
A Generative Dialogue System for Arguing
about Plans in Situation Calculus

Alexandros Belesiotis1, Michael Rovatsos1, and Iyad Rahwan2

1 School of Informatics, The University of Edinburgh,
Edinburgh EH8 9LE, UK

{A.Belesiotis,Michael.Rovatsos}@ed.ac.uk
2 Institute of Informatics, The British University in Dubai,

P.O. Box 502216, Dubai, UAE
irahwan@acm.org

Abstract. This paper presents an argumentation mechanism for recon-
ciling conflicts between planning agents related to plan proposals, which
are caused by inconsistencies between basic beliefs regarding the state of
the world or the specification of the planning operators.
We introduce simple and efficient argument moves that enable discus-
sion about planning steps, and show how these can be integrated into
an existing protocol for belief argumentation. The resulting protocol is
provably sound with regard to the defeasible semantics of the resulting
agreements. We show how argument generation can be treated, for the
specific task of argumentation about plans, by replacing the burden of
finding proofs in a knowledge base by guided search.

1 Introduction

In recent years, argumentation [1] has attracted much attention as a technique
for resolving conflicts between agents, mainly due to its strong logical foundation
and its suitability for use in multiagent situations.

One area in which argumentation has been recently employed is that of col-
laborative practical decision making [2–4], e.g. when deciding on task allocation
in teamwork frameworks [5]. In this case, it can be imagined that different agents
come up with proposals for joint action, such as multiagent plans, and discuss
such plans with their teammates in order to reach agreement. The need for
conflict resolution may arise from the agents having different viewpoints due
to locality of sensing, different fundamental assumptions about the domain, or
simply because different agents may have conducted different inferences and
therefore their beliefs may not be aligned.

In cooperative distributed problem solving [6] (e.g. frameworks like GPGP
[7]), conflicts are normally resolved by merging agents’ different views. However,
this is only feasible if agents use highly structured knowledge bases that contain
only knowledge relevant to the task in hand. In more general agent designs (where

2 A. Belesiotis, M. Rovatsos, I. Rahwan

agents have arbitrary beliefs about the world), detecting conflicts when merging
beliefs is computationally complex and, in some cases, completely unnecessary
and wasteful. Efficiency can be increased by identifying conflicts that are related
to plans that are currently being debated, and resolving only disagreements that
affect the viability of concrete plan proposals.

In this paper, we propose a method that aims to tackle precisely this problem.
Based on the observation that logical theories of planning are highly structured
and fairly simple, we devise an argumentation protocol that allows agents to
discuss plan proposals and to identify reasons for potential disagreements that
originate in differences regarding beliefs about the planning domain. We provide
an algorithm and explain how the proposed protocol can be used to guide the
search for relevant disagreements in a focused way. We also show that it is easy to
integrate our argument moves with conventional belief argumentation protocols,
and discuss useful properties of the resulting framework for reasoning about
plans. An overview of the process is described in Figure 1. In this paper we do
not focus on the process of planning itself, but on how structured argumentation-
based dialogue can be employed as the means for identification of disagreements
regarding plans.

distributed

beliefs

using a planner

TRUE

FALSE

FALSE

TRUE

Planning

Plan Communication

Plan Validation

Acceptable
Is

Conflict Resolution

Identification of Conflicting Beliefs

Is
Justifiable

for relevant

Fig. 1. Outline of how the employed protocol can be used to identify and resolve
conflicts about plans

The paper advances the state-of-the-art in multiagent planning in two ways.
Firstly, we present the first dialogue protocol that is specifically designed to
enable agents to detect and resolve disagreements about a plan generated via
conventional planning algorithms. This contrasts with other approaches [8, 3]
which are concerned with the process of planning itself. The second contribution
of this paper is to show that the dialogue generation process can be simplified

Arguing about Plans in Situation Calculus 3

by exploiting the structure of the planning problem to systematically discover
disagreements over only the beliefs relevant to the plan structure. In particu-
lar, in contrast to general protocols [2] which allow very expressive dialogues
about goals, intentions, etc, but come with no clear bounds on the length of
dialogues, we give exact upper bounds on the number of messages exchanged
before disagreements are identified.

The remainder of this paper is structured as follows: Section 2 introduces the
argumentation and planning background required for the development of our
framework. Section 3 introduces the suggested protocol, followed by an example
illustrating the protocol. Section 5 provides an analysis of protocol properties,
and in Section 6 we present an algorithm for argument generation. Section 7
concludes.

2 Preliminaries

2.1 Planning framework

Our planning framework follows the situation calculus framework [9], a logical
language designed for representing dynamic domains. Three disjoint sorts are
supported. The sort action represents actions, the sort situation represents situa-
tions and the sort object all the rest. S0 is a constant symbol representing the ini-
tial situation. The binary function symbol do : action×situation → situation de-
notes the successor situation after preforming an action. Poss : action×situation
is a binary predicate symbol representing whether an action is applicable in a
situation. The binary predicate symbol @: situation×situation defines an order-
ing relation over situations, where s @ s′ denotes that s is a proper subsequence
of s′. Symbols whose value change in different situations are called fluents (rela-
tional or functional), and they have an argument of sort situation as their final
argument.

In particular, the dialogue attempts to identify and reconcile beliefs in the
agents’ theories about the world that conflict. Each agent maintains the repre-
sentation of the domain as a Basic Action Theory D, as proposed by Reiter in
[10].

