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Abstract. This paper describes an approach to using a hierarchical
machine learning model in a two player 3D physics-based soccer video
game to improve human player satisfaction. Learning is accomplished
at two layers to form a complete game-playing agent such that higher-
level strategy learning is dependent on lower-level learning of basic be-
haviors. Supervised learning is used to train neural networks on human
data to model the basic behaviors. The reinforcement learning algorithms
Sarsa(λ) and Q(λ) are used to learn overall strategies mapping game sit-
uations to these basic behaviors. We compare learning and non-learning
agents and provide game results. Performance in self-play is analyzed
to obtain a deeper understanding of the agent’s learning performance.
Seventy people participated in a survey in which the learning agent led
to a more dynamic and entertaining experience, while the non-learning
agent was a slightly more difficult opponent.

1 Introduction

A problem often experienced in video games is that the results obtained by
directly specifying artificial player (“agent”) behavior may be very predictable
or just not very good. Machine learning (ML) [1] offers many techniques that
can be applied to games to create more dynamic and realistic AI agents that can
adapt to new situations. In an attempt to increase entertainment in games, we
apply a layered ML architecture to a 3D physics-based soccer video game. This
involves learning lower level behaviors to facilitate the learning of successively
higher level behaviors.

An additional benefit of learning is that it makes the design of artificial game
players methodologically easier. Without ML, a programmer needs to manually
“search” for and compare strategies used by agents. Considering the current
availability of low-cost computational power, machines are much more suited to
this task and can find better strategies in less time. Unfortunately, learning a
model that directly maps inputs to outputs is too complicated for most games.
Even if it were possible, it would probably not lead to a good general playing



strategy, since it would be very difficult to manually adjust such a model and
correct poor behavior. Layered ML alleviates these problems and allows for more
control over the learning process. A custom hierarchy of behaviors to be learned
can be designed specifically for a game, allowing the benefits of problem domain
knowledge to be fully realized. Behaviors at any level of the hierarchy can either
be hand-designed or learned. Using a layered learning model is flexible and allows
for the learning of complex behaviors.

The main goal of the research presented here is to implement learning agents
with acceptable in-game performance against people and other agents. Further-
more, agent behavior should be “human-like”, i.e. appear natural and dynamic.
Ultimately, we wanted to provide an entertaining game experience. To do this,
we used neural networks to model low level behaviors based on human data. We
used reinforcement learning (RL) to learn high level strategies based on these
behaviors.

Stone applied a similar layered learning architecture to simulated robotic
soccer [2], but the behaviors to be learned were different; entertainment and
“human-like” behaviors were not required. An alternative method to learn based
on human data in games is presented in [3], where rules are learned rather than
neural networks. Another way to learn and use rules in games is presented in [4].

This project is a case study of considerable size examining the potential for
using layered learning in video games to increase their overall entertainment
value. We identified human behaviors in simple training games that were easier
to model than others. We compared the performance of different RL algorithms
[5] in a fairly complex environment, which exceeds the complexity of toy en-
vironments often used in the literature. Given enough time for learning, agents
using learning consistently won games against agents using the best non-learning
agents. Survey participants found the best non-learning agent to be more dif-
ficult, while the best learning agent was more dynamic. Overall, people found
playing against the learning agent to be a more entertaining experience.

2 The Soccer Game

The problem domain is a 3D real-time one-on-one soccer game (screenshot in
Fig. 1). The physics engine supports spheres with linear and angular momentum,
as well as stationary planes, cylinders and boxes. Relevant physical equations are
solved numerically in real-time. Players are represented as spheres and the soc-
cer ball is a smaller sphere. Each player scores a point for a goal and spheres
can collide with the walls. To control a player, a human or an automated agent
provides a two-dimensional vector representing acceleration. They have the op-
tion to kick the ball at any time, releasing it in a straight line. Physical objects
in motion are gradually slowed by friction and drag. Players acquire the ball by
colliding with it; then the ball is attached to the player and is automatically
repositioned in front of the player as they move. The ball can be stolen from an
opponent by touching the ball then quickly getting it away from them.

