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Abstract. Given a specification of communication rules in a multiagarstem

(in the form of protocols, ACL semantics, etc.), the quesid how to design
appropriate agents that can operate on such a specificatamvery important
one. Inopen systemghe problem is complicated even further by the fact that
adherence to such a supposedly agreed