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0

Where Σ is a set of Fundamental domain-independent axioms providing the
basic properties for situations. Successor state axioms Dss are introduced for
each relational or functional fluent in the domain, and specify the conditions
that govern its value in a situation. The conditions under which an action can
be performed are specified by the action precondition axioms, Dap. DS0 is a set of
first-order sentences that represent the initial state of the world. Each Successor
State axiom (Ass) describes the conditions that should hold in situation s so
that a relational or functional fluent takes a certain value in the situation (a, s),
which follows from the application of action a in s. For relational and functional
fluents respectively, they have the following form:

F (x1, ..., xn, do(a, s)) ≡ ΦF (x1, ..., xn, a, s)

4 A. Belesiotis, M. Rovatsos, I. Rahwan

f(x1, ..., xn, do(a, s)) = y ≡ Φf (x1, ..., xn, y, a, s)

Action Precondition axioms (Aap) specify the preconditions of actions and have
the following form:

Poss(A(x1, ..., xn), s) ≡ ΠA(x1, ..., xn, s)

Situation calculus treats a plan, for a goal sentence G relative to a domain
D, as a variable-free situation term sπ iff D � executable(sπ) ∧ G(sπ), where
executable(sπ) def= (∀a, s∗).do(a, s∗) v s ⊃ Poss(a, s∗).

Definition 1. A planning problem P is a tuple 〈D, G〉, where D is the planning
domain and G describes a fluent symbol specifying the goal.
A consequence of the definition of a plan in situation calculus and the foun-
dational axioms for situations is that executable(do(a, s)) ≡ executable(s) ∧
Poss(a, s). This enables the definition of a plan as a sequence of actions solving
a planning problem.

Definition 2. A plan π = a1; a2; . . . ; an is a solution to a planning problem P iff

D � Poss(a1, S0)∧do(a1, S0) = s1∧Poss(a2, s1)∧do(a2, s1) = s2∧. . .∧Poss(an, sn−1)∧
do(an, sn−1) = sn ∧G(sn).
This definition describes that each action in the plan can be performed in the
situation that results from the application of the previous action in the sequence,
and that after preforming the final action the goal sentence G will be true.

In classical AI planning, domain knowledge is assumed to be conflict-free.
In a multiagent setting, however, there are cases where agents have mutually
conflicting beliefs. In order to find a plan that satisfies all parties, the agents need
to solve a planning problem involving conflicting knowledge about the planning
domain.

Assume two agents i and −i each of which has an (internally consistent)
domain knowledge Di/D−i. A planning problem P is set to be potentially con-
flicted among agents i and −i, if there exist statements in Di that conflict with
statements in D−i.3

Assuming that the goal has been agreed upon, then due to the contradictory
beliefs of the agents, it can be challenging to discover a plan that satisfies both
i and −i, since from each agent’s local perspective, the plan needs to solve a
different planning problem: i is looking for a solution to Pi = 〈Di, G〉, whereas
agent −i wants to solve P−i = 〈D−i, G〉. An acceptable plan that can be agreed
upon by two agents i and −i is therefore defined as follows:
Definition 3. Given the domain representations for the two agents Di and D−i,
and a common goal G, a plan is acceptable if and only if it is the solution to
both planning problems Pi = 〈Di, G〉 and P−i = 〈D−i, G〉.
With this, the purpose of our argumentation protocol can be specified as follows:
for a potentially conflicted planning problem P between two agents and an initial
proposed plan π determine whether this plan is acceptable.
3 This paper assumes two-player situations; in case of more than two agents, our results

carry over assuming dialogues are conducted between all pairs to reach agreement.

Arguing about Plans in Situation Calculus 5

2.2 Argumentation Framework

Argumentation is a mechanism that can be used for the resolution of conflicts.
Our basic argumentation framework follows [1]:

Definition 4. An argumentation system is a structure H = 〈A,→〉 where A is
a set of arguments and →⊆ A×A is a binary attack relation between arguments.
The following additional definitions on sets of arguments are useful:
1. A set of arguments S ⊆ A is conflict-free iff (@A,B ∈ S).A → B
2. An argument A ∈ A is acceptable with respect to a set S ⊆ A of arguments

iff (∀B ∈ A).(B → A ⇒ [(∃C ∈ S).C → B])
3. A set of arguments S ⊆ A is called admissible if it is conflict-free and if each

argument in S is acceptable with respect to S
4. A preferred extension of an argumentation framework is a maximal (with

respect to set inclusion) admissible set of the argumentation framework.
5. S is a stable extension of an argumentation framework, if S is conflict-free

and (∀A 6∈ S).[∃B ∈ S).(B → A)]

Further refinements that we use below include (i) credulous preferred seman-
tics, which require an argument to be part of at least one preferred extension
to be considered acceptable, and (ii) sceptical preferred semantics, which require
that the argument is contained in all preferred extensions of the argumentation
framework.

To apply these notions in a logic-based framework, we define arguments based
on an inference procedure ` in a knowledge base, and reinterpret the attack
relation using logical contradiction:

Definition 5. Arguments for agent i are pairs A = 〈H,h〉, where H ⊆ Di, and
i. H is consistent (i.e. H 6` ⊥),
ii. H ` h,
iii. H is minimal (no subset of H satisfies both i. and ii.).

H is called the support of the argument and h its conclusion.

If an argument follows the aforementioned definition then we can refer to it as
being a valid argument.

Definition 6. An argument A1 = 〈H1, h1〉 attacks an argument A2 = 〈H2, h2〉,
denoted A1 → A2, if ∃φ in H2 such that h1 ≡ ¬φ.

3 Dialogue protocol

We suggest a protocol that is a two-party immediate response dispute (TPI-
dispute) type protocol and builds on [11, 12]. It extends the protocol presented in
[11] to include planning-related argument moves (for proposing a plan, attacking
a plan and attacking the attackers of a plan).