The game is complex enough that it is highly improbable that an agent exists
which performs optimally in every situation. Hand-designed agents are not very



Fig. 1. The Soccer Game - A player is about to score a goal. The soccer field is flat
and the white lines are zone markers used in representing strategies.

likely to be optimal. Optimal agents would need to be able to adapt their strategy
to a wide range of situations. Low level behaviors, such as moving across the field
can be difficult to specify or learn. The physics engine works with fairly complex
differential equations (for friction, drag, angular momentum, ball handling, etc).
Objects with angular momentum do not move in straight lines and non-zero
velocities never remain constant. As a consequence, obtaining optimal low-level
behaviors is a difficult process. For example, using acceleration to simultaneously
control velocity and position is difficult within the game.

3 Layered Learning Architecture

We developed a two-layered learning architecture for this game. The lower layer
allows for learning “basic behaviors” that are designed to accomplish simple
tasks. The behaviors were chosen to be simple and robust, yet complex enough
to be non-trivial. Each behavior needs to represent an opportunity for ML. An
individual player’s strategy can be formed by selecting a single basic behavior to
use at a given time. Given the state of the world and a set of available behaviors,
it is not trivial to select an appropriate one for a situation. Therefore, the higher
“strategy learning” layer uses RL to learn which basic behavior to apply in each
state from experience using information about rewards obtained previously. In
other words, the higher layer learns a meta-strategy over the basic behaviors
learned by the lower layer.

3.1 Supervised Learning of Low-Level Basic Behaviors

Seven basic behaviors were chosen for the game and we created a corresponding
“training game” for each one. These training games are used to obtain data
from human players and to objectively measure learning performance, the focus
being on achieving “human-like” behavior at this level, rather than optimal
performance in terms of the game in question. Supervised learning is used, since
desired output vectors are known for the input vectors. During training data
collection, a person plays the game and the game state is recorded at a fixed



rate. The games are designed to present the player with random situations from
the set of all game situations where the behavior could potentially be used.
The aim is for a generalized representation of a basic behavior to be distilled
from data obtained from the training games. Although this process cannot be
guaranteed to work, very good results were obtained.

The basic behaviors chosen for the game are as follows: intercepting the
ball (Intercept), retreating to the goal (Retreat), attempting to get close to the
potential path of a kicked ball (Defend), aiming the ball toward the opponent’s
goal (LineUp), advancing toward the opponents goal (Advance), stealing the
ball (Steal), and preventing an opponent from stealing (KeepBallSafe). Each
of these are available to the higher learning layer as a primitive action with
the exception of LineUp, for which three variations are provided to aim the
ball toward different sections of the goal, thus allowing for a greater variety of
strategies. Finally, there is a Kick behavior that does not require learning in this
game.

The design of the training games has a fundamental effect on the behaviors
that are learned. For example, it is possible that high training game performance
may not be related to high performance against humans at the same task. For
some behaviors, artificial opponents are needed in the training games to provide
a consistent measurement of performance. In most training games the opponents
select randomly from a set of simple hand-designed behaviors.

At the “basic behavior” layer, feedforward fully connected Multi-Layer Per-
ceptrons (MLPs) were used to model and learn the behaviors. We used MLPs
with a single sigmoid (tanh) hidden layer and linear output units, which can rep-
resent any bounded continuous function to an arbitrarily small error [6] and learn
such functions from training data. The training algorithm used was stochastic
gradient descent backpropagation with momentum [1] and training was off-line,
so that the MLPs are fixed during actual games. A mean squared error (MSE)
function was used to measure how well a given MLP models a training dataset.
The neural networks for each basic behavior have two real number outputs (for
2D acceleration) and between six and ten real-valued inputs that are derived
from game state information. For optimal performance, network inputs are first
scaled to have a mean and variance of approximately 0 and 1, respectively. Each
MLP had ten hidden neurons and approximately 100 real-valued weights to be
learned. This appeared to be a good MLP size for the amount of available train-
ing data. The networks were trained for between 100 and 20,000 epochs. In some
cases, MLPs with the best performance were found quickly and further training
did not yield better results. In other cases, in-game performance continued to
improve after thousands of epochs.

Twenty percent of the collected training data was used as a validation dataset.
We also applied early stopping, where training is stopped in the event that the
validation error has not improved for a certain number of epochs, i.e. allowing
training to continue was not beneficial. The most consistent results were ob-
tained when the validation data was taken from several disjoint segments of the
collected data.



