
Exploiting Domain Knowledge to Improve Norm Synthesis

George Christelis
∗

School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, UK
george.christelis@ed.ac.uk

Michael Rovatsos
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

michael.rovatsos@ed.ac.uk

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK
r.petrick@ed.ac.uk

ABSTRACT
Social norms enable coordination in multiagent systems by
constraining agent behaviour in order to achieve a social ob-
jective. Automating the design of social norms has been
shown to be NP-complete, requiring a complete state enu-
meration. A planning-based solution has been proposed
previously to improve performance. This approach leads
to verbose, problem-specific norms due to the propositional
representation of the domain. We present a first-order ex-
tension of this work that benefits from state and operator
abstractions to synthesise more expressive, generally appli-
cable norms. We propose optimisations that can be used to
reduce the search performed during synthesis, and formally
prove the correctness of these optimisations. Finally, we em-
pirically illustrate the benefits of these optimisations in an
example domain.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory, Design

Keywords
Normative systems, social norms, conflict resolution, auto-
mated planning

1. INTRODUCTION
Social norms have widely been accepted as a means of achiev-
ing coordination in multiagent systems by placing constraints
on the behaviour of all agents in the system. These con-
straints reflect the global social objective held by the norm
designer: should all agents adhere to the prescribed norms,
the social objective will then be achieved. In such a system
social norms discourage behaviour that violates the social
objective.

Recent literature on normative systems often focuses on
processes specified over existing, pre-specified social norms

∗The author is a Commonwealth Scholar.
Cite as: Exploiting Domain Knowledge to Improve Norm Synthesis, G.
Christelis, M. Rovatsos, R. Petrick, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14,
2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

or normative systems [1, 2, 5]. In this paper we investigate
the process of social norm synthesis: what feasible algorith-
mic process might an agent or system designer adopt to syn-
thesise norms for their social objective? Furthermore, can
this process provide guarantees regarding the achievability
of agent goals in the constrained system?

In the general case, norm synthesis was shown to be NP-
complete through a reduction from 3-SAT [9]. Subsequent
synthesis approaches based on full state-space enumeration
have been proposed, yet these are often intractable in the
general case or not easily applicable in real world systems [4,
7, 10]. Furthermore, these approaches do not consider the
effects the norms have on the achievability of agent goals.

The work presented in this paper extends an existing propo-
sitional planning-based approach [3], based on performing a
localised search around specifications of undesirable states
utilising the existing domain representation. Norms are syn-
thesised over abstract representations of sets of states, re-
sulting in concise, generally applicable norms. However, the
resulting search is fundamentally limited in two ways: firstly,
the propositional formalism limits norm expressiveness and
synthesis performance, and secondly, the naive search need-
lessly considers solutions that are irrelevant, thereby limiting
the scalability of the search in large real world domains.

In this paper we present a first-order extension to this
propositional approach, allowing for more expressive social
norms containing unbound variables. We describe the ex-
act conditions that must hold for agent goals to be achiev-
able under the synthesised norms and we show this more
expressive approach to be sound based on a reduction to
the existing propositional synthesis.

This increase in expressiveness results in additional com-
plexity issues, related to the unground nature of the op-
erators considered: instead of considering ground operator
instances we synthesise over the unground variable-based
operator schemata. We present a set of optimisations that
reduce the resulting search space by ignoring operator se-
quences that are not possible in the underlying domain, or
are irrelevant to the social objective. We provide proofs
regarding the correctness of these optimisations, and empir-
ically illustrate the potential benefits in an example domain.

We begin by presenting a running example in the follow-
ing section. Section 3 details the first-order planning do-
main formalism and the resulting norm synthesis procedure,
while Section 4 outlines optimisations to improve the synthe-
sis performance. Section 5 presents empirical performance
results in the example domain. We detail related work in
Section 6 and conclude in Section 7.

2. PARCEL DELIVERY DOMAIN
We use a series of running examples detailing an agent-based
parcel delivery domain. Agents are positioned in a grid
world of arbitrary topology and are able to move between
adjacent grid nodes. Agents are tasked with fetching and
delivering parcels from source to target locations. Consider
these core action schemata:

Action Preconditions Effects
movei(X,Y) ati(X) ¬ati(X)

conn(X,Y) ati(Y)

pickupi(X,P) pAt(P,X) ¬pAt(P,X)
ati(X) holdi(P)

dropi(X,P) holdi(P) ¬holdi(P)

ati(X) pAt(P,X)

destroyi(P) holdi(P) ¬holdi(P)

idlei - -

Agents are at locations connected via conn predicates. Par-
cel locations are represented via pAt predicates. An agent
holds a picked up parcel, and can either drop the parcel in
a location or destroy the parcel. Agents can also choose to
remain idle.

3. CONFLICT-ROOTED SYNTHESIS
The problem of norm synthesis can be stated as follows:
given a specification of undesirable system states, what au-
tomated design process will create conditional action prohi-
bitions that result in the undesirable states being avoided?
Furthermore, can this process guarantee that under the pro-
hibitions, agents are still able to achieve their goals?

Our approach is called Conflict-Rooted Synthesis, and is
based upon performing localised searches around conflict
state specifications. Directed searches are conducted locally
around specifications of undesirable conflict states to iden-
tify what states are reachable from these states, and to inves-
tigate alternative means of achieving these states. If alterna-
tive conflict-free paths exist, then the designer can regiment
the system in the knowledge that agents have alternative
means of achieving their goals under prohibitions.

We next present the first-order planning formalism we use
as the standardised representation of our domains, followed
by an explanation of the synthesis process itself.