In the protocol described in [11], the dialogue moves COUNTER, BACKUP
and RETRACT may be employed to progress the dialogue by attacking the
other party’s most recent argument, or by returning to an earlier point in the

6 A. Belesiotis, M. Rovatsos, I. Rahwan

dialogue and providing an alternative attack. Rules are provided formulating
the conditions under which the moves can be used, depending on the “current”
state of the dispute and the arguments that are available to each agent. We have
adapted this protocol so that the applicability of moves can be evaluated only
with respect to the state of the dialogue. This is necessary for our system as
agents do not know all the possible arguments that can be created from their
beliefs. Instead they construct candidate responses before making their next
move.

Planning-related moves are provided as instantiations of TPI-dispute moves,
through further restrictions on the preconditions and the form of the exchanged
argument. These restrictions also depend on the state of the dialogue.

3.1 TPI-Disputes

In order to discover if an argument to follow a plan is acceptable (and therefore
if a plan is acceptable), the agents engage in an argumentation game. The agent
proposing the plan, initiates the game, and plays the role of the proponent PRO ,
leaving the role of opponent OPP to the other party. The proponent agent is
responsible for constructing arguments in favour of the plan, while the opponent
is attempting to attack the validity of the plan. The game progresses with the
agents exchanging arguments attacking the previous argument of their rival. The
proponent attempts to create an admissible set containing the initial argument,
which in this case proposes a plan believed to achieve the shared objective. The
following definitions follow [11].

Definition 7. Let H = 〈A,→〉 be an argumentation system with A = APRO ∪
AOPP the union of the arguments that can be constructed by the proponent and
the opponent. A dispute tree for some argument X in APRO , denoted by T HA , is
a tree with root X whose vertices and edges are subsets of A and →, respectively.

Note that the edges in a dispute tree are directed from vertices to their parent
node. A dispute line is a path in the dispute tree, and is of the form

t = vk → ... → v1 → v0 = X

A dispute line is called open/closed if the agent who has to make the following
move is able/unable to construct an argument following Definition 5. A closed
dispute line for some argument X is a failing defence of X if the leaf node
argument move has been made by the opponent. On the contrary, if the final
argument has been raised by the proponent the dispute line is considered a failing
attack of X.

A TPI-dispute for some argument X of a system H is a sequence of moves

M = 〈µ1, µ2, ..., µi, ...〉

The agents have a finite repertoire of available move types. The moves avail-
able to the proponent are COUNTERPRO and RETRACTPRO , whereas the moves
available to the opponent are COUNTEROPP and BACKUPOPP . Whether it is

Arguing about Plans in Situation Calculus 7

possible for an agent to perform a move is decided depending on move precon-
ditions and the current state of the dispute. The state of the dispute after the
kth move, with (k ≥ 0), is described by the following tuple:

σk = 〈Tk, vk,CSPRO
k ,CSOPP

k ,Pk,Qk〉

Tk is the dispute tree after move k. The last argument proposed is denoted by vk.
CSPRO

k /CSOPP
k contain the proponent’s/opponent’s commitments. Pk contains

arguments that are presented as a subset of the admissible set, and Qk contains
sets that have been shown not to be a subset of an admissible set. The initial
state of the dispute for some argument X is

σ0 = 〈〈X〉, X, {X}, {}, {X}, ∅〉.

Turntaking in the dialogue is determined by the running index of the current
move. The current player is OPP if the index of the current move k is odd, and
PRO otherwise. If the current player has a legal move available, then the dispute
is active; if not, then it terminates. When a dialogue terminates, the winner can
be determined using the number of moves, |M |. If |M | is odd/even, then the
proponent/opponent wins the argument, respectively.

The repertoire of moves available to the agents and their applicability will be
presented in terms of preconditions and effects related to the state of the dispute
before the moves are applied.

If k is odd, the opponent may attack the most recent argument presented by
the proponent by putting forward argument Y , using the µk = COUNTEROPP

k (Y)

move.
µk = COUNTEROPP

k (Y)

Preconditions:
- Y is a valid argument;

- Y → vk−1;

- Y 6∈ CSOPP
k−1 ;

- Y 6∈ CSPRO
k−1 ;

- (@ Z ∈ CSPRO
k−1). Z → Y .

Effects:
- Tk := Tk−1 + 〈Y, vk−1〉;
- vk := Y ;

- CSPRO
k := CSPRO

k−1 ;

- CSOPP
k := CSOPP

k−1 ∪ Y ;

- Pk := Pk−1;

- Qk := Qk−1.
The definition of this move describes that in order to respond to the most
recent argument put forward by the proponent, the opponent must construct a
valid argument, according to Definition 5, that attacks the proponent’s previous
argument vk−1. The opponent cannot reuse arguments that have already been
presented by her or by the proponent, or any arguments that can be attacked by
arguments previously proposed by the proponent. This dialogue move affects the
state of the dialogue by including the new argument in the dispute tree as the
most recently presented argument, as well as in the opponent’s commitments.

A variation of the counter available to the proponent is defined in a similar
fashion.

8 A. Belesiotis, M. Rovatsos, I. Rahwan

µk = COUNTERPRO
k (Y)

Preconditions:
- Y is a valid argument;

- Y → vk−1;

- Y 6∈ CSPRO
k−1 ;

- (@ Z ∈ CSPRO
k−1). Z → Y .

Effects:
- Tk := Tk−1 + 〈Y, vk−1〉;
- vk := Y ;

- CSPRO
k := CSPRO

k−1 ∪ Y ;

- CSOPP
k := CSOPP

k−1 ;

- Pk := Pk−1 ∪ Y ;

- Qk := Qk−1.
The proponent, when using the counter move, cannot repeat arguments or
state arguments that contradict her commitments. This move progresses the
dispute by adding Y to the dispute tree, the proponent’s commitments and to
the subset of the admissible set that the proponent is attempting to construct.

