
Impact of Network Subsystem on Reliable
Transport Protocol Performance over Wireless Links

Zhiguo Xu, Mahesh Marina and Rajive Bagrodia
Mobile Systems Lab

Computer Science Department
University of California, Los Angeles

Email: {zhiguo, mahesh, rajive}@cs.ucla.edu

Abstract— We consider the impact of system-related overheads
on the performance of two reliable transport protocols (TCP and
XCP) over wireless links. Our measurement results indicate that
various components providing networking support at a wireless
host collectively have significant impact on transport layer
performance. Furthermore, the relative performance of protocols
is dependent on the host’s network subsystem configuration.
These results highlight the importance of considering system-
dependent behaviors in wireless network protocol evaluations.

I. INTRODUCTION

Performance of network applications running over different
network subsystems can be quite different, even when all
systems use identical protocol architectures and specifications.
Here network subsystem refers to the combination of sys-
tem software and hardware used for networking support at
a node (e.g., end host, router, access point or AP). Net-
work subsystem software consists of the network API (e.g.,
sockets), protocol suite (e.g., TCP/IP) and device driver all
implemented within the operating system (OS), and firmware
on the network interface card (NIC). Hardware components
of the network subsystem include CPU, memory, I/O buses
and NIC. Throughput achieved by applications depends on
how efficiently network subsystem moves data between the
application and the network, which in turn rests on the node
hardware capabilities, protocol implementations in the OS and
their interactions with rest of the OS facilities such as process
and memory management, OS-NIC interaction, division of link
layer functionality between device driver and NIC firmware,
and NIC design and form factor.

Impact of network subsystem on application-level through-
put has been well studied in the context of high-speed wired
networks [1], [2], [3]. Early work by Clark et al [1] has shown
that TCP protocol processing is not the main overhead contrary
to popular belief at the time; instead memory copy (user-to-
kernel copy and kernel-to-NIC copy) and other OS operations
(e.g., interrupt handling) were identified as dominant sources
of overhead. Subsequent work has focused on design and eval-
uation of various optimizations aimed at making the network
subsystem more efficient with appropriate NIC support [2], [3].
These optimizations include: zero-copy networking, checksum

This work has been funded by the NSF under the Network Research Testbed
grant “WHYNET: Scalable Testbed for Next Generation Mobile Wireless
Networking Technologies” (award number ANI-0335302).

offloading to NIC, integrated copy/checksum, interrupt coa-
lescing and jumbo frames. Besides network subsystem design,
configuration parameters such as send and receive socket
buffer size at end hosts also affect throughput [4].

In wireless networks, there has been relatively less work fo-
cusing on the impact of network subsystem. Most experimental
wireless network studies focus on evaluating the effectiveness
of various protocol design aspects (e.g., TCP congestion
control, MAC RTS-CTS handshake) when subject to channel
effects such as fading, interference and mobility (e.g., [5]).
Common to these studies is the implicit assumption that
network subsystem is either ideal or has negligible overhead.
However, this assumption may not hold in practice across the
wide variety of currently used wireless systems (differing in
their capabilities, implementation and form factor). Thus, it
is important to characterize the impact of system-dependent
overheads on wireless network performance. Such an inves-
tigation is further warranted by the relatively constrained
nature of portable wireless platforms in terms of CPU and
memory resources, and the emerging trend toward software-
based radios.

Limited work that exists on evaluating system-dependent
overheads on wireless network performance primarily looks
at this issue from an energy consumption perspective [6], [7].
Feeney and Nilsson [6] have investigated the energy consump-
tion of different 802.11 wireless NICs in an ad-hoc network
environment, whereas Wang and Singh [7] have quantified the
energy consumption overhead of different functions involved
in running TCP on a 802.11 wireless host. However, there are
several real-world situations where energy consumption may
not be a key concern or networking-related activity is not the
dominant energy consumer (e.g., laptop usage in an indoor
office environment).