3.1 First-Order Planning Formalism
We adapt an existing predicate-based planning formalism [6]
to support a restricted form of first-order logic, altering the
traditional STRIPS formalism to allow for unground state
specifications. This increase in expressiveness allows our
synthesis process to produce more general, unground, do-
main independent social norms.

We begin by defining a language L = Lc ∪ Lv ∪ Lp of
finitely many predicate symbols (Lp), constant terms (Lc)
and variable terms (Lv). Constant terms are written in low-
ercase {node1, parcel2} while variable terms begin with
uppercase letters {Agent, Parcel}. We adopt a bar nota-
tion to represent ground instances of set elements: a ground
element is one that does not contain variable terms.

The set of atoms A is composed of predicates with vari-
able and constant terms, with the ground subset A ⊆ A
composed of ground atoms only.

The set L contains the complete set of all literals over A.
If L′ ⊆ L, we define ¬L′ to be element-wise negation such
that ¬L′ = {l|¬l ∈ L′} ∪ {¬l|l ∈ L′}. We write L1\L2 to
denote set difference.

A state s ⊆ A is a subset of the ground atoms. States follow
a closed world semantics. If atoms are not included in the
state description, their negations are assumed to hold. We
define a state specification S to be a truth assignment over
A, defined as a logical theory where S ⊆ L1.

An operator o is a parameterised action schema triple of

the form {pre(o)} name(o)−−−−→{post(o)} where name(o) is the
parameterised operator definition, pre(o) ⊆ L are the pre-
conditions and post(o) ⊆ L the effects. Let O represent the
set of operator schemata in the domain.

We derive instances of an operator through variable sub-
stitution and unification, allowing unground operators for
transitions between unground state specifications. We ground
variables with constants where possible, and unify the re-
maining variables with those in the specification. A substi-
tution set σ is defined as

σ ⊆ {(v ← l)|v ∈ Lv, l ∈ Lc ∪ Lv}.

Applying σ to a set of atoms A′ is denoted σ[A′] . We write
s |= S if the truth assignment of state s satisfies the ground
S. Similarly, s |= S if there exists some grounding σ such
that s |= σ[S].

An operator o is applicable in S if pre(o) ∈ S. The result of
applying o in S is defined as

App(S, o) = (S\¬post(o)) ∪ post(o)

if S 6|= ⊥, S |= pre(o) and post(o) 6|= ⊥. The result of apply-
ing a sequence of operators 〈o1, o2 . . .〉 to a state specification
S is a recursive function defined as follows:

Res(S, 〈〉) = S,
Res(S, 〈o1, o2, ..., on〉) = Res(App(S, o1), 〈o2, ..., on〉).

For clarity, we have not detailed all substitution sets. Since
specifications and operators are unground the notions of ap-
plicability and satisfiability must be extended. Satisfiability
for an unground specification holds if ∃σ.s |= σ[S]. Simi-
larly, set relations are defined over all possible substitution
sets, so S1 ⊆ S2 if ∃σ.S1 ⊆ σ[S2]. As an extension, operator
applicability also requires such a substitution: an operator
o is applicable if ∃σ.pre(o) ∈ σ[S].

We consider unground predicates as first class citizens of
our formalism. For example, consider applying the opera-
tor move1(X,Y) in state S = {at1(X1), conn(X1,Y)}. Here,
move is applicable in S, but only for the substitution σ =
{(X1← X)}. It is this partial grounding and unification that
we capture through the application of substitution sets.

3.2 Social Norm Representation
Prohibitionary norms in our system are conditional behav-
ioural constraints that restrict the states in which operators
are applicable. A set P = {p1, p2...} of prohibitions contains
tuples of the form pi = 〈ϕ, o〉 where ϕ ∈ 2L and o ∈ O, de-
noting that if the current state satisfies the precondition ϕ,
then the operator o is forbidden in this state. For example,
consider the prohibition 〈{at1(node3)}, pickup1(P,node3)〉.
The benefits of a first-order approach are clear here: this
norm prohibits agent 1 from picking up any parcel in node3.
The quantification over parcels in node3 is not possible in
the existing propositional approach.

1We extend the classical definition of a state specification to
include truth assignments over unground and ground atoms.

3.3 Conflict Rooted Synthesis
Synthesis is defined as Synth(SC , O) → P . As input, SC

is the conflict state specification representing the undesir-
able system states, and O is the set of operator schemata.
A set of prohibitions P is produced as output. Our ap-
proach searches for all operator sequences that traverse from
conflict-free states, through conflict states modelled by SC .
We consider paths for any state modelled by the conflict
state specification, exhaustively searching all hypothetical
runs through states modelled by the conflict specification.
Once all sequences are identified, we guarantee goal achiev-
ability in the normative system by showing that an alterna-
tive conflict-free path exists for each conflict sequence.

3.3.1 Definitions
Let S

o−→S′ denote a transition between state specifications
S and S′ through the application of operator o. A run is a

sequence of the form R = S0
o1−→S1 . . . Sn−1

on−→Sn. We use
the notation first(R) and last(R) to refer to the first and
last state specifications, and |R| to denote the total number
of state specifications in R.

A conflict run is a run where at least one of the state spec-
ifications is a conflict specification (∃i < |R|.SC ⊆ Si). All
other runs are conflict-free. We further differentiate classes
of runs depending on whether they terminate with conflict
specifications. A complete run R is a conflict run where
first(R) and last(R) are conflict-free, and all other interme-
diate specifications are conflict specifications. An incomplete
run R is a conflict run where first(R) is conflict-free, and all
other state specifications are conflict specifications.

3.3.2 Conflict Traversal
Conflict traversal is a search to identify all complete conflict
runs, representing all that is achievable in conflict states. In
order to identify these runs we apply an iterative process of
run extension and refinement, searching the set of feasible
runs in a breadth-first fashion.