The backup move can be used by the opponent if a counter move responding
to the proponent’s most recent argument is not possible. This move returns to
the most recent point in the dispute, in which the opponent can proceed with
an alternative attack. This point is represented by j, which must be even and
0 ≤ j ≤ k − 3.

µk = BACKUPOPP
k (j, Y)

Preconditions:
- Cannot construct a valid argument that attacks vk−1;
- For each r in {j + 2, j + 4, . . . , k − 3}, no argument Y ′ exists that

· Y ′ is a valid argument;

· Y ′ → vr;

· Y ′ 6∈ CSOPP
r ∪ {vr+1, vr+3, . . . , vk−2};

· Y ′ 6∈ CSPRO
r ∪ {vr+2, vr+4 . . . , vk−3};

· (@ Z ∈ CSPRO
r ∪ {vr, vr+2, . . . , vk−3}). Z → Y ′.

- Y is a valid argument;
- Y → vj ;
- Y 6∈ CSOPP

j ∪ {vj+1, vj+3, . . . , vk−2};
- Y 6∈ CSPRO

j ∪ {vj+2, vj+4 . . . , vk−3};
- (@ Z ∈ CSPRO

j ∪ {vj , vj+2, . . . , vk−3}). Z → Y .
Effects:

- Tk := Tk−1 + 〈Y, vj〉;
- vk := Y ;
- CSPRO

k := CSPRO
k−1 ;

- CSOPP
k := CSOPP

j ∪ Y ∪ {vj+1, vj+3, . . . , vk−2};
- Pk := Pk−1;
- Qk := Qk−1.

This move can be used by the opponent to attack the argument presented by
the proponent in move µj , if there do not exist any more recent points in which
the opponent can mount an alternative attack. The argument Y must not have
been repeated by the proponent or the opponent, and it must not be attacked
by any arguments presented by the proponent.

The following move can be used by the proponent in order to retract and
provide an alternative justification for X, if the opponent has shown that Pk

is not part of an admissible set. By retracting, PRO attempts to construct a
different admissible set containing X.

Arguing about Plans in Situation Calculus 9

µk = RETRACTPRO
k

Preconditions:
- PRO cannot attack uk−1;

- Pk 6= {X}.

Effects:
- Tk := 〈X〉;
- vk := X;

- CSPRO
k := CSPRO

0 ;

- CSOPP
k := CSOPP

0 ;

- Pk := P0;

- Qk := Qk−1 ∪ {Pk−1}.
According to [11], if there exists a terminated TPI-dispute over an argument

X in the argument system H that is a successful defence of X (i.e. k is even),
then at least one preferred extension of A contains X, and X is said to be
credulously accepted in H.

To define sceptical acceptance semantics, Dunne and Bench-Capon [11] use
the notion of an x-augmented system Ha which is formed for an argument sys-
tem H(A,→) and X ∈ A, by introducing a new argument Xa and an attack
〈X, Xa〉. For an argument system H(A,→), in which every preferred extension
is a stable extension, an argument X ∈ A is sceptically accepted (i.e. is part of
every preferred extension) in H, if and only if there is a dispute M , providing a
successfull rebuttal of Xa in the x-augmented system Ha.

3.2 Arguments in Situation Calculus

Dialogue about plans may be broken down to two distinct levels. The Plan Level
Dispute (PLD) involves arguments regarding future states of the world, explain-
ing the agents’ views on how the proposed plan will affect the environment. The
Domain Level Dispute (DLD) involves arguments about the planning domain,
and involve beliefs about the initial state of the world or the specification of
the planning operators. All PLD and DLD arguments need to follow Definition
5 and attack the most recent argument proposed by the other party, according
to the preconditions of the dialogue moves. In order for the following argument
types to be instantiated into arguments respecting Definition 5, the conditions
for using each argument type need to be followed.

Plan Level Dispute. The argument game is initiated through a plan Proposal
argument. The agent that introduces this argument plays the role of the pro-
ponent. The proposed plan is considered to be acceptable with respect to the
proponent’s beliefs:

Proposal (P), for π = a1; a2; . . . ; an

◦ Argument:
{Poss(a1, S0), s1 = do(a1, s0), . . . ,Poss(an, sn−1), sn = do(an, sn−1), G(sn)} `

Poss(a1, S0)∧s1 = do(a1, s0)∧. . .∧Poss(an, sn−1)∧sn = do(an, sn−1)∧G(sn)

Invalid Action arguments show that a certain action in the plan cannot be applied
in the relevant situation. The support of such arguments states the relevant

10 A. Belesiotis, M. Rovatsos, I. Rahwan

Action Precondition axiom, and a statement about the situation in which the
action should be performed ¬Πa(s) describing that the conditions that make
the action applicable are not the case in s.

Invalid Action (IA)

◦ Preconditions:
- Poss(a, s) ∈ Hvk−1 , where Hvk−1 contains the support for vk−1

◦ Argument:
{¬Πa(s),Poss(a(x1, . . . , xn), s) ≡ Πa(x1, x2 . . . , xn, s)} ` ¬Poss(a, s)

Statement does Not Hold in s arguments can be used to attack statements Φ(s)
regarding a future situation. They explain that a series of (relational or functional
fluent and non-fluent) terms which appear in Φ(s), take values that ensure that
Φ(s) is not the case. Such arguments use the relevant successor state axiom of
every fluent symbol for the support, in order to describe the conditions in the
previous situation that led the specific fluents to take certain values that make
the statement Φ(s) to be false.

