination
function (DCF) of IEEE 802.11 [21] for wireless LANs
is used as the MAC layer. The radio model uses char-
acteristics similar to a commercial radio interface, Lu-
cent’s WaveLAN. WaveLAN is a shared-media radio
with a nominal bit-rate of 2 Mb/s and a nominal radio
range of 250 m. We use an error-free wireless channel
model in our simulations in order to isolate the effects
of node mobility. More details about the simulator can
be found in References [19,20]. This simulator has been
used for evaluating performance of earlier versions of
the AODV protocol (e.g., References [20,22]).

The AODV model in our simulations is based on
a recent protocol specification [5]. We developed
the AOMDV simulation model for ns-2. In our
simulations, we disable the expanding ring search
when doing route discovery in both the protocols. This
is done to simplify the analysis of simulation results.
Note that the expanding ring search technique is
complementary to the multipath technique we develop
here, and so can be used with either protocol for
containing the route discovery flood. Link breaks are
detected using HELLO messages as well as the 802.11
link layer feedback mechanism, whichever detects the
link break earlier. Failure to receive a HELLO message
from a neighbor for some period of time signals loss
the link to that neighbor. The 802.11 MAC layer
reports a link failure when it fails to receive CTS after
several RTS attempts, or to receive ACK after several

retransmissions of DATA. While many studies with
AODV reported in recent literature do not use HELLO
messages (e.g., Reference [22]), multipath protocols
need HELLOs to be able to invalidate stale routes that
are not currently being used. Link layer feedback is
able to invalidate only the route that is currently being
used.

We consider 100 node networks in a rectangular
field of dimensions 1000 m × 1000 m. The nodes are
initially placed uniformly at random in the field. Note
that a 100 node network is quite large to stress a flat
routing protocol like AODV or AOMDV. The random
waypoint mobility model [20] is used to simulate node
movements. Pause time is always set to zero. We vary
the mean node speed v to vary the rate of mobility.
The actual node speeds are chosen randomly with a
uniform distribution from the range [0.9v, 1.1v]. Table I
relates the mean node speed to the mean link failure rate
observed in our simulation scenarios.

Traffic pattern consists of several CBR/UDP con-
nections between randomly chosen source-destination
pairs. Note that with this traffic pattern, a node may
appear in more than one connection as source or
destination. Each connection starts at a random time
during the initial 100 s of the simulation and stays till
the end. We vary the number of connections or the
packet generation rate of each connection to obtain
different traffic patterns. Data packets have a fixed size
of 512 bytes in all the experiments.

Each simulation is run for 1000 s with the initial 250 s
taken as the warmup period. Each data point in the plots
is an average of five such runs with different randomly
generated mobility scenarios for the same mean speed.
Identical traffic and mobility scenarios are used across
all protocol variations.

4.2. Performance Metrics

We primarily consider the following four performance
metrics: (i) Packet loss percentage—percentage of data
packets dropped in the network either at the source
or at intermediate nodes; (ii) Average end-to-end

Table I. Mean link failure rate as a function of mean node speed.

Mean node speed Mean link failure rate
(m/s) (per second)

1 3.31
2.5 8.08
5 16.48
7.5 24.84

10 33.24
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Fig. 11. Performance with varying mobility. (a) Packet loss; (b) route discovery frequency; (c) average delay and (d) route
discovery latency.

delay of data packets—this includes all possible
delays caused by buffering during route discovery,
queuing delay at the network interface, retransmission
delays at the MAC, propagation and transfer times;
(iii) Route discovery frequency—the aggregate number
of route requests generated by all sources per second;
(iv) Routing overhead—the total number of routing
packets ‘transmitted’ per second. Each hop-wise
transmission of a routing packet is counted as one
transmission.

4.3. Simulation Results

4.3.1. Varying mobility

Figures 11–14 show the results with varying mean node
speeds. Traffic pattern in these set of results consists
of 50 CBR/UDP connections with each CBR source
sending at the rate of 1 packets/s. This corresponds to
an offered load of around 200 kb/s, which is a moderate
load.