Given a conflict specification SC , the process returns a
set R of complete runs. These runs are independent of the
problem instance and goals of the agent, and are synthesised
purely on the operator schemata. In the specification below
we writeRi to represent all incomplete runs of length i. Two
procedures are used to extend incomplete runs with some op-
erator: inference constructs a new future state specification,
and refinement alters the specifications of an existing run to
ensure that the resulting extended run is consistent.

We illustrate each step using a simple example. Let SC =
{hold1(p)} represent the undesirable state where agent 1

holds parcel p.

Run Initialisation: Given SC , we identify all contributing
operators as those where:

∃l ∈ post(o).(l ∈ SC ∧ l 6∈ pre(o)) (1)

@l ∈ ((pre(o)\¬post(o)) ∪ post(o)).¬l ∈ SC . (2)

That is, at least one effect of o is in SC , and the effected
literal is not a prerequisite of the preceding state (by 1),
and none of the effects or preconditions of o that are not
removed by ¬post(o) are inconsistent with SC (by 2).

We construct a set of initial incomplete runs of the form
R2=(S′

o−→S′C) where:

S′ = (S′C\post(o)) ∪ pre(o)

S′C = SC ∪ (pre(o)\¬post(o)) ∪ post(o).

Here, S′ is the inferred conflict-free precursor and S′C is
the refined conflict specification that includes the additional
constraints imposed by the new contributing operator2.

In our example, the operator pickup1(p,X) contributes to
conflict since it brings about SC in the run:

R2 =

pAt(p, X), at1(X)
¬hold1(p)

ff
pickup1(p,X)−−−−−−−→

¬pAt(p, X), at1(X)

hold1(p)

ff
.

Run Iteration: For each set of incomplete runs Ri we
apply a process of inference and refinement to each run and
generate a set of incomplete runs Ri+1 and a set of complete
runs that are appended to R. For each run R ∈ Ri we
identify all viable successor operators o under the condition:

∀l ∈ last(R) : @l′ ∈ pre(o).(l = ¬l′ ∨ l′ = ¬l).
An operator is viable if its preconditions are consistent with
the final specification in the run. This selection of viable
successor operators considers all alternatives (operators with
all substitution sets). For o to be applicable a refinement of
last(R) is required. Let L+ = pre(o)\last(R) be the literals
added to last(R) during refinement. Since literals in L+

are neither added nor removed by any operators in R, they
must be a precondition of first(R) and every subsequent
specification. The refined run is then:

R′ = (S0 ∪ L+)
o1−→(S1 ∪ L+)

o2−→. . . oi−→(Si ∪ L+)
o−→Si+1

where the inferred successor state specification Si+1 is

Si+1 = (S′i\¬post(o)) ∪ post(o).
In our example move1(X,Y) is viable. For consistency we
introduce L+={conn(X,Y)} into specifications of R2 so that
the new operator is applicable. The resulting run, R3, is:8>><>>:

pAt(p, X)
at1(X)
¬hold1(p)
conn(X, Y)

9>>=>>;
pickup1(p,X)−−−−−−−→

8>><>>:
¬pAt(p, X)
at1(X)
hold1(p)
conn(X, Y)

9>>=>>;
move1(X,Y)−−−−−−→

8>>><>>>:
¬pAt(p, X)
at1(Y)
¬at1(X)
hold1(p)
conn(X, Y)

9>>>=>>>; .

Termination: We terminate on two conditions, i) if the run
is complete, or ii) if the inferred successor state has been
previously considered in the run (we ignore loops). The
resulting synthesised norms prohibit the initial operator in
each complete run that leads to conflict.

3.3.3 Reachability Analysis
In order to guarantee reachability under the synthesised pro-
hibitions we show that for all R ∈ R a conflict-free plan
∆ exists such that Res(first(R),∆)=last(R). If R contains
specifications that are unground, it is not possible to find
alternative conflict-free plans in the general case. Here the
run is ground for each unique substitution set, after which we
utilise classical planning to find an alternative plan. Finally,
we accept a conflict-free plan ∆ as an alternative to a con-
flict plan ∆C if the effects of the plans are identical: for any
S where ∆ and ∆C are applicable, Res(S,∆) = Res(S,∆C).

It is preferable to ground conflict-free pairs at the reach-
ability analysis stage of norm synthesis. The traversal runs
are unground and therefore common to all problem instances
of the domain. Additionally, the refinement of a run dur-
ing traversal is a process whereby constraints are placed on
the possible variable groundings for that run, reducing the
number of such groundings. Finally grounding prior to, or
during the traversal produces many norms each conditional

2The set of contributing operators is minimal implying that
agents have equal power in the normative system [2].

on a unique variable grounding, and does not take advantage
of the expressiveness of the operator schemata.

3.4 Soundness
Our approach is sound: the social norms produced always
avoid the conflict specification, and all traversals through
conflict are analysed for reachability. This soundness prop-
erty follows directly from the propositional approach [3]. Dur-
ing traversal all possible operators are considered as succes-
sors, thereby ensuring that all complete runs are checked for
reachability. The first-order search is exhaustive, yet instead
of considering all ground operators we consider instances of
each unground operator, ensuring that operators exist for
all variable bindings. Given a state specification S and op-
erator o, we wish to identify all possible parameter bindings
for o applicable in any states modelled by the specification
S. We unify variables with existing literals in S, grounding
constants where possible, thereby considering all possible
variable assignments in a general fashion.