Statement does Not Hold in s (NHS)

◦ Preconditions:
- Φ(s) ∈ Hvk−1

- s 6= S0

- {(¬)F1(s), (¬)F2(s), . . . , (¬)Fm(s), (¬)(f1(s) = y1), (¬)(f2(s) = y1), . . . ,

(¬)(fm(s) = ym), {Φi}i∈{1..l}} ` ¬Φ(s)

◦ Argument:
{{AFi

ss}i∈{1..n}, {(¬)ΦFi(s
′)}i∈{1..n}, {Afi

ss}i∈{1..m}, {(¬)(Φfi(ss) = yi)}i∈{1..m},

{Φi}i∈{1..l}, s = do(a, s′)} ` ¬Φ(s)

The notation (¬) means that the symbol ¬ may or may not be present. AFi
ss/Afi

ss

denotes the relevant to the relational/functional fluent F/f Successor State ax-
iom, and {Ψi}i∈{1..n} denotes a sequence of n statements of the form Ψ .

Domain Level Dispute. Ultimately, PLDs identify disagreements about the
domain. These disagreements may involve differences in the operator specifi-
cation, conflicting initial situation beliefs, or contradicting situation-less state-
ments. To resolve such disagreements, agents proceed to the domain level phase
of the dialogue.

Statement does Not Hold Initially arguments explain why a statement
regarding initial situation beliefs is incorrect. The justification is based on
formulas regarding initial state beliefs of relevant situation-less beliefs.

Statement does Not Hold Initially (NHI)

◦ Preconditions: Φ(S0) ∈ Hvk−1 ◦ Argument: {Φ′
1(S0), . . . , Φ

′
n(S0)} ` ¬Φ(S0)

Situation-less Statement does Not Hold arguments explain why a statement
regarding non-fluent facts is not correct. The justification is based on other

Arguing about Plans in Situation Calculus 11

timeless formulae.
Situation-less Statement does Not Hold (NH)

◦ Preconditions: Φ ∈ Hvk−1 ◦ Argument: {Φ′
1, Φ

′
2, . . . , Φ

′
n} ` ¬Φ

Invalid Successor State axiom arguments can be used to attack statements
regarding the effects of actions. They explain that a proposed successor state
axiom is wrong as it does not match the correct axiom.

Invalid Successor State axiom (ISS)

◦ Preconditions:
- F (x1, x2, . . . , xn, do(a, s)) ≡ ΦF (x1, x2, . . . , xn, a, s) ∈ Hvk−1 or

- F (x1, x2, . . . , xn, do(a, s)) ≡ ΦF (x1, x2, . . . , xn, a, s)

- ¬(Φ′
F (x1, x2, . . . , xn, a, s) ≡ ΦF (x1, x2, . . . , xn, a, s)) or

- ¬(Φ′
f (x1, x2, . . . , xn, y, a, s) ≡ Φf (x1, x2, . . . , xn, y, a, s))

◦ Argument for relational fluents:
{F (x1, x2, . . . , xn, do(a, s)) ≡ Φ′

F (x1, x2, . . . , xn, a, s)} `
¬(F (x1, x2, . . . , xn, do(a, s)) ≡ ΦF (x1, x2, . . . , xn, a, s))

◦ Argument for functional fluents:
{¬f(x1, x2, . . . , xn, do(a, s)) = y ≡ Φf (x1, x2, . . . , xn, y, a, s)} `
¬(f(x1, x2, . . . , xn, do(a, s)) = y ≡ Φf (x1, x2, . . . , xn, a, s))

Invalid Action Precondition axiom arguments can attack statements regarding
the preconditions of planning operators.

Invalid Action Precondition axiom (IAP)

◦ Preconditions:
- Poss(A, s) ≡ ΠA(x1, x2 . . . , xn, s) ∈ Hvk−1

- ¬(Π ′
A(x1, x2 . . . , xn, s) ≡ ΠA(x1, x2 . . . , xn, s))

◦ Argument:
{Poss(A, s) ≡ Π ′

A(x1, x2 . . . , xn, s)} ` ¬(Poss(A, s) ≡ ΠA(x1, x2 . . . , xn, s))

If the opponent cannot make any valid DLD attacks, and cannot backup to
attempt an alternative attack, then the dispute is a failing attack. Therefore,
the plan proposal that initiated the dispute as well as the arguments that the
proponent employed to support it are acceptable.

4 Parcel World Domain Example

In this section, we present a simple example, revealing the key aspects of how
the framework works. Two agents need to decide on a plan that will get an
object processed. Agent A is the delivery agent, and is able to move(⇑, ⇓, ⇒,

⇐), pickup and deliver parcels. Agent B is the processing agent and can only
process deliveries. Actions pickup and deliver have no preconditions, but produce
conditional effects depending on the position of the object. The process action
requires B to hold the object. Agents have conflicting beliefs about the position

12 A. Belesiotis, M. Rovatsos, I. Rahwan

of the object. The shared objective of the two agents is to process the object.
The initial state of the world for agents A and B is described in Figure 4.

Agent A constructs a plan and makes a proposal. B validates the plan and
discovers that the final action of the plan is inapplicable. Figure 4 describes
the state of the world after each action in the plan for the two agents. Figure 4

1
2

1 2
1
2

1 2 21
1
22

1
1 221

1
2Agent A:

1 2

AoBo

A

B BAo Ao Bo 2

1

1 2
1
2 2

1
1 2

1
2

1 2

2
1

21
1
2

1 2

Agent B: 2

1
1 2

AB

oo

AB

oA

BAB ABAB

o o o

op

⇑A ⇒A

s0 s1 s2 s3 s4 s4

pickupA processBdeliverA

Fig. 2. How a plan affects the environment according to each agent’s beliefs in the
Parcel World Domain example

describe the argumentation-based dialogue regarding the validity of the plan and
the beliefs supporting it. If A convinces B, the plan will be followed; otherwise,
replanning will be required. The dialogue shows that B will attack the proposal,
because she believes that she will not have the object in the situation that the
process action will be performed. A disagrees and bases her next argument on
statements about the previous situation, explaining that B will have the object,
since it will be delivered to her. The messages show that each NHS argument
is supported by statements regarding a situation closer to the initial situation.
Eventually, an initial situation belief disagreement is identified. Resolution can
be attempted through belief argumentation.