AOMDV in the plots refers to the link disjoint
version of the protocol. We also experimented with the
node disjoint version, but the results look similar to
the link disjoint version. We believe this is because

of our decision to use alternate paths one at a time.
When multiple paths are used simultaneously, these
two variations may perform differently. We only show
results for the link disjoint version in this paper unless
mentioned otherwise. Furthermore, we restrict the
number of paths per routing table entry to three and
ignore alternate paths which are more than one hop
longer than the shortest available path. This is to avoid
using very long alternate paths. Prior work [9] indicates
that such paths do not contribute much to performance.

Fig. 12. Overhead per route discovery with varying mobility.
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Fig. 13. Routing packet overhead with varying mobility. (a) Routing overhead; (b) route discovery overhead; and (c) route
maintenance overhead.

Figure 11(a) compares the packet loss performance
of AOMDV and AODV. Note that packet losses here
are largely due to mobility. An intermediate node drops
a packet when it does not have a route to forward the
packet. The source also drops packets when the buffer
overflows or when it fails to get a route after several
futile route discovery attempts. With moderate load and
almost always connected topologies drops because of
the latter cause are very few in these set of results.

Fig. 14. Routing byte overhead with varying mobility.

The number of packet drops with both protocols
increases with the mean node speed. But AOMDV
always drops fewer packets with improvements up to
40%. Smaller packet loss with AOMDV is because
of the availability of alternate paths to forward the
packets when one path fails. AODV, on the other
hand, has to resort to a new discovery when the
only path fails. This is also evident from significant
reduction (about 40%) in route discovery frequency
with AOMDV (Figure 11(b)). Also note that the packet
loss differential starts to narrow down with higher
speeds. For example, the improvement in packet loss
with AOMDV reduces from 37% to 27% when the
mean speed increases from 7.5 to 10 m/s. With higher
node speeds, the likelihood of alternate paths failing
increases and thus reduces the utility of multiple paths.

Figure 11(c) and (d), respectively, shows the average
end-to-end delay and route discovery latency for both
protocols. Average route discovery latency represents
the amount of time a data packet spends in the buffer
at the source, averaged over all packets that experience
a non-zero latency at the source while a route is being
found. As expected, both these measures increase with
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mean node speed because of the increase in the number
of route failures and consequent route discovery opera-
tions. AOMDV improves the delay significantly almost
always by more than a factor of two. Improvements
in route discovery latency are even more remarkable
(more than a factor of three). One interesting point to
note is that the route discovery latency accounts for
about half of the overall delay in AODV, but only about
one fourth of the delay in AOMDV. This is because in
AOMDV the ‘in-network’ delay of packets is higher, as
packets sent over failed links are salvaged from network
interface buffer and then are re-routed.

Even though AOMDV significantly reduces the
number of route discoveries by about 40%, it
incurs more overhead (about 10%) for each route
discovery (Figure 12). This is because of the use of
additional RREPs to form multiple forward paths to
the destination. Despite this slightly higher overhead
per route discovery, the total route discovery overhead
and overall routing overhead are much lower (at least
30%) compared to AODV (Figure 13). Also note
that route discovery overhead contributes a major
fraction of overall routing overhead, as opposed to
route maintenance overhead which consists of RERRs

and HELLO messages. Figure 14 shows the overall
routing overhead in kb/s. Improvement in the byte
overhead with AOMDV is slightly lower than in the
packet overhead, but is still substantial (more than
25%). This relatively lower improvement in the byte
overhead is because additional fields such as the last
hop ID increase the header lengths of RREQ and RREP
packets.

4.3.2. Varying connections

Now we vary the number of CBR/UDP connections
while fixing the mean speed at 5 m/s and the offered
load at 200 kb/s. For a constant rate of link failures
(because of constant mean speed) and constant offered
load, increasing the number of connections will spread
the same amount of traffic among several connections.
This requires a routing protocol to maintain routes
between more number of source-destination pairs, thus
stressing the protocol. Moreover, each route discovery
will become more expensive because of the smaller
amount of traffic over each connection.

Figure 15 shows various performance metrics
as a function of the number of connections.