In this paper, our goal is to quantify the impact of vari-
ous components of the network subsystem in wireless LAN
environment (based on IEEE 802.11 standard [11]) on real-
world throughput of applications running over diverse reliable
transport protocols such as TCP and XCP [12]. In particular,
we conduct a coarse-level evaluation focused on the impact
of following four aspects: (i) wireless NIC and its interaction
with OS; (ii) OS; (iii) node hardware; (iv) system configuration
parameters (e.g., buffer size). Our study seeks to answer the
following two questions: (i) what is the amount and nature

Platform Platform1: Dell Latitude D600 (Processor 1.6GHz Pentium M, Memory 512MB@266MHz)
Platform2: IBM ThinkPad T43 (Processor 1.8GHz Pentium M, Memory 512MB@400MHz)

OS OS1: Linux Fedora Core 3 (2.6.9)
OS2: Linux Red Hat 9.0 (2.4.20)

802.11 NIC NIC1: Proxim/Orinoco Gold 11b/g (Atheros 5001x chip set, PCMCIA, MADWiFi driver [8])
NIC2: Linksys WPC11 v3.0 Wireless-B (Intersil Prism 3.0 chip set, PCMCIA, HostAP driver [9])

NIC3: Intel PRO/Wireless 2200BG (Intel chip set, miniPCI, IPW2200 driver [10])

TABLE I

SUMMARY OF DIFFERENT ALTERNATIVES USED IN EXPERIMENTS.

of impact on the performance of a transport protocol due
to the various system-dependent factors; (ii) is the relative
performance of different transport protocols sensitive to the
composition of the network subsystem? Addressing these
questions helps in identifying the key system aspects that
need to be represented in wireless network evaluation tools
(e.g., simulators, emulators) for improved fidelity. We also
point out how various existing tools differ in their support
for incorporating system-dependent behaviors, and how tools
lacking adequate support may be extended to model such
behaviors.

Our main findings are as follows.

• Design and implementation of each of the key compo-
nents (i.e., wireless NIC, OS, host system hardware) of
the network subsystem and its interaction with rest of
the system has substantial impact on the performance
of transport protocols. As an example, the performance
impact due to NIC overhead alone can match that of
key protocol parameters such as physical layer preamble.
When put together, transport performance with different
network subsystems can be significantly different (more
than 30%) depending on their individual composition.
This observed impact of the network subsystem is com-
parable to other well known network effects, e.g. wireless
channel errors [13].

• Of even greater significance is the fact that the relative
performance of different transport protocols is sensitive
to the composition of the network subsystem because
of differences in their interaction with the system. In
particular, we observe reversals in performance between
TCP and XCP in some operating regions depending on
the choice of wireless NIC. We also observe that the
system configuration parameters such as socket buffer
size have similar non-uniform impact on different pro-
tocols depending on the workload characteristics. By
way of representing system-related overheads in com-
mon evaluation tools, we show the effectiveness of a
simple mechanism for approximately modeling the NIC-
dependent overhead in wireless network simulators.

The rest of the paper is organized as follows. Section II
elaborates on our evaluation methodology and experiment
settings. Section III presents our measurement results and
analysis of the impact of various network subsystem com-
ponents/parameters on transport protocol performance. We
conclude in Section IV.

II. EXPERIMENTAL SETUP

Our evaluations are based on measured throughput perfor-
mance of reliable transport protocols on laptop platforms run-
ning Linux and equipped with a commodity 802.11 wireless
NIC. The different platforms, OSs and 802.11 NICs used
in our evaluations are summarized in Table I. Since real-
world protocol performance is dependent not only on the
system aspects but also on the wireless channel, we isolate
system effects by limiting attention to an almost ideal radio
propagation environment (short distance, negligible wireless
losses, no interference).

We consider standard TCP and XCP [12] as two representa-
tive reliable transport protocols. We choose these two protocols
because of their widely different approaches to congestion
control. TCP probes for available bandwidth by gradually
increasing the sending rate and infers congestion implicitly
via packet loss, while XCP uses explicit feedback from the
network about the level of congestion and adapts the sending
rate accordingly. Certain properties of XCP are well-suited
for the wireless environment even though it was designed
for high bandwidth-delay product networks (e.g., high-speed
optical networks, large delay satellite links). For example, XCP
enables identification of non-congestion related wireless losses
by decoupling rate control from error control. XCP, however,
requires accurate estimation of available bandwidth at each
link along the end-to-end path for feedback calculation, which
is challenging over lossy and shared wireless channels.

Rather than use an actual bandwidth estimation capability
for XCP, we run experiments for a wide range of static values
for the “estimated bandwidth” to reflect a wide range of es-
timation errors (covering underestimation, accurate estimation
and overestimation cases). We use a Linux implementation of
XCP from Zhang and Henderson [14], which is developed as
an extension to the standard TCP implementation.