(1): P(⇑A, pickupA,⇒A, deliverA, processB)

(2):IA ‘processB ’ because of precondition have(B, o, s4)

(5):NHS ¬holds(A, o, s2) because a = pickup and at(o, pos(1, 1), s1) and at(A, pos(1, 1), s1)

(4):NHS holds(A, o, s3) because a2 6=pickup and ¬ have(A, o, s2)

(3):NHS have(B, o, s4) because of action ‘deliverA’ under condition holds(A, o, s3)

(6):NHS (at)(o, pos(1, 1), s1) because ¬at(o, pos(1, 1, S0)) and ¬holds(A, o, S0)

(7):NHI ¬(at)(o, pos(1, 1), S0)

Agent A

Agent B

Fig. 3. Messages exchanged by the agents in the Parcel World Domain example

Arguing about Plans in Situation Calculus 13

5 Protocol properties

In this section, we will present some properties of the dialogue. In order to do
so, the introduction of assumptions is necessary.

5.1 Assumptions

We consider the beliefs of each agent to be consistent. So there cannot be con-
tradictory statements following from an agent’s beliefs. We consider cooperative
agents, which are truthful with respect to the facts that they introduce to the
dialogue. They can employ statements that follow from their beliefs or appear
in the other party’s commitments. We also assume that the agents are trying
to achieve a common goal, i.e. all plans that are discussed have to achieve this
predefined goal.4

We consider the agents to have a confident assertion attitude and a sceptical
acceptance attitude. Agents with a confident assertion attitude will present any
valid argument they can construct. Sceptical acceptance attitude ensures that
only claims of acceptable arguments will be accepted. Agent attitudes are nec-
essary because protocols usually define preconditions that make some argument
moves available to an agent, but do not prescribe which of the available moves
an agent will actually perform. By assuming underlying attitudes we can predict
what these moves will be. The effects of different agent attitudes on dialogues
have been studied in [13].

We follow the Causal Completeness Assumption, which ensures that all the
effects of the planning operators are explicitly enumerated in the Successor State
axioms. This assumption is employed to treat the ramification problem in the
same way treated in [10]. Therefore, there are no formulae that can be inferred
from the effects of any action and are not listed explicitly through the Successor
State axioms. In other words, there is no distinction between direct and indirect
action effects (if this was the case, a standard planner would not be able to
construct a plan in every case, since only direct effects would be considered
during planning; see [8] for planning under defeasible knowledge).

5.2 Properties

The following properties explain that the proposed protocol produces sound re-
sults. Completeness has to do with the construction of the proposals, and is
closely related to the planning problem. In this paper we do not focus on plan-
ning. We consider agents that construct proposals through conventional planning
methods [14]. The protocol enables the exchange of proposals for any plans that
can be expressed in Situation Calculus and follow the relevant definitions.

Proposition 1. If a plan is acceptable to both agents, no argument attacking
the proponent’s proposal argument will be raised by the opponent.
4 Note that other protocols could be used for goal negotiation prior to the use of the

protocols we suggest, if necessary.

14 A. Belesiotis, M. Rovatsos, I. Rahwan

Proof. From the specification of the arguments and the dialogue moves, the
opponent can attack a ‘Proposal’ argument (P) either by raising an ‘Invalid
Action’ (IA) or a ‘Not holds in Situation s’ (NHS) argument. An attack can
be made if OPP believes that either an action a proposed by the proponent
is not applicable, DOPP � ¬Poss(a, s), or the plan does not achieve the goal,
DOPP � ¬G(sn). This contradicts the claim that the plan is acceptable to the
opponent, according to Definition 3.

The following proposition identifies bounds on the length of Plan Level Dispute
(PLD) sub-dialogues, showing that it is linear in the number of actions in the
plan.

Proposition 2. If the plan is not acceptable, a finite number of PLD arguments
will be exchanged. The length of the PLD |Mp| will always be |Mp| ≤ n+1, where
n is the number of actions in the plan.
Proof. The PLD dispute is formed by a sequence of arguments, initiated by P . A
PLD sequence is terminated either if a Domain Level Dispute (DLD) argument
is raised or if one of the agents is unable to perform a counter move (resulting in
either retraction, backup, or dialogue termination). We will show that if the plan
is not acceptable with respect to the opponent’s beliefs, then a finite sequence
of COUNTER moves will be made, until a DLD argument is raised, terminating
the PLD. The intuition guiding this proof is that until the dispute focuses on
domain beliefs, agents can always perform a valid COUNTER move, which is
supported by statements regarding a situation closer to S0.

From the definition of an acceptable plan, if the plan is not acceptable to
the opponent, we can infer that OPP will either believe that one of the pro-
posed actions is not applicable in the relevant situation, DOPP � ¬Poss(a, s),
or that the plan does not achieve the goal, DOPP � ¬G(sn). In the second case,
the disagreement lies in a statement of the form Φ(s). In the first case, using
the relevant Action Precondition axiom, OPP can infer the required support
for constructing a IA argument of the form {¬Πa(s),Poss(a(x1, . . . , xn), s) ≡
Πa(x1, x2 . . . , xn, s)} ` ¬Poss(a, s). If the proponent disagrees with the pre-
sented Action Precondition Axiom, then an ‘Invalid Action Precondition Axiom’
(IAP) argument can be raised terminating the PLD. If this is not the case, then
the disagreement lies on whether Πa(s) or ¬Πa(s) is true. Again the disagree-
ment lies in a statement of the form Φ(s).