Fig. 15. Performance with varying number of connections. (a) Packet loss; (b) route discovery frequency; (c) average delay; and
(d) routing overhead.
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The performance of both protocols degrades with
increasing number of connections. With smaller
number of connections, the difference between AODV
and AOMDV is not very noticeable. However, with
increase in the number of connections, AOMDV tends
to perform much better relatively. This shows that
AOMDV by virtue of finding multiple paths has a better
ability to handle the stress of routing with large number
of connections.

4.3.3. Varying packet rate

Here we study the effect of data rate (and offered load)
on the relative performance of AODV and AOMDV.
We keep the mean speed and number of connections
constant at 5 and 50 m/s, respectively. We increase the
data packet generation rate of each connection from
0.25 to 1.25 packets/s.

Figure 16 shows performance with varying packet
rate. Performance degrades in both cases with
increasing packet rate (offered load) and AOMDV
always does better in comparison. With very low packet
rates, a new route discovery is needed for almost
every data packet that is generated because previously

discovered route(s) will likely break by the time next
data packet arrives at the source. This is evident
from the higher route discovery frequency and routing
overhead at the lowest packet rate (0.25 packets/s).
AOMDV is not very effective in such scenarios because
there are not enough packets to take advantage of
alternate paths before they break. So as the packet
rate increases gradually, performance improvements
also become higher with AOMDV (e.g., notice the
performance differences from 0.75 to 1 packets/s).
With very high packet rates, relative performance
gain with AOMDV reduces as it does not have any
mechanism to mitigate congestion at high loads.

4.3.4. Number of alternate paths

Now we look at the average number of alternate paths
that ‘can’ be found using AOMDV. Figure 17 shows
the average number of link and node disjoint paths
as a function of the shortest path length between the
source and the destination. These results correspond to
a scenario with 50 CBR/UDP connections each sending
at 1 packets/s and the mean node speed is 5 m/s. Not
surprisingly, link disjoint paths are more numerous

Fig. 16. Performance with varying packet rate. (a) Packet loss; (b) route discovery frequency; (c) average delay; and (d) routing
overhead.
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Fig. 17. Number of disjoint paths.

than node disjoint paths. What is more interesting,
however, is the fall in the number of disjoint paths
(both node and link) with increasing shortest path
length. This is because of the route cutoff problem we
mentioned before. We believe this behavior may not
significantly reduce the effectiveness of AOMDV in a
mobile network. As paths get longer, their likelihood
of failure because of node movement also increases.
The same happens for the alternate paths too. Thus
the utility of alternate paths also drops with increasing
path lengths, an observation also made in an analytical
study of on-demand multipath routing [9]. However,
decreasing number of paths with increasing separation
between source and destination might be a concern
when multipath routing is employed for other purposes
such as load balancing.

5. Related Work

The idea of using alternate paths for routing in ad
hoc networks is not new. It dates back to early 80s—
the days of packet radio networks as they were then
known. For example, the DARPA packet radio network
protocols have an alternate routing mechanism [23]
to forward packets to the destination via alternate
neighbors when the preferred neighbor fails to do so.
Refer to References [24,25] for an overview of some
of the early work on alternate path routing for ad hoc
networks. In the rest of this section, we will review
more recent multipath routing literature most closely
related to our work.

Distance vector protocols that find disjoint paths
have been studied in the context of wired net-
works [10,11]. These protocols are proactive and seek
shortest path routes akin to other routing protocols
designed for the Internet. Ogier and Shacham [10] find

shortest pair of disjoint paths using a transformation of
the underlying network graph, which is a very high
overhead operation as also seen in Reference [11].
Sidhu et al. [11] develop a distributed distance vector
algorithm to find low cost node disjoint set of paths
based on the concepts of path identifiers (last hop)
and branch identification lists, which are maintained
at every node and included in all messages. Though
AOMDV is somewhat similar to this protocol in the
use of last hop information, it is relatively efficient
requiring lesser information to be maintained and
exchanged among nodes. Besides, AOMDV can find
link disjoint paths. WRP [26] is a distance vector
protocol designed for wireless networks that also
makes use of last hop information. Unlike AOMDV,
WRP uses this information for loop freedom.