III. RESULTS

A. Wireless NIC

We begin our analysis of the impact of various network
subsystem components on transport protocol performance by
looking at the impact of wireless NIC and its interaction with
rest of the network subsystem. For this purpose, we consider
three wireless NICs, listed in Table I, differing in various
aspects, including: chip set design, form factor, bus interface,
driver implementation and functionality. This set of NICs are
selected with careful consideration for wider applicability of
our measurements — most available commodity 802.11 NICs

0 2 4 6 8 10 12
200

300

400

500

600

700

800

Available Bandwidth Estimate (Mbps)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

XCP (NIC1)
XCP (NIC3)
TCP (NIC1)
TCP (NIC3)

(a) NIC1 & NIC3 (short preamble)

0 2 4 6 8 10 12
200

300

400

500

600

700

800

Available Bandwidth Estimate (Mbps)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

XCP (NIC2)
XCP (NIC3)
TCP (NIC2)
TCP (NIC3)

(b) NIC2 & NIC3 (long preamble)

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8
x 10

7

Time (sec)

S
eq

ue
nc

e
N

um
be

r

<1> XCP−5Mb (NIC1)
<2> XCP−11Mb (NIC1)
<3> TCP (NIC1)
<4> XCP−5Mb (NIC3)
<5> XCP−11Mb (NIC3)
<6> TCP (NIC3)

<1> <3>
<2>

<5> <6>
<4>

(c)

Fig. 1. (a,b) Impact of wireless NIC on throughput performance of TCP and XCP. (c) Sequence number versus time plots with NIC1 and NIC3 for XCP
with two bandwidth estimate values (5Mb and 11Mb) and TCP.

use chip-sets identical to one of the NICs in our set. For
brevity, we henceforth refer to the three NICs as NIC1,
NIC2, NIC3 respectively (see Table I). All experiments in
this subsection are based on Dell Latitude D600 (Platform1

in Table I) and Linux Fedora Core 3 kernel (OS1 in Table I).

For this study, we consider a single wireless link with one
sender host transferring a large file (80MB) to a receiver host.
As noted already, for isolating system effects, our experiments
are conducted in an environment with little or no wireless
losses and interference; this was also verified by examining
the experiment traces collected using the AiroPeek tool [15].
During the course of experimentation, we found that differ-
ent NICs use different default values for the physical layer
preamble (by default NIC1 and NIC3 use a short preamble,
whereas NIC2 uses a long preamble). As there was no easy
way to modify this parameter for two of the NICs (NIC1

and NIC2), we separately present the results for short and
long preamble cases. All NICs operate in 802.11b mode with
RTS/CTS disabled, fixed PHY data rate of 11Mbps, 1500 byte
MTU and identical values for other 802.11 MAC parameters.
As per transport layer settings, a large socket buffer size of
640KB is used for both sender and receiver, and the delayed
ACK mechanism is disabled.

Fig. 1(a,b) presents throughput for TCP and XCP with dif-
ferent NICs as a function of the available bandwidth estimate
value (see Section II). Note that TCP throughput remains
identical across various bandwidth estimate values as it does
not use explicit bandwidth estimation. Fig. 1(a) compares
NIC1 and NIC3 using short preamble, whereas Fig. 1(b)
compares NIC2 and NIC3 using long preamble. For all
experiment results in the paper, each data point represents an
average of at least ten runs.

Clearly, the choice of wireless NIC substantially affects
transport protocol throughput. Fig. 1(a) shows that TCP perfor-
mance with NIC1 is about 15% better relative to NIC3. We
observed negligible number of packet losses in both cases. So
this throughput difference is solely due to differences between
the NICs (and the corresponding drivers) since all other
settings are identical including transmission and propagation
delays. The overhead in moving data between the driver
and the wireless medium may account for the throughput

differences; this overhead is due to a combination of factors
such as NIC implementation and NIC-OS interaction (in terms
of interrupt handling and DMA support). We quantify this
overhead via round-trip time (RTT) measurements obtained
using 512 pings with 64 byte packets sent successively at one
second intervals. We find that minimum RTT with NIC3 was
larger than NIC1 by more than a factor of 2.25 (1.35ms vs.
0.59ms). These differences in RTTs can help explain TCP
throughput differences since TCP throughput has an inverse
relationship with RTT [16]. Same reasoning as above applies
for the similar TCP throughput seen between NIC2 and
NIC3 (Fig. 1(b)) when using a long preamble — NIC2 and
NIC3 have similar minimum RTT values (1.77ms and 2.1ms,
respectively).