We will focus on disagreements on statements of the form Φ(s). In such cases,
agent i presented an argument which included the sentence Φ(s), but the other
agent −i disagrees with this statement (i.e. Di � Φ(s) and D−i � ¬Φ(s)). If
s 6= S0, and the disagreement is about a non-fluent statement responsible for
¬Φ(s) (in both cases DLD moves can be constructed terminating the PLD), agent
−i may employ the relevant Successor State axiom to show that some relational
or functional fluents (F (s) or f(s)) take particular values in s that make Φ(s)
false. To construct the necessary support, −i identifies the conditions, which are
specified in each relevant Successor State axiom (either ΦF (s′) or Φf (s′)), which
hold in the previous situation s′.

Arguing about Plans in Situation Calculus 15

Since the agents disagree about Φ(s), they would disagree also on some state-
ments regarding the conditions in the previous sate or on whether the employed
axioms are correct. If the second is the case, agent i would introduce an ‘Invalid
Successor State axiom’ argument, initiating a DLD. In the first case, disagree-
ment lies again on a statement Φ(s′).

Therefore, if a DLD argument is not introduced, the agent that needs to
make the next move can always come up with a NHS argument attacking a
statement the previous argument put forward by the other party. The state-
ments mentioned in the support of this argument (and can be attacked by a
PLD argument) refer to situation s′, the fluents that are in the claim of the
argument refer to s, and s = do(a, s′). Each attack made by a NHS argument
is justified by statements regarding a situation closer to the initial situation.
Therefore, since NHS arguments cannot attack statements regarding the initial
situation, the maximum length of a sequence of consecutive NHS statements is
n, if the argument initiating the sequence attacks a statement referring to situa-
tion sn. Moreover, from the specification of the argument types, ‘Proposal’ and
the ‘Invalid Action’ arguments can only appear once in a sequence of COUNTER

moves. Therefore, the amount of consecutive PLD arguments can be at most
n + 1. Such a sequence, will always result in a DLD argument, since agents are
always able to construct either a PLD or a DLD argument when presented with
a PLD argument. All arguments in a PLD argument sequence will be unique,
since they refer to statements regarding different situations.

Proposition 3. The proponent will present a successful (credulous) defence of
the plan proposal if and only if either (i) the plan is acceptable with respect to
the opponent’s beliefs, or (ii) if the dispute terminates as a failing attack of the
plan proposal argument.

Proof. If the plan is acceptable, then no argument will be raised against the plan
proposal argument (Proposition 1). PRO wins the dispute.

If the dispute terminates as a failing attack of the plan proposal argument,
then the final argument is presented by the proponent. Therefore, the length of
the dialogue is odd, and PRO wins the dispute.

If the plan is not acceptable with respect to the opponent’s beliefs, and
the dispute terminates as a failing defence of the plan proposal argument, then
the opponent would have presented an argument that the proponent could not
counter, or backup. This will be the final move of the dispute, making the number
of moves even. Therefore, the opponent would win the dispute.

Proposition 4. If the dispute for a Proposal argument terminates as a failing
attack after move k, then the plan will be acceptable with respect to the set of
beliefs Dacc = DOPP\{Φ(S0)|(∃〈H, h〉 ∈ Pk).[(∃Φ′(S0) ∈ H ∪ {h}).Φ(S0) ∧ Φ′(S0) `
⊥]} ∪ {Φ(S0)|(∃〈H, h〉 ∈ Pk).[(∃Φ′(S0) ∈ H ∪ {h})]}

Proof. Since all runs are failing attacks, Pk is the set of the acceptable arguments
the proponent presented during the dialogue. In addition, a Domain Level Dis-
pute phase would have been initiated for every domain belief that is not shared

16 A. Belesiotis, M. Rovatsos, I. Rahwan

among the agents and is relevant to the plan. Let Dconf
OPP be the set of all the

statements from the domain beliefs of the opponent that conflict with statements
appearing in an argument in Pk. These are the beliefs that were responsible for
OPP not accepting the plan initially.

The plan will be acceptable with the set containing all statements appear-
ing in Pk and all statements in DOPP that do not conflict with the statements
from Pk. By excluding all statements that were used to construct the arguments
attacking the plan, and the arguments that supported these, we have excluded
all the statements that are responsible for the arguments that were employed
by the opponent. Therefore, no other arguments attacking the plan can be con-
structed using the opponent’s remaining beliefs, since if this was the case, the
opponent would have constructed them in move k continuing the dialogue (since
we consider agents with confident assertion attitude).

6 Argument Generation

In order for the protocol to be effective, the agents need efficient mechanisms for
argument generation. In general, argument generation is a complex task. Even
with the assumptions that i)the agents’ knowledge bases are propositional and
ii) conflict-free, argument generation is co-NP-complete, since it is as complex
as finding a proof in propositional logic (a further analysis can be found in [13]).
Moreover, the support of such arguments will chain back to beliefs about the
initial situation, resulting in extensive proofs, if there are no heuristics to restrict
them. In this section, we will provide an algorithm for argument generation
related to plans and will explain how this algorithm guides the search through
the agents beliefs. The algorithm is based on the evaluation of the executability
of all the actions in the plan, and on the projection of the actions’ effects, in order
to evaluate the values of statements in the resulting situations. The complexity
of these processes is related to the expressive power of the employed planning
formalism [15].

After being presented with an argument, an agent searches for valid attackers.
The task of argument generation can be performed by searching through the plan
projection data. The search the agent has to conduct can be guided, depending
on the type of the received argument. The constructed argument must follow the
specification of the employed dialogue move (as for example the rules regarding
repetition of arguments).