3.2 Reinforcement Learning for Higher-Level Strategies

A policy for playing the game can be defined to be a mapping from game states
to actions (basic behavior implementations). The class of RL algorithms applied
here is that of temporal difference (TD) methods [5], which learn from experience
by continually improving an estimate of the optimal policy, i.e. the policy that
leads to maximum long term reward. They are model free in the sense that
they do not make use of explicit models of the environment (e.g., transition
probabilities between states). Bootstrapping allows faster learning and updates
estimates of reward based on other estimates. In terms of learning strategy we
used on-line learning, where an agent learns while they play as this has the
potential to lead to a dynamic experience for a person playing against the agent.
However, this adaptiveness comes at the price of not being able to guarantee
convergence of learning since a person’s changing strategy leads to a dynamic
environment.

However, for a fixed-strategy opponent, a policy learned using RL will, under
certain conditions, converge to the optimal policy [5]. The conditions necessary
for convergence were not created in the system, since it may not be desirable
within a videogame; policies cease to be adaptive when convergence occurs. De-
spite this, it is important to note that minor changes to the RL implementation
could allow for guaranteed convergence (such as decreasing the exploration rate
over time such that it becomes zero in the limit).

RL heavily relies on an appropriate definition of state and action spaces,
whereby states can be complex structures built up over time that implicitly
contain information about past occurrences and the requirement is that all in-
formation needed to make a decision is implicitly in the knowledge of the current
state. To learn a strategy in a reasonable amount of time, the most important
information must be encoded within a small set of states. Additionally, in the
case of on-line learning in a video game, learning has to happen within a reason-
able amount of time as game play only extends over a limited period and human
players need to be able to experience their artificial opponent’s adaptiveness to
make the game appear interesting.

The state space defined for our domain was based on quantized values of the
most important information, such as the player’s proximity to the soccer ball and
some historical information about recent ball possession. Without any historical
information, an agent may observe that they do not have the ball immediately
before they score a goal and may learn that not having the ball is good. Rewards
are given for goals and negative rewards are given when the opponent scores.
Rewards are also given in some other situations to increase the speed of learning,
for example when the player gains possession of the ball or loses it.

The RL algorithm used was the standard version of Sarsa(λ) [5]. This algo-
rithm uses so-called eligibility traces to determine how each observation can be
used to update predictions made in the past. The result is a table of estimated
Q-values, which estimate the expected long term reward for taking an action
in a state. A variant of Q(λ), another algorithm which estimates Q-values, re-
ferred to as “naive Q(λ)” in [5] was also implemented, but the time needed for



learning was much longer. The one-step Sarsa method (equivalent to Sarsa(0))
performed significantly better than one-step Q-learning. The likely cause is that
Q-learning needs more time to implicitly model state transitions. Sarsa takes
actual state-action sequences into account and learning was faster.

A Q-table alone does not provide enough information for selecting an action
to apply in a given state. There is always a trade-off between exploration and ex-
ploitation of current knowledge. Exploitation may lead to higher rewards, while
exploration may lead to increased knowledge and ultimately higher rewards.
Epsilon-greedy (ε-greedy) exploration and Softmax exploration [5] were both
implemented and Softmax provided better performance. It includes an explo-
ration temperature τ , which allows for a blend of exploration and exploitation.
For high temperatures, actions are essentially selected at random. For low tem-
peratures, actions with low Q-values will rarely be selected, while there is a high
probability of selecting an action with a relatively high Q-value. This focuses
exploration on actions that are estimated to be nearly optimal.

4 Experiments

4.1 Basic Behaviors

In all training games besides Advance, we were able to find a neural network
which consistently performed better than a human expert. Note that perfor-
mance is indicated by training game score. For some behaviors, the ideal out-
come occurred and the networks with the lowest validation dataset error had the
highest training game performance. An example of this is the Intercept behavior
in Fig. 2. For other behaviors such as Retreat (Fig. 2), the highest performing
networks were found earlier in the training process while validation set error was
still dropping. Figure 2 shows how validation set error was slightly higher than
training set error throughout the training process. The correlation of training
game performance to data set error varied between behaviors, but was strong
for the simplest behaviors.

In two cases, obtaining high performance networks through training was par-
ticularly difficult. It is possible that not enough high quality training data was
obtained. Low dataset error cannot guarantee high in-game performance, but
the process worked well for most of the behaviors. Using highly processed in-
formation from the game state as input to the networks was not effective, since
relationships between inputs and outputs became more complex and more diffi-
cult to learn.