Besides, comparison of TCP throughput with NIC3 be-
tween Fig. 1(a) and (b) shows that the performance drops by
about 15% with long preamble. This suggests that performance
impact due to NIC-related overhead alone (as seen from
Fig. 1(a)) can be comparable to that of protocol-specific
parameters (preamble length in this case).

As for XCP, throughput differences across NICs vary over
a wide range depending on the available bandwidth estimate
value. As shown in Fig. 1(a), NIC1 provides better XCP
throughput relative to NIC3 with improvements ranging from
60% in underestimation case, 30% near accurate bandwidth
estimation case, and about 8% in overestimation case. These
results with XCP will be discussed below.

More importantly, the NIC-dependent overhead can alter the
relative protocol performance in some cases. As seen from
Fig 1(a), XCP performance in the underestimation region is
about 15% better relative to TCP with NIC1, whereas it gets
about 15% worse with NIC3. As discussed below, different
sensitivity of XCP to bandwidth underestimation with different
NICs (with different RTTs) explains this reversal in relative
performance.

Further, the specifics of wireless NICs can influence proto-
col behavior through interaction with protocol-related parame-
ters. This is evident from XCP performance trends in Fig. 1,
where the effect of bandwidth estimation errors is noticeably
different with different NICs. Let us first focus on Fig. 1(a)
comparing XCP performance with NIC1 and NIC3. In the

underestimation region (1-5Mbps), the congestion window was
seen to stay at one (segment) for both NICs; this implies that
throughput performance is fully determined by the RTT —
receipt of an ACK every RTT lets the sender transmit a new
segment. Hence the throughput performance with NIC3 is
poor in this region due to its relatively larger RTT. Note that
RTT also determines the optimal congestion window size.
Here optimal window is close to 1 for NIC1 while it is
between 1 and 2 for NIC3. This explains why NIC1 delivers
peak throughput in the underestimation region, whereas NIC3

reaches its peak beyond this region.
Relative performance trends of XCP in the overestima-

tion region (beyond 6Mbps) in Fig. 1(a) are interesting —
throughput drops below the peak for NIC1, while it stays
close to the peak value for NIC3. Note that with bandwidth
overestimation, XCP router (same as the sender node in this
case) provides inflated feedback (greater than optimal) to
the XCP sender resulting in an inflated congestion window.
The response from the sender is to inject more data into
the network, which results in more data drawn from the
application by XCP and moved to the NIC, creating an
artificial overload situation. In a general multihop case, this
can cause packet loss due to buffer overflow at the bottleneck
node on the path. In our single link case, however, there is
no loss due to buffer overflow as a host does not overflow its
NIC. Nevertheless, the increased queueing due to this artificial
overloading can stress the NIC. The sequence number versus
time plots in Fig. 1(c) (obtained from complete packet trace
collected using AiroPeek) suggest that NIC3 responds better
compared to NIC1 in such situations, thus explaining their
different performance trends in the overestimation region. Note
that the effect of bandwidth overestimation in XCP leads to a
congestion window behavior similar to TCP (linear increase
with time), hence their similar performance.

XCP performance trends in Fig. 1(b) can be explained using
similar reasoning as above with the following two exceptions.
The optimal congestion window for both NIC2 and NIC3

is greater than 1 due to the use of long preamble, which
affects their behavior in the underestimation region. Also
NIC2 appears to respond poorly to load in the overestimation
region like NIC1 in Fig. 1(a).

Modeling wireless NIC overhead: The preceding discus-
sion highlights the importance of incorporating NIC-dependent
overhead in wireless network evaluation tools for accurate
performance prediction as it impacts both individual and rela-
tive performance of transport protocols. Further, our analysis
suggests that observed performance behaviors of TCP and
XCP can be largely attributed to the RTT differences between
the NICs. We also carried out extensive set of ping tests for
different packet sizes (between 64 and 1500 bytes), and find
that minimum RTT differences are insensitive to packet size.
For instance, the minimum RTT with NIC3 is greater by about
0.75ms compared to NIC1 at 11Mbps PHY rate regardless
of the packet size. Based on the above observations, a simple
mechanism to model NIC-related overhead is to introduce a
fixed delay for each packet immediately before it is handed

0 100 200 300 400 500 600
500

550

600

650

700

750

800

NIC−dependent Overhead (usec)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

Fig. 2. Impact of varying the delay in the wireless NIC overhead model in
QualNet on TCP performance.

down to the NIC for transmission; the value of this per-packet
delay for a given NIC is set to the observed minimum RTT
with that NIC.