If the agent receives a plan proposal, it can attack it if she identifies that
according to her beliefs an action is not possible to be performed, using a IA
argument, or if she believes that the plan does not succeed in achieving the goal.
Differences of opinion regarding the operator specification (i.e. Successor State
axioms or Action Precondition axioms) can be identified through the introduc-
tion of ISS or IAP arguments. Arguments supported by statements of the form
Φ(s) that the agent believes to be incorrect (the validity of which may be eval-
uated through projection), can be attacked by NH , NHI or NHS arguments.

Arguing about Plans in Situation Calculus 17

switch Type of received argument vk−1 do

case P
if Poss(a, s) ∈ Hvk−1 and Di � ¬Poss(a, s) then return IA for a and relevant Aap;

if Di � ¬G(Sn) then return NH or NHS argument for the relevant fluent(s) and Ass

that explain ¬G(sn);
case IA

if Aap ∈ Hvk−1 and Aap 6∈ Di then return IAP argument for correct Aap ;

if Φ(s) ∈ Hvk−1 and Di � ¬Φ(s) then return NH , NHI or NHS argument for the

relevant fluent(s) and Ass that explain ¬Φ(s) ;
case NHS

if Ass ∈ Hvk−1 and Ass 6∈ Di then return ISS argument for correct Ass ;

if Φ(s) ∈ Hvk−1 and Di � ¬Φ(s) then return NH , NHI or NHS argument for the

relevant fluent(s) and Ass that explain ¬Φ(s) ;
case NHI if Φ(S0) ∈ Hvk−1 and Di � ¬Φ(S0) then return NH/NHI argument for ¬Φ(S0);

case NH if Φ ∈ Hvk−1 and Di � ¬Φ then return NH argument against Φ;

case ISS return ISS argument for correct Ass;
case IAP return IAP argument for correct Aap;
return no move;

Algorithm 1: Argument generation algorithm

In order to construct such arguments, the agent needs to identify the symbols
that appear in Φ(s) and are responsible for Φ(s) to be false. If s is not S0, then
the agent needs to construct a proof, explaining that the necessary conditions
hold in the previous situation, so that these symbols have certain values in the
resulting situation that falsify Φ(s). In this case a NHS argument can be con-
structed. If s is S0, then the statement is about the initial situation and the agent
can respond with a NHI argument. Finally, if the statement is false because of
non-fluent statements, a NH argument can be employed.

Argument generation for the DLD subdialogues will need to be based on
logical proofs, since it involves unstructured initial world beliefs. In this case,
a large subset of the agent’s beliefs are no longer relevant, since for DLD ar-
gument generation, only beliefs regarding the initial state of the world should
be considered. All beliefs regarding the operator specification and the planning
theory are irrelevant. This greatly reduces the set of the statements the agents
have to search over when constructing a DLD argument. Moreover, if argument
generation is implemented in propositional logic, the first order representation
for all statements needs to be translated to propositional logic. The size of a
propositional representation is exponentially larger in the worst case than the
size of a corresponding first-order representation. This means that the proposi-
tional representation is considerably smaller without the operator specification
and the planning theory axioms, i.e. a naive inclusion of planning axioms in
propositional logic would be completely intractable for any real-world domain.

7 Conclusion

In this paper, we presented a novel dialogue protocol that allows cooperating
agents to jointly evaluate plan proposals and to identify relevant conflicts in
agents’ beliefs. Moreover, we proposed efficient search-based algorithms for ar-
gument generation based on the specific characteristics of the planning domain.

18 A. Belesiotis, M. Rovatsos, I. Rahwan

Our approach is influenced by recent work on argumentation for practical
reasoning and deliberation [2–4] and planning over defeasible knowledge [8].
While related to this work, we maintain a closer relation to classical AI planning,
as no assumptions are made regarding plan generation and therefore any efficient
planner can be employed for this task.

In the future we would like to investigate different strategies for argument se-
lection, in cases where the opponent has a choice over various IA or NHS moves.
In addition, our research can be complemented with heuristics for planning un-
der uncertainty, considering multiagent planning among cooperative agents with
different beliefs. It would be interesting to extend our protocol to include moves
that enable distributed planning, especially in cases in which there is no agent
that can construct a plan alone.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2) (1995) 321–357

2. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. AI 171(10-15) (2007) 855–874

3. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning.
In: Proceedings of AAMAS-06, New York, NY, USA, ACM (2006) 347–354

4. Tang, Y., Parsons, S.: Argumentation-based dialogues for deliberation. In: Pro-
ceedings of AAMAS-05, USA, ACM (2005) 552–559

5. Pynadath, D.V., Tambe, M.: The Communicative Multiagent Team Decision Prob-
lem: Analyzing Teamwork Theories and Models. Journal of Artificial Intelligence
Research 16 (2002) 389–423

6. Durfee, E.: Distributed Problem Solving and Planning. In Weiß, G., ed.: Multiagent
Systems. A Modern Approach to Distributed Artificial Intelligence. MIT Press,
USA (1999) 121–164

7. Lesser, V., Decker, K., Carver, N., Garvey, A., Neiman, D., Prasad, M., Wagner, T.:
Evolution of the GPGP domain-independent coordination framework. Technical
Report 98-05, Computer Science Department, UMASS (1998)

8. Garcia, D., Garcia, A., Simari, G.: Planning and defeasible reasoning. In: Pro-
ceedings of AAMAS-07, USA, ACM (2007)

9. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4 (1969)

10. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

11. Dunne, P.E., Bench-Capon, T.: Two party immediate response disputes: properties
and efficiency. Artificial Intelligence 149(2) (2003) 221–250

12. Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred
semantics. In: Proceedings of JELIA ’00, UK, Springer-Verlag (2000) 239–253

13. Parsons, S., Wooldridge, M.J., Amgoud, L.: An analysis of formal inter-agent
dialogues. In: Proceedings of AAMAS-02, USA, ACM (2002) 394–401

14. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

15. Nebel, B.: On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research 12 (2000) 271–315