We introduce constraints to explicitly define inequalities
between variables. Consider S = {parcel(p1),at1(x)} and
operator pickup1(P,X). The table below details all variable
bindings and constraints for this operator:

Operator Instances Constraints
pickup1(p1,x) P=p1, X=x

pickup1(p1,X) P=p1, X6=x

pickup1(P,x) P6=p1, X=x

pickup1(P,X) P6=p1, X6=x

Since the resulting operator selection strategy is exhaustive,
the resulting search is too, and the soundness properties
from the propositional traversal follow.

4. TRAVERSAL OPTIMISATIONS
The conflict rooted synthesis search results in many com-
plete traversal runs and corresponding reachability checks.
For example, consider the delivery domain with actions as
outlined in Section 2: a full traversal in this simple domain
considers approximately 350000 complete runs of length 5
or less.

In this section we detail general optimisations to the traver-
sal process, first providing an intuitive illustration of our
techniques prior to delving into the formal theory. Our
domain-independent optimisations exploit operator const-
raints to improve the norm synthesis process. Consider the
following complete traversal run for SC = {at(y)}:

〈move, destroy(p1), pickup(p2, y), idle, pickup(p3, y), move〉 .

We detail each optimisation in the context of this example:

AP A Priori Filtering - operators that have no effect on
the run can be ignored, greatly reducing the number
of runs considered. In this example we can remove the
idle action a priori, since it is not related to SC .

TP Traversal Pruning - duplicate runs are not considered
during traversal. If operators can be reordered to reduce
the conflict run to a shorter, complete conflict run, then
the longer instance can be ignored. Here, it is possible
to destroy parcel p1 prior to the move into conflict. The
remaining operators form a shorter complete run.

RO Repetitive Operators - repetitive operators can share
reachability plans. In the above example, if a conflict-
free plan exists to pick up p2, then a similar plan exists

to pick up p3, or any other parcel in y. We consider
these repeated actions as a single instance, thereby re-
ducing the number of runs considered.

DR Duplicate Runs - duplicate traversals are ignored. If
a run is found that is a duplicate of an existing run,
then the new run is not considered.

IR Incremental Reachability - reachability plans for
shorter runs are modified for similar longer runs, thereby
reducing the number of reachability checks required.

These optimisations never increase the search space size,
make no assumptions regarding agent goals and preserve
soundness by disregarding complete reachable runs. They
are generally applicable in any domain that can be repre-
sented in our planning representation.

4.1 A Priori Operator Exclusion (AP)
During traversal, it seems reasonable to only consider oper-
ators applicable in conflict, or operators partially dependent
on conflict states. However this is not the case: the following
proposition shows that operators entirely independent of SC

must still be considered during traversal. We define lit(o) to
be the set of literals in o: lit(o) = {l|l ∈ pre(o) ∪ post(o)}.

Proposition 1. Let OD be a set of operators entirely in-
dependent of the conflict-state specification such that ∀o ∈
OD.lit(o) ∩ SC = ∅. Operators in OD cannot be ignored a
priori.

Proof. By counterexample. Consider the operators:

{z} A−→{x, y,¬z} {y} B−→{q} {q} C−→{¬x}
Let SC = {x}. Operator A results in conflict, while C leaves
conflict. Operator B ∈ OD since neither y nor q form part
of SC . Now consider the following complete conflict-run:

{z} A−→{x, y} B−→{x, y, q} C−→{y, q}. (3)

This run achieves q through the application of B. Due to the
side effect of A, even though B makes no reference to SC , it is
only applicable in a conflict-state. There is no conflict-free
way to achieve q: the above run cannot be executed. If OD

is ignored, run (3) is not considered, and the resulting norms
preserve reachability. A contradiction is reached.

We introduce a stronger notion of operator independence,
and prove how this notion can be used to exclude operators
a priori. This simple approach is effective at reducing the
number of operators considered, and hence the number of
runs. We split the set of operators into two disjoint sets:
OC for operators dependent on each other or on SC , and
OU for all other operators.

The following process can be used to create OC . Initialise
Λ to the set of literals in SC and OC = ∅. Let O1 = {o|o ∈
O.lit(o) ∩ Λ 6= ∅}. For each o ∈ O1 let Λ = Λ ∪ lit(o) and
OC = OC ∪ o. We repeat the process for O2, O3 . . . until no
new operators are added to OC .

No plan exists where the effects of operators in OC conflict
with those in OU . This represents universal independence:
operator independence over all possible sequences of actions.

Example 1. A Priori Operator Filtering
From the above example, it can be seen that neither A, B
nor C are universally independent, and none can be ex-

cluded. Consider a further action {a, b} D−→{c}. Here, Λ =
{q, x, y, z}, and since no literal in Λ is referenced by D we

know OC = {A, B, C} and OU = {D}. Therefore, operator D

can be ignored during traversal.

Proposition 2. Let OC be the operators dependent on,
or effecting SC . Let OU be universally independent oper-
ators of OC . If operators OU are excluded from traversal,
synthesis remains sound.

Proof. Consider a complete conflict plan Π. We sepa-
rate the operators in Π into two universally independent se-
quences ΠC = {o|o ∈ OC} and ΠU = {o|o ∈ OU}. Consider
an arbitrary sequence {oc, ou} where oc ∈ ΠC and ou ∈ ΠU .
Operator ou can always be executed before oc, since there
are no common literals (by the definition of universal in-
dependence). We therefore rewrite the complete plan as
Π = 〈ΠU ,ΠC〉 by reordering all universal independent op-
erators to the beginning without altering the dependencies,
or effects of the plan. All operators in ΠU can be ignored
when searching for a conflict-free alternative plan to Π since
if ΠC can be replaced by ∆C , then Π can be replaced by
〈ΠU ,∆C〉.

If the number of operators is mo = |O|, then the complex-
ity of a priori filtering is O(mo). This pre-processing step
adds little to the computational requirements of the synthe-
sis process, since it is independent of traversal.