We use two common wireless network simulators, namely
ns-2 and QualNet, to study the effectiveness of our NIC
overhead model in replicating protocol performance behaviors
observed in our measurements. While ns-2 seems to have a
similar model already, simulations with settings identical to
those described earlier in this subsection do not show any
noticeable impact on TCP throughput from varying the delay
in the NIC overhead model. A closer look revealed that it was
because ns-2’s modeling of the interaction between network
(IP) and link layers differs from real systems. Specifically,
ns-2 uses a drop-tail interface queue with a default limit (50
packets) to move packets from IP to the link layer (NIC).
The use of a multi-packet interface queue creates kind of
pipelining effect that results in multiple packets waiting in the
queue to concurrently experience the NIC overhead delay. Also
transferring packets to the interface regardless of its queue
occupancy causes IP layer to overflow the network device and
drop packets; in contrast, a real host does not overflow its own
device.

With QualNet, the modeling of the interaction between IP
and NIC more closely matches reality, and we have added the
simple NIC overhead model. As shown in Fig. 2, introduction
of additional delay reflecting difference in RTTs between
NIC1 and NIC3 shows a close match with Fig. 1(a) in terms
of drop in TCP throughput. This suggests that it is indeed
possible to capture system-dependent behaviors resulting from
NIC overheads in simulation tools; we can also achieve a
similar effect with ns-2 with appropriate modifications to the
IP-NIC interaction. However, we should note that the above
simple model has some limitations. First, it does not model the
effect of physical layer modes (a/b/g) and data rates. Second,
it is a static model in that per-packet delay is fixed; in practice,
NIC-related overhead may vary with system load.

We will investigate a more realistic dynamic load-dependent
model in future drawing from the following approaches. Full
system simulators, e.g. M5 [17], avoid the need to consider
load-dependent overhead as part of NIC overhead by simu-
lating the host hardware and running unmodified OS (e.g.,
Linux) and applications within the simulator. However, this
approach may severely limit the size of networks that can be

OS1 OS2

NIC1

TCP throughput 723.96KB/sec 622.41KB/sec
min RTT 0.60msec 0.56 msec
NIC2

TCP throughput 559.06KB/sec 484.97KB/sec
min RTT 2.1msec 2.0 msec

TABLE II

IMPACT OF OS ON TCP THROUGHPUT PERFORMANCE WITH DIFFERENT

WIRELESS NICS.

evaluated. Network emulation [18] is another alternative in
which applications and OS run on real hardware, whereas the
NIC and wireless channel are emulated. Emulation is a middle
ground between common network simulators and full system
simulators in terms of scalability. So it may be an attractive
approach to easily account system-related overheads.

B. Operating System and Node Hardware

OS: Here we first evaluate the impact of OS on transport
protocol performance by comparing TCP throughput with two
versions of Linux, i.e. OS1 and OS2 in Table I. We choose
these two specific versions as they are substantially different
in terms of their implementation of the network subsystem
and hence on its efficiency. Results presented here are based
on Platform1 (see Table I). We consider two NICs: NIC1

and NIC2. For NIC3, we could not find a driver compatible
with OS2. Rest of the experiment settings are identical to the
previous subsection.

Results summarized in Table II indicate that the OS has
noticeable impact on TCP performance. In particular, going
from OS2 to OS1 can improve TCP throughput by about 15%
with both NICs. Unlike before, however, the minimum RTT
differences are not prominent enough to explain the differences
in throughput. Among the many new features/enhancements
included in Linux Fedora Core 3 kernel (i.e., OS1), it ap-
pears that the new scheduler, kernel preemption capability
and memory management changes most likely explain the
observed TCP throughput improvements. Note that network
subsystem efficiency is affected by the design of other OS
facilities, notably process and memory management.

Node hardware: We now evaluate node hardware im-
pact on transport protocol performance using two platforms
(Platform1 and Platform2 shown in Table I) with different
CPU and memory bus speeds. We used these two platforms
as they were readily available at the time of our experimen-
tation. For this experiment, we used OS1. We consider two
NICs (NIC1 and NIC3) both using short preamble. Other
experiment settings are same as before.