Following our work describing an earlier version
of AOMDV [27], Ye et al. [28] have proposed
an alternative protocol called AODVM that extends
AODV to find node disjoint paths. In addition,
they study the impact of node density on number
of node-disjoint paths and the utility of placing
special reliable nodes to improve overall network
reliability. Compared to AOMDV, AODVM may incur
higher overhead as it precludes RREP generation
by intermediate nodes; moreover, it cannot find
link disjoint paths like AOMDV. There are other
related alternate path routing protocols which do not
consider path disjointness [29,30]. AODV-BR [29]
is an enhancement to AODV for utilizing routes
maintained at neighboring nodes (via overhearing) as
backup routes when the primary route fails, thereby
reduce loss of data packets in flight. Specifically,
AODV-BR does a local broadcast of the data packet
when the primary route fails requesting other nodes
in the neighborhood to salvage the data packet. Note
that this is somewhat similar to the alternate routing
mechanism mentioned in Reference [23]. Also note
that AODV-BR is not a true multipath protocol as every
node still has at most one route per destination like
in AODV. Recently, a similar but more sophisticated
protocol called CHAMP [30] was proposed. In contrast
to AODV-BR, CHAMP maintains multiple shortest
loop-free paths at each node, and the node upstream
of the node that has all paths invalidated salvages the
data packets using an alternate path.

Other on-demand hop-by-hop protocols [3,7] rely
on inter-nodal coordination to determine multiple loop-
free paths as opposed to our approach to use destination
sequence numbers. In addition, these protocols do
not take path disjointness into account. TORA [3] is
an on-demand, multipath protocol which combines
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the source-initiated route creation in LMR [31] with
the link reversal technique from Reference [32] for
localized recovery from route failures. The class of
‘link reversal’ algorithms [32] seek to maintain a
destination-oriented directed acyclic graph (DAG). In
these algorithms, whenever a link failure at a node
disorients the DAG (i.e., the node has no downstream
links to reach the destination), a series of link reversals
starting at that node can revert the DAG to a destination-
oriented state. Two specific algorithms called full
reversal and partial reversal were proposed in Refer-
ence [32]. As these algorithms are known to exhibit
instability in the face of network partitions by endlessly
performing link reversals in network components not
containing the destination, TORA uses a modified
partial link reversal technique that can get detect
network partitions. Two main limitations of TORA
include: requirement for reliable and in-order delivery
of routing control packets, and high inter-nodal co-
ordination overheads with frequent topology changes.
Some performance studies (e.g., Reference [20]) have
shown that these requirements hurt the performance of
TORA so much so that they undermine the advantage of
having multiple paths. Also, the link reversal in TORA
inherently suffers from short-term routing loops.

ROAM [7] is another on-demand multipath protocol
that uses inter-nodal coordination for loop freedom.
It belongs to the class of diffusing update algorithms
(DUAL) [33]. In this class of algorithms, diffusing
computations are used when links fail (or more
generally when link costs increase) in order to
coordinate the update of routing information with
upstream nodes; such coordinated updates result in
loop-free shortest paths. ROAM extends DUAL to
find multiple loop-free routes on-demand. The inter-
nodal coordination mechanism permits ROAM to also
detect partitions. ROAM shares the same drawbacks
as TORA, that is, need for reliable, in-order delivery
of routing control packets, and high inter-nodal
coordination overheads. So recent work explores the
incorporation of destination sequence numbers into
the ROAM/DUAL framework, which can potentially
provide efficient recovery from route failures [34].