Hand designed basic behavior implementations were created with varying
amounts of effort and manual tuning. In two cases, the MLP implementations
performed better than the hand designed alternatives. For these two networks,
the correlation of training game performance to data set error was strong and
networks with lower dataset error performed better in the game. In other cases,
MLP performance was comparable to hand-designed behavior performance. In
all instances the MLP based behaviors appeared to be more “human-like” and
less rigid than their hand-designed counterparts. Noise could be added to the



outputs of the hand-designed behaviors, but results are not likely to be as good.
Human actions in the game can be imprecise and the MLPs implicitly model
the types of deviations a player might make from their desired paths.
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Fig. 2. The neural network training process for two basic behaviors. Actual training
game performance is not necessarily related to mean squared error on the validation
dataset.

4.2 Higher-Level Strategies

Experimentation was performed to find good values for the many parameters
of the Sarsa(λ) algorithm. After reasonable initial values were selected, many
games were run against an agent with a hand-designed deterministic strategy
to optimize the parameters. A state space with 108 states and 432 state-action
pairs was used, which led to high performance policies and required less learning
time than larger state spaces. When the number of states used was 500, up to
ten times more learning time was required to obtain the same results. After
extended periods of learning, performance never exceeded the performance of
the small state space. Increasing the number of states may be necessary when
playing against opponents that have highly complex strategies.

For each experiment, two parameters were varied simultaneously in pursuit of
optimal values. The λ parameter determines how much observed information is
used to update past predictions and the best value was 0.7. Softmax exploration
led to the best overall performance. Higher exploration temperatures, of around
2.0, led to increased performance at the conclusions of the sessions but relatively
low performance throughout the sessions. Balanced exploration (temperatures
ranging from 0.5 to 2.0) led to better overall results and decent performance at
the conclusions of the sessions. The best value for the learning rate α was 0.03.
The best values of the reward discount factor γ were between 0.925 and 0.98.
The γλ product is closely related to the eligibility trace and intermediate values
of this product, between 0.55 and 0.75, led to the best results.

4.3 Combining the Learning Layers

The best implementations of each type (ML/non-ML) for each learning layer
were combined. Strategy implementations were: RL (Sarsa(λ) with Softmax ex-



ploration), a hand-designed stochastic policy, and a hand-designed deterministic
policy (these policies are essentially based on finite-state machines). MLP based
behaviors and hand-designed (HD) behaviors were tested in combination with
each (high-level) strategy. Stochastic fixed policy agents won almost all of their
games against deterministic ones.

Overall, the players using MLP based behaviors outperformed the counter-
parts that used HD behaviors. On average, agents using HD behaviors won 42%
of their games while agents using MLP behaviors won 57% of them. This does
not coincide with the training game performance of the behaviors. Some be-
havior implementations display weaknesses during game-play which cannot be
seen in the training games. Perhaps the MLP behaviors are more robust de-
spite slightly inferior (on average) training game scores. For games lasting 25
game-hours (simulated in around 3 minutes), both RL players won the major-
ity of their games. They clearly outperformed all fixed policy agents. When the
Sarsa/MLP player competed directly with the Sarsa/HD player, the Sarsa/MLP
player won most games. It seems to be easier to learn a strategy based on the
more complex MLP behaviors. Since the MLP behaviors are more robust, a
higher proportion of strategies based on them (as opposed to HD behaviors)
lead to acceptable performance. This increases the chances of finding an MLP
based strategy through learning that performs consistently well. When self-play
was simulated, two learning agents with initially no knowledge competed di-
rectly. Actions in such games were initially random. After some time, simple
strategies such as heavily offensive strategies emerged. After enough time, com-
plex and well-balanced strategies could be observed. Provided the exploration
temperature τ was significantly high, around 0.5 to 2.0 (depending on the lower
level behavior implementation), this process consistently generated useful and
balanced strategies.