Results in Table III show that the host hardware can have
a noticeable impact on transport performance. In particular,
Platform2 provides better performance than Platform1

(10% or more) with both NICs. This may be largely due to the
much faster (around 50%) memory bus speed with Platform2

as moving each word of data from the application to the
NIC incurs three memory accesses (read from application,
write to kernel buffer, and read from kernel buffer to NIC).

Platform1 Platform2

NIC1

TCP throughput 723.96KB/sec 792.5KB/sec
min RTT 0.60msec 0.65msec
NIC3

TCP throughput 619.65KB/sec 725.3KB/sec
min RTT 1.55msec 1.40msec

TABLE III

IMPACT OF NODE HARDWARE ON TCP THROUGHPUT PERFORMANCE WITH

DIFFERENT WIRELESS NICS.

Interestingly, we see different impact of the host hardware with
different NICs going from Platform1 to Platform2 (10%
improvement with NIC1 vs. 17% improvement with NIC3).
With further investigation, we found that the driver for NIC1

additionally includes an optimization to reduce the number of
interrupts from the NIC, which has the effect of reduced CPU
dependence, which may explain the greater performance im-
provement with NIC3 from a faster CPU in Platform2. We
can also observe that the collective impact of the host hardware
and the NIC can result in nearly 30% throughput difference
(compare Platform1-NIC3 and Platform2-NIC1).

No correlation is observed between minimum RTT differ-
ences and throughput differences across the two platforms,
which may be because minimum RTT does not include load-
dependent overhead. As noted earlier, network emulation
approach may make it easier to capture overheads related to
OS and host hardware that affect transport performance.

C. Sensitivity to System Configuration Parameters

Here we present how system configuration parameters
affect performance of TCP and XCP in a heterogeneous
wired/wireless setting. In particular, we consider the socket
buffer size at end hosts, an important system configuration
parameter in TCP/IP networks. Semke et al [4] showed that
this parameter value can significantly affect TCP throughput
in wired networks. Recently XCP was also shown to be
sensitive to this parameter setting in wired networks using a
single bottleneck network topology [14], albeit for somewhat
different reasons than TCP. In contrast to these prior efforts,
our goal is to characterize its impact in a wired/wireless
network on the relative performance of transport protocols,
namely TCP and XCP.

The experiment setup consists of a simple wireless LAN
with one 802.11 wireless host associated with an access point
(AP) and the AP additionally connected to a wired host over a
gigabit ethernet link. Fixed data rate of 11Mbps is set for the
wireless link. We use Platform1 and OS1 for all nodes and
NIC1 for the wireless link. We consider two buffer sizes:
small — 16KB (default in OS1) and large — 640KB. For
workload, we consider two types of bulk transfer flows: (i)
from wireless host to the wired host via the AP (“upload”); (ii)
from wired host to the wireless host (“download”). Identical
buffer settings are used at both sender and receiver hosts. All
other settings are as in Section III.A.

Fig. 3(a,b) shows that TCP and XCP react differently to the
change in socket buffer size depending on the flow direction.

0 2 4 6 8 10 12
600

650

700

750

800

Available Bandwidth Estimate (Mbps)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

XCP (large buffer)
XCP (small buffer)
TCP (large buffer)
TCP (small buffer)

(a) Upload flow

0 2 4 6 8 10 12
600

650

700

750

800

Available Bandwidth Estimate (Mbps)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

XCP (large buffer)
XCP (small buffer)
TCP (large buffer)
TCP (small buffer)

(b) Download flow

0 2 4 6 8 10 12
460

480

500

520

540

560

580

600

Available Bandwidth Estimate (Mbps)

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

XCP − download (large buffer)
XCP − upload (large buffer)
XCP − download (small buffer)
XCP − upload (small buffer)
TCP − download (large buffer)
TCP − upload (large buffer)
TCP − download (small buffer)
TCP − upload (small buffer)

(c)

Fig. 3. (a,b) Impact of socket buffer size on relative performance of TCP and XCP using real experimentation; (c) using ns-2 simulations.

For the upload case (Fig. 3(a)), TCP with large buffer performs
better (around 10%) than with small buffer; in contrast, there
is no noticeable difference for XCP between large and small
buffers both in absolute throughput and sensitivity to the
bandwidth estimate value. Buffer size has a reverse effect in
the download case (Fig. 3(b)) — TCP performance remains
unaffected, whereas XCP gains with use of small buffer by
about 10% in the overestimation region. In summary, the buffer
size and the flow direction together contribute to the different
responses of XCP and TCP.