4.2 Traversal Pruning (TP)
Consider the following incomplete run produced in traversal,

R = S0
o1−→. . . on−→Sn: we need only consider successor actions

that are conditional on the conflict state specification. We
show that operators that are applicable in S0 with effects
that are not negated by any subsequent actions in the run
need not be considered.

Operator o can be removed from consideration as a succes-
sor for R if the following operator filtering conditions hold:3

1. pre(o) ∩ Sn ⊆ S0: o is applicable in S0,

2. S0∩¬post(o) = ∅: no operator is dependent on a literal
that o affects,

3. Sn ∩¬post(o) = ∅: no operator alters the effects of o.

Proposition 3. Only reachable runs are pruned under
the operator filtering conditions.

Proof. We write runs simply as a sequence of operators
for clarity. Consider an incomplete run:

Rk = 〈o1 . . . ok−1, ok〉.
Assume R to be an extension of Rk that is not reachable:

R = 〈o1 . . . ok−1, ok, ok+1 . . . on〉.
We assume that reachability holds for all other complete
runs. Next, consider the complete run:

R′ = 〈o1 . . . ok−1, ok+1 . . . on〉.
We reach a contradiction by showing that if R′ is consis-
tent and reachable, then so is R. If R′ is consistent but
not reachable then the traversal terminates prior to R be-
ing considered (since shorter runs are considered first). Let
Rk = 〈ok, o1 . . . ok−1〉 be a reordered instance of Rk. We
show that the conditions and effects of Rk are identical to
Rk if the operator filtering conditions are met.

Let S0 = first(Rk) and Sn = last(Rk). First, we show
ok is applicable in S0. Let L+ = pre(o)\Sn be the literals

3We assume that o is not forbidden in Sn.

added during refinement, and the refined initial state be
S′0 = So∪L+. The remaining literals pre(o)∩Sn are already
present in S0. This is detailed in condition (1).
Next, we show last(Rk) = last(Rk) by showing that the
effects of ok are preserved after reordering. Consider each
effect literal l ∈ post(ok): the following table details the con-
ditions where inconsistencies occur due to effects not being
preserved, depending on whether l or ¬l appear in S0 and
Sn. If neither l nor ¬l are present, we write ∅.
S0 Sn Consistent Reason

∅
∅ Yes No conflicting effects
l Yes l already present
¬l No ¬l added by subsequent operator

¬l - No Another operator requires ¬l

l
l Yes No conflicting effects
¬l No Another operator adds ¬l

There are three conditions (highlighted above) under which
an effect is not preserved, each of which is eliminated by
the filtering conditions (2) and (3). Under these conditions,
reordering ok to the beginning of the sequence of actions does
not alter the net effects of the run: last(Rk) = last(Rk).

Finally, since ok does not contribute to conflict the reach-
ability of R (and therefore R) follows from the reachability
of R′. Since we know the reachability of this shorter run has
already been checked, then R is reachable, and a contradic-
tion is reached.

Example 2. Traversal Pruning
Let SC = {hold1(P1),hold2(P2)} be a conflict specification
prohibiting agents 1 and 2 from holding parcels concurrently.
Consider the partial run R2:
¬hold1(P1), hold2(P2)

at1(N), pAt(P1, N)

ff
pickup1(P1,N)−−−−−−−−→

hold1(P1), hold2(P2)
at1(N),¬pAt(P1,N)

ff
.

Let the successor operator om be move2(N1,N2): agent 2

moves from some location N1 to N2. We are interested in
the effects that move2 has on our partial run. According to
the operator filtering conditions, this action is ignored since:

1. pre(om) ∩ last(R2) = ∅ ⊆ first(R2): refinement would
add all of pre(om) to first(R2), so applicability holds.

2. first(S0) ∩ ¬post(om) = ∅: reordering om does not
affect the applicability of the pickup action.

3. last(Sn) ∩ ¬post(om) = ∅: pickup does not alter the
effects of om.

Since the effects of om are preserved, the operator is ignored
for this run, implying that move2’s contributions to the con-
flict run are achievable out of conflict.

Let ml = |L| be the total number of literals. The compu-
tational complexity of traversal pruning is O(ml) derived
from the set intersection operations in the operator filtering
conditions.

4.3 Repetitive Operator Traversal (RO)
Consider the following incomplete runs created by repeti-
tively applying pickup operators:

© . . .© pickup1(P1,N)−−−−−−−−→©
© . . .© pickup1(P1,N)−−−−−−−−→© pickup1(P2,N)−−−−−−−−→©
© . . .© pickup1(P1,N)−−−−−−−−→© pickup1(P2,N)−−−−−−−−→© pickup1(P3,N)−−−−−−−−→©

We aim to avoid repetition if possible, so as to minimise the
resulting number of reachability checks. In this example, if

an agent is able to find an alternative plan to pick up P1 in
N, they could also pick up P2, P3 . . . if the resources required
by these actions are introduced during the refinement of the
run. We define conditions where operators can be considered
to be repetitively applicable, and discuss the implications of
this repetition on reachability checking.

A repetitive operator o can be applied as a successor for
an incomplete run R if it does not affect a literal present
in last(R). A repetitive literal is any affected literal of a
repetitive operator. We denote repetitively applied opera-
tors and repetitive literals with grammar-like ∗ suffixes, such
as move∗(X,Y), P∗, etc.

Let ϕ = last(R)∩pre(o) be the literals existing in last(R)
that o requires. The remaining literals are introduced during
refinement. Any introduced literal can be affected, since re-
peated applications of the operator would simply introduce
a literal for each consumed. Therefore, we are interested in
the literals already present in R that are affected by o.