Learning times were reduced to one game-hour and Q-tables learned in var-
ious 25 hour games were used as initial Q-tables. Figure 3 illustrates some of
these results. The players benefited from any initial knowledge, particularly when
the exploration temperature τ in previous game was high, 2.0 in this figure. A
lower τ in the next game of 0.5 allowed the players to immediately exploit their
knowledge and simultaneously adapt it to the new situation. These are the τ
values used for Fig. 3. Both RL players benefited the most from their experience
against the stochastic policy agent. There was a 50% increase in the number
of one hour games won against various (learning and non-learning) automated
opponents. Experience from self play was beneficial to both RL players, leading
to a 35% increase in games won. Each RL player also benefited from any expe-
rience obtained by the other, which lead to a 28% increase in games won. This
indicates that the process can lead to generally good strategies. Self play is an
interesting case, because it leads to a dynamic non-Markovian environment. RL
for non-Markovian processes is still an active area of research. Results cannot be
guaranteed [5], but good results were obtained leading to increased confidence
in the underlying methods. The amount of time needed for learning is important
for a real-time game. Good strategies were learned from no initial knowledge in



less than an hour of game time, which is a reasonable amount of time for a per-
son to play such a game. Simulated games can be run much faster than real-time
to obtain prior knowledge, which allowed for significantly better results in the
early stages of learning.
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Fig. 3. Average performance of an RL agent as time increases. The agent had varying
initial knowledge and used MLP based behaviors. The opponent was the stochastic/HD
agent. The score ratio in favor of the RL agent is presented. This is an instantaneous
ratio consisting of points scored within 10 game minutes. An agent with no initial
knowledge began outperforming their opponent, who uses a fairly complex strategy,
in around 30 game minutes on average. Knowledge from self-play is seen to be very
useful.

4.4 Survey

In order to evaluate the more “human-centric” goals of the project, an online
survey was conducted in which 70 people participated. Participants played five
minute games against two different opponents in a random order. The ML player
used Sarsa(λ) for the higher layer and MLPs for low-level behaviors. The non-ML
player used a hand designed stochastic strategy and hand designed behaviors.
People usually found the non-ML player to be slightly more difficult. In order to
give the ML player a chance of providing a good challenge, it had been trained
against the non-ML player and could defeat it consistently. People were not told
which opponent used ML. An average of 41% of people won their first game, while
50% of people won their second game. This did not seem to depend on which
opponent was encountered first. Overall, people found the non-ML player to have
a better strategy and be more difficult. However, it was significantly easier for
players to predict the actions of the non-ML player. In general, people felt that
the ML player moved around more fluidly and behaved in a much more dynamic
‘human-like’ way. Some people commented that player behaved like a human who
was not an expert at the game and still made some mistakes. Despite occasionally
making mistakes, the ML player proved to be an entertaining and challenging
opponent. People may have felt the non-ML player had a better strategy because
its strategy is more consistent. The ML player sometimes appears to change its
playing style several times during a game, which may have had a confusing effect



on players not anticipating it. Overall, people were more satisfied with the ML
player. Some noted that it adapted based on their own strategy. A representative
comment about the ML player was that it “felt less ‘cookie cutter AI’ ... he sort
of moved around more fluidly and didn’t resort to the same patterns.” Many
people appreciated the adaptive nature of the ML player. Some others preferred
the more traditional challenge offered by the non-ML player and the pleasure of
finding a strategy that consistently outperformed this non-adaptive opponent.

5 Conclusion

In this paper, we described the implementation of a layered learning architec-
ture in a soccer videogame. It was based (a) on learning basic behaviors based
on data obtained from humans performing simple tasks and (b) on learning a
game strategy that uses these basic behaviors as primitive actions by means of
reinforcement learning.

At the lower level, our method was very successful for learning human-like,
natural-looking behaviors, provided that the behaviors to be learned were simple
enough. Attempts to learn more intricate behaviors in this way led to disappoint-
ing results, as training data was noisy and complex. The design of the training
games used for data collection is very important at this stage. At the higher
level, the RL implementation led to very good results with reasonable amounts
of learning time. The ML agents performed well against other agents and were
well received by human players, who found them dynamic and entertaining.

The hierarchical learning approach is very flexible and led to efficient learn-
ing. Much control over the learning process was retained and undesirable actions
could be corrected with relative ease. The hierarchical learning model used could
easily be extended to more interesting situations with multiple agents on each
team. Various policies could be learned through RL for common roles in a soc-
cer team, using different reward functions. In the future, we plan to add a third
“social” learning layer which would enable artificial players to learn optimal
teamwork coordination strategies.
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