Unlike the aforementioned protocols that take a hop-
by-hop routing approach, other on-demand multipath
protocols use source routing as exemplified by DSR [1].
With source routing, the complete path information
is available and loops can be easily detected and
eliminated. Therefore, DSR can cache every overheard
source route and gather a lot of routing information per
route discovery to maintain multiple paths. However,
aggressive use of route caching, lack of effective

mechanisms to purge stale routes, and cache pollution
leads to problems such as stale caches and reply
storms. These problems not just limit the performance
benefits of caching multiple paths, they can even hurt
performance in many cases (e.g., Reference [22]).
Besides, the use of source routes in data packets also
increases the overhead. These issues are, however,
being addressed [13,35,36]. The fact that DSR does
not have any built-in mechanism to ensure disjointness
of alternate paths has motivated several variants of DSR
that focus on disjoint paths (see References [9,12] and
references therein). Nasipuri et al. [9] extend DSR
to compute multiple link disjoint paths for overhead
reduction in mobile networks. Besides, they also use
analytical modeling to study the effect of number of
multiple paths, path lengths on on-demand routing
performance. More recently, Panagiotis et al. [12]
address the problem of selecting most reliable set of
paths from a candidate set of paths in the context of
on-demand source routing protocols, and propose a fast
and effective heuristic.

There are techniques other than multipath routing
that also improve route discovery frequency in
presence of frequent topological changes, namely
local route repair and preemptive routing. Note that
these techniques do not per se maintain multiple
paths. In the local repair mechanism (such as the
one in Reference [5]), the basic idea is to have an
intermediate node repair a broken route locally. Using
local repair, an intermediate node can potentially
find an alternate (possibly longer) route quickly and
efficiently as compared to the source performing a
new route discovery. The effectiveness of local repair
depends on how far away the destination is from
the intermediate node. While local repair is typically
a reactive operation, multipath routing can be seen
as a proactive route repair mechanism with alternate
paths found in advance and the overhead potentially
amortized over a longer time period. Preemptive
routing [37] is another mechanism which proactively
repairs routes by monitoring the likelihood of a path
break and informing the source which will initiate
an early route discovery. Using this mechanism,
applications will not experience the latency involved
in discovering a route after the route breaks. This is
also true with multipath routing when compared with
local route repair. In fact, both preemptive routing and
multipath routing can be gainfully combined. Several
other optimizations for on-demand protocols have been
proposed to contain the scope of the route discovery
flood (e.g., expanding ring search, query localization)
and to reduce the redundancy of broadcasts during the
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flood. See Reference [38] for an elaborate discussion on
such optimizations. The key difference between these
mechanisms and multipath routing lies in the fact that
they reduce the overhead for each route discovery, but
not the number of route discovery operations.

6. Conclusions and Future Work

On-demand routing protocols with multipath capability
can effectively deal with mobility-induced route
failures in mobile ad hoc networks as opposed to
their single path counterparts. In this paper, we have
proposed an on-demand multipath protocol called
AOMDV that extends the single path AODV protocol
to compute multiple paths. AOMDV ensures that the
set of multiple paths are loop-free and the alternate
paths at every node are disjoint. Other novel features
of AOMDV include: low inter-nodal coordination
overheads, ability to discover disjoint paths without
using source routing, minimal additional overhead over
AODV to obtain alternate paths. We have studied
the performance of AOMDV relative to AODV using
ns-2 simulations under varying mobility and traffic
scenarios. We observe that AOMDV in comparison
with AODV reduces the packet loss by up to 40% and
offers a significant reduction in delay (often more than
a factor of two). It also improves the routing overhead
by about 30% by reducing the frequency of route
discovery operations. Even though this work mainly
concentrated on developing a multipath extension to
the AODV protocol, some of the ideas in this paper can
be readily applied to other ad hoc routing protocols. For
instance, we can easily modify the DSDV protocol to
maintain multiple loop-free paths using the advertised
hop count concept.

Several additional issues related to the design and
evaluation of the AOMDV protocol require further
investigation. First, the protocol can be improved to
effectively deal with the route cutoff problem, and
compute more disjoint paths when source-destination
pairs are far apart. Second, we need to carefully
study the interaction between timeout settings and
AOMDV performance. Third, applying AOMDV for
other purposes such as load balancing is another issue
for future work. Lastly, we only evaluated AOMDV
relative to AODV using random way point mobility
model and CBR/UDP traffic. It is useful to see how
improvements vary with other mobility models (more
generally other failure models), other traffic types
such as TCP and in comparison with other multipath
protocols.
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