Operator o is repetitive if either of the following hold:

1. ϕ ∩ ¬post(o) = ∅, or

2. ∀l ∈ (ϕ ∩ ¬post(o)). l is repetitive.

That is, no literals are affected (1), or, every affected literal
is introduced by a previous repetitive operator (2). Succes-
sor operators that consume repetitive literals must instanti-
ate all sources of these repetitive literals into non-repetitive
instances that can be affected.

Example 3. Repetitive Operators
Consider the following incomplete run:

© move(N1,N2)−−−−−−→©
where an agent moves from N1 to N2. Let’s consider the suc-
cessor pickup(P1,N2) operator. Here, ϕ = {at(N2)} and
since ϕ∩¬post(o) = ∅ we consider pickup to be repetitive:

© move(N1,N2)−−−−−−→© pickup∗(P1∗,N2)−−−−−−−−−→©
Next, consider drop(P1∗,N). Since ϕ = {hold(P1∗)} then
condition (1) does not hold. However, since hold(P1∗) is in-
troduced through repetitive operator pickup∗(P1∗,N2) then
drop(P1∗,N) too is repetitive, and the resulting run is:

© move(N1,N2)−−−−−−→© pickup∗(P1∗,N2)−−−−−−−−−→© drop∗(P1∗,N2)−−−−−−−−→©
Finally consider destroy(P1∗) that affects a single instance
of P1∗. Since this action is not repetitive, one instance P3

of P1∗ is created by instantiating the contributing pickup∗:

. . .© pickup∗(P1∗,N2)−−−−−−−−−→© pickup(P3,N2)−−−−−−−−→© destroy(P3)−−−−−−−→© . . .

We write rep(o) if o is repetitive. The traversal and reacha-
bility alterations are defined for an incomplete run R:

• If rep(o) then R′ = 〈R→ o〉, else

• If ¬rep(o) then ∀l ∈ (ϕ∩¬post(o)).rep(l), let oi affect
l. Instantiate oi to provide a non-repetitive instance of
l. If oi in turn contains repetitive literals, then repeat
the instantiation for oi.

The use of repetitive operators allows us to utilise the traver-
sal pruning optimisations to further reduce the number of
operators considered. For some successor operator on, if a
precursor operator om exists that is repetitive and identical
to on, and the effects of om are preserved until the end of
the existing run, then on can be ignored.

The complexity of checking if an operator is repetitive is
O(ml), where ml = |L| is the total number of literals, and
is therefore independent of the length of the run.

4.4 Duplicate Runs (DR)
For completeness, we extend an optimisation from previous
work: during traversal, duplicate runs can be ignored [3]. In
the first-order case, two runs R1 and R2 are duplicates if ∃σ.
first(R)=σ[first(R′)], last(R) = σ[last(R′)] and if the con-
tributing operators (the initial operators leading to conflict
in each run) are equal. This optimisation is more complex
to evaluate, due to the search for variable substitution sets.
We argue that this duplicate run optimisation should be in-
voked after all other optimisations, once the set of runs to
operate on is as small as possible.

4.5 Incremental Reachability (IR)
We check the reachability of a run through an incremen-
tal modification of an existing conflict run and conflict-free
reachable plan.

4.5.1 Operator Insertion
We begin by defining under what conditions an operator can
be inserted into a plan without affecting the applicability of
the other operators.

Example 4. Operator Inserting
Consider the following plan in the parcel delivery domain

Π = 〈move(N1,N2),drop(P1,N2)〉

where an agent moves into N2 and drops P1. Let o∗ be
either drop(P1,N1) or drop(P2,N1), in the resulting plan
Π′ = 〈o∗, move, drop〉. Action drop(P1,N1) results in an in-
consistency in the run, since a future action drop(P1,N2)

requires the agent to hold P1, whereas drop(P2,N1) is ad-
missible, since the agent is dropping P2 which does not affect
its ability to drop P1 in N2 (assuming P1 6= P2).

Consider a sequence of operators Π = 〈o1 . . . ok, ok+1 . . . on〉.
A modified sequence Π′ = 〈o1 . . . ok, o

∗, ok+1 . . . on〉 is the
original sequence Π with the new operator o∗ inserted ar-
bitrarily. For simplicity, we write Π = 〈Π1; Π2〉 and Π′ =
〈Π1; o∗; Π2〉. Assuming Π is consistent, we now define con-
ditions under which Π′ is consistent. Let

eff (Π) = (pre(Π)\¬post(Π)) ∪ post(Π)

be the net effects of the sequence of operators in Π.

Proposition 4. Operator o∗ can be inserted into Π to
form Π′ without conflicting with existing operators iff:

1. eff (Π1) ∩ ¬pre(o∗) = ∅, and

2. pre(Π2) ∩ ¬post(o∗) = ∅.
Proof. Π′ is inconsistent if the effect of some precursor

operator in Π1 results in o∗ being inapplicable, or the effects
of o∗ result in a subsequent operator being inapplicable.

Firstly, assume o∗ is not applicable. For this to be the case
a literal l ∈ pre(o∗) exists such that ¬l is an effect of Π1, or
is a necessary precondition of Π1. However, from (1), since
eff (Π1) incorporates all effects, as well as preconditions not
affected, no such l exists, and o∗ must be applicable.

Next, assume the effects of o∗ result in a subsequent op-
erator o′ no longer being applicable. Since o′ was applicable
in Π, this conflict must be caused by an effect of o∗ (since all
intermediate operators are the same). Let l ∈ pre(o′) be a
literal where ¬l ∈ post(o∗). It follows that l ∈ pre(Π2) since
a subsequent operator prior to o′ adds l. However a contra-
diction is reached, since by (2) no such literal can exist.