We repeated the above experiment using the ns-2 simulator.
Note that XCP simulation model is currently available only
in ns-2. As we see from the ns-2 results in Fig. 3(c), unlike
the physical experiments, TCP performance remains similar
in all cases and XCP performance is insensitive to the flow
direction. These results with ns-2 highlight the current lack
of support in commonly used wireless network simulators for
capturing subtle interactions between system parameters (e.g.,
buffer size) and workload characteristics that affect protocol
performance behaviors.

IV. CONCLUSIONS

In this paper, we study the effect of the network subsystem
on the transport protocol performance in wireless LAN envi-
ronment. In particular, we evaluate performance impact due
to each of the main network subsystem components (wireless
NIC, host system hardware and the OS) on two reliable
transport protocols, i.e. TCP and XCP. We also present the
impact of network subsystem parameters using the socket
buffer size as a representative parameter. Our results show that
the composition of the network subsystem can have significant
impact (around 30%) on transport performance, comparable to
that of channel condition or protocol performance optimiza-
tions. More importantly, we find that the configuration of the
network subsystem (through interaction with protocol-specific
parameters) can have non-uniform impact on different proto-
cols resulting in reversals in their relative performance. Thus,
it is important to incorporate system-dependent behaviors in
evaluation tools for realistic protocol performance studies. As
an initial step in this direction, we showed the utility of a
simple NIC-overhead model in wireless network simulators.

In the future, we plan to further investigate how to accu-
rately represent system overhead in wireless network evalua-
tion tools, including modeling techniques for simulators and
evaluating the effectiveness of emulation methodology. We
also plan to extend our study to wider settings (e.g., multi-
flow and multi-hop scenarios)

REFERENCES

[1] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of TCP
Processing Overhead,” IEEE Communications Magazine, vol. 27, no. 6,
1989.

[2] J. Chase, A. Gallatin, and K. Yocum, “End System Optimizations for
High-Speed TCP,” IEEE Communications Magazine, vol. 39, no. 4,
2001.

[3] S. Zeadally and L. Zhang, “Enabling Gigabit Network Access to End
Users,” Proceedings of the IEEE, vol. 92, no. 2, 2004.

[4] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,”
in Proc. ACM Sigcomm, 1998.

[5] S. Choi, K. Park, and C. Kim, “On the Performance Characteristics of
WLANs: Revisited,” in Proc. ACM Sigmetrics, 2005.

[6] L. Feeney and M. Nilsson, “Investigating the Energy Consumption of a
Wireless Network Interface in an Ad Hoc Networking Environment,” in
Proc. IEEE Infocom, 2001.

[7] B. Wang and S. Singh, “Computational Energy Cost of TCP,” in Proc.
IEEE Infocom, 2004.

[8] “Madwifi: Multiband Atheros Driver for WiFi,”
http://madwifi.sourceforge.net/.

[9] “HostAP: Host AP Driver for Intersil Prism2/2.5/3,”
http://hostap.epitest.fi/.

[10] “IPW2200: Intel PRO/Wireless 2200BG Driver for Linux,”
http://ipw2200.sourceforge.net/.

[11] IEEE Std. 802.11, “Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications,” 1999.

[12] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” in Proc. ACM Sigcomm, 2002.

[13] C. Casetti et al., “TCP Westwood: End-to-End Congestion Control for
Wired/Wireless Networks,” ACM/Kluwer Wireless Networks Journal,
vol. 8, no. 9, 2002.

[14] Y. Zhang and T. Henderson, “An Implementation and Experimental
Study of the eXplicit Control Protocol (XCP),” in Proc. IEEE Infocom,
2005.

[15] WildPackets Inc., “AiroPeek Wireless LAN Analyzer,”
http://www.wildpackets.com/.

[16] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in Proc.
ACM Sigcomm, 1998.

[17] N. Binkert et al., “Analyzing NIC Overheads in Network-Intensive
Workloads,” in Proc. Eighth Workshop on Computer Architecture Eval-
uation using Commercial Workloads (CAECW), 2005.

[18] J. Zhou, Z. Ji, and R. Bagrodia, “TWINE: A Hybrid Emulation Testbed
for Wireless Networks and Applications,” in Proc. IEEE Infocom, 2006,
to appear.