4.5.2 Checking Incremental Reachability
Conflict traversal is a breadth-first search of complete con-
flict runs where reachability is checked for runs of increas-
ing length. We now present an alternative way of checking
reachability that incrementally builds on the reachability of
shorter runs. We begin with a simple example.

Example 5. Incremental Reachability
Consider the shortest possible complete conflict plan in the
parcel delivery domain for SC = {at1(N),at2(N)} where
agents collide at N:

© move1(N1,N)−−−−−−→© move2(N,N2)−−−−−−→©
Suppose that we show a conflict-free alternative plan ∆ exists
for this conflict run. As our traversal continues, we begin to
consider conflict-runs composed of three actions, such as:

© move1(N1,N)−−−−−−→© pickup1(P,N)−−−−−−−→© move2(N,N2)−−−−−−→©
where agent 1 performs the same move actions, but also picks
up a parcel P in N. A conflict-free plan exists for this run: the
pickup action can be performed directly after ∆ to achieve
the correct effects. We adopt this incremental approach in
order to reduce the number of conflict-runs considered.

Let Π=〈Π1; Π2〉 and Π′=〈Π1; o∗; Π2〉. Assume that a conflict-
free plan ∆ exists for Π. Given that Π′ is an incremental
extension of Π, we are interested in showing whether o∗ can
be inserted in ∆ to form an alternative plan ∆′ for Π′.

We begin by characterising the effects of o∗ that are pre-
served or overwritten. Let eff (Π) and eff (Π′) be the net ef-
fects of Π and Π′ respectively. LetE = {post(o∗)\¬post(Π2)}
be the effects preserved and E = {post(o∗)\E} be the effects
overwritten. Since there are no conditional effects in our for-
malism all differences between the runs can be attributed to
the operator o∗: E ⊆ post(o∗).

Proposition 5. Consider Π = 〈Π1; Π2〉 with alternative
plan ∆ = 〈∆1; ∆2〉. Let Π′ = 〈Π1; o∗; Π2〉 represent Π with
operator o∗ inserted. Π′ is reachable with alternative plan
∆′ = 〈∆1; o∗; ∆2〉 if:

1. ∆′ is consistent (by Proposition 4),

2.
`
pre(o∗)\eff (Π1)

´
=
`
pre(o∗)\eff (∆1)

´
: the refined

preconditions match,

3. E ⊆ post(∆2): all effects in E are preserved,

4. (¬post(∆2) ∩E) = ∅: all effects in E are overwritten,

5. the result is conflict-free.

Proof. In order to show that Π′ is reachable by ∆′, we
must show the following:

i pre(Π′) = pre(∆′),

ii post(Π′) = post(∆′),

iii ∆′ is conflict-free and consistent.

Since ∆ is a conflict-free alternative to Π, pre(Π) = pre(∆)
and post(Π) = post(∆) hold.

Consider (i): let L+ = pre(o∗)\eff (Π1) be the literals that
are added to the initial conditions during refinement of Π′,
and L′+ be those added during the refinement of ∆′. By (2)
L′+ = L+, and since pre(Π) = pre(∆) by definition if follows
that pre(Π′) = pre(∆′).

Consider (ii): the difference in effects between Π and Π′

are all attributable to o∗. Condition (3) ensures that all
literals added to the effects of Π′ by o∗ will also be added

120 1 2 3 4 5 6 7 8 9 10 11

5

0

10

100

1000

10000

Iterations

Co
m

pl
et

e
Ru

ns

100000 AP AP+TP AP+TP+RO

AP+TP+RO+DR

Figure 1: The effect of optimisations on the number
of runs generated during traversal.

to ∆′, while (4) ensures that any effect of o∗ removed by a
subsequent operator in Π′ will be removed in ∆′ too. There-
fore, since post(Π) = post(∆), the effects of ∆′ and Π′ are
identical, and post(Π′) = post(∆′).

Finally, (iii) follows directly from (1) and (3).

This result is significant in a first-order domain formalism.
The ability to adapt existing reachability plans for new runs
results in fewer reachability checks and fewer variable ground-
ings. As will be demonstrated in the next section, the num-
ber of reachability checks can be significantly reduced.

5. EVALUATION AND DISCUSSION
We now quantify the traversal improvements in the parcel
domain. The ordering of optimisations affects their relative
effectiveness, with earlier optimisations operating on more
runs than subsequent ones. We present a simple screen test
where each optimisation is enabled in turn. The traversal
runs for 5 iterations (the outcomes are deterministic) with
SC = {at1(X),at2(X)}. Total number of complete and in-
complete runs is recorded, along with the percentage im-
provement over a full search.

Optimisation Incomplete % Diff. Complete % Diff.
Full Search 13631844 - 349288 -
AP: A Priori Filtering 4749104 65.16% 155008 55.62%
TP: Traversal Pruning 244 99.99% 132 99.99%
RO: Repetitive Operators 1075449 92.11% 77820 77.72%
DR: Duplicate Runs 43157 99.68% 8052 97.69%

We utilise all optimisations concurrently with an ordering
based on each optimisation’s computational complexity. First
we apply a priori filtering prior to traversal. The traversal
pruning follows due to its computational efficiency and ef-
fectiveness. The repetitive operator optimisation follows.
Finally, due to its complexity, we invoke the duplicate run
filtering. Figure 1 depicts the number of runs generated on
a logarithmic scale against the number of iterations, detail-
ing the performance gains as each optimisation is added:
The improvement after each optimisation is clear. With
all optimisations enabled, no new runs are generated after
11 iterations. The solved problem has 3052 complete runs,
compared to 13631844 after just 5 iterations of full search.

5.1 Incremental Reachability
Finally, we illustrate the benefit of incremental reachabil-
ity checking. We generate 3052 unique complete runs that
either prohibit move1(N1,X) or move2(N1,X) (moving to X),
and leave conflict through move1(X,N2) or move2(X,N2) (leav-
ing X). Incremental reachability allows us to produce alterna-
tive plans for all these sequences based on the reachability
of simpler sequences of move operators alone, resulting in
grounding only 4 times.

No operators, besides move, alter the location of the agent,
even though some are conditional on the location. It is al-

110 1 2 3 4 5 6 7 8 9 10

3000

0

500

1000

1500

2000

2500

Iterations

Co
m

pl
et

e
Ru

ns
Original

Constrained

Figure 2: Simplifying traversal using domain-
specific constraints.

ways possible to execute non-move actions in a conflict-free
way if the required portion of the conflict state is accessi-
ble in the alternative plan, with the remainder avoided to
ensure no conflict. In the above example, if the problem
instance allows both agent 1 and 2 to access location X inde-
pendently, then conflict-free plans exist for any combination
of actions performed in X. As a result, reachability need only
be shown for the sequence 〈movei(N1,X), movei(X,N2)〉 (with
i = {1, 2}). All other conflict-free plans can be derived from
a conflict-free solution to the above sequence, so long as
agent 1 and 2 can access X independently.

5.2 Domain Constraints
Traversal with no knowledge of the initial system state re-
sults in general, problem independent results: in the parcel
domain norms govern situations where an agent occupies
multiple locations concurrently, thereby covering problems
where agents start in multiple locations. Our search can be
improved by introducing domain constraints that introduce
these assumptions. Consider, for example:

{at1(A,X),at2(A,Y),X=Y}.

Incorporating this knowledge into the search process is sim-
ple. For every run, if a substitution exists that violates the
constraint, then the run can be discarded. The impact on
traversal performance is shown in Figure 2. The additional
knowledge reduces the total number of complete runs from
3052 to 216, and iterations required for a solution from 10
to 7. The relative performance benefits are clear: while the
optimisations provide a significant improvement in general,
domain specific knowledge can further reduce the number of
runs considerably.

6. RELATED WORK
Shoham and Tennenoltz [8, 9] provided the first formal no-
tion of behavioural constraints in a state-based system, and
showed the problem of norm synthesis to be NP-complete.
No generally applicable algorithm accompanied the com-
plexity result. This work was extended by Onn and Ten-
neholtz [7], where prohibitions are synthesised in a robot
mobilisation domain. An efficient process is detailed, how-
ever the solution is domain-specific operating only on a fixed
graph topology.

Fitoussi and Tennenholtz [4] described the synthesis of
minimal and simple prohibitions. This work is concerned
with prohibition refinement rather than synthesis as a pro-
hibition is assumed provided by the designer. In [10] van
der Hoek, Roberts, and Wooldridge analyse properties of
social norms in domains specified in Alternating-time Tem-
poral Logic, and reduce synthesis to a model checking prob-
lem. This work assumes a complete action-based alternative
transition system representation which is often not feasible
to develop and maintain in practical systems.

7. CONCLUSIONS
In this paper we detail a first-order approach to norm syn-
thesis. The ability to synthesise norms containing variables
provides greater expressiveness and subsequently more gen-
eral social norms. However, the computational complexity
of this unground search is significant, since first-order opera-
tor schemata contain less problem-specific knowledge. A set
of optimisations is detailed that improves the performance
of first-order synthesis without jeopardising the soundness
of the underlying process. We prove these optimisations
correct, and empirically detail their impact in a simple grid-
world domain. The optimisations greatly reduced the num-
ber of runs considered, allowing for the sample domain to
be solved completely.

As future work, we plan to formalise the inclusion of do-
main constraints in the traversal process. These constraints
enable the process to be applied to larger, more complex
systems. Furthermore, an extended empirical evaluation of
the optimisations across varying domains will allow for more
general performance statements. An extension of our syn-
thesis process to facilitate the synthesis of sanctions would
automate prohibition norm synthesis for enforcement based
normative systems.

8. REFERENCES
[1] T. Ågotnes, W. van der Hoek, J. Rodriguez Aguilar,

J. Sierra, and M. Wooldridge. The simple normative
systems language. In Agent Organizations: Models and
Simulations, IJCAI 07 Workshop (AOMS 2007),
January 2007.

[2] T. Ågotnes, W. van der Hoek, M. Tennenholtz, and
M. Wooldridge. Power in normative systems. In Proc.
of the 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), pages 145–152,
Budapest, Hungary, May 2009.

[3] G. Christelis and M. Rovatsos. Automated norm
synthesis in agent-based planning environment. In
Proc. of the 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), pages 161–168,
Budapest, Hungary, May 2009.

[4] D. Fitoussi and M. Tennenholtz. Choosing social laws
for multi-agent systems: Minimality and simplicity.
Artificial Intelligence, 119:61–101, 2000.

[5] F. López y López, M. Luck, and M. Dinverno. A
normative framework for agent-based systems.
Computational and Mathematical Organization
Theory, 12(2-3):227–250, Oct. 2006.

[6] B. Nebel. On the compilability and expressive power
of propositional planning formalisms. Journal of
Artificial Intelligence, 12:271–315, May 2000.

[7] S. Onn and M. Tennenholtz. Determination of social
laws for multi-agent mobilization. Artificial
Intelligence, 95:155–167, Jun 1997.

[8] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In Proc.
of the 10th National Conference on Artificial
Intelligence, pages 276–281, 1992.

[9] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: Off-line design. Journal of
Artificial Intelligence, 73(1-2):231–252, Feb. 1995.

[10] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: Effectiveness,
feasibility, and synthesis. Synthese, 156(1), May 2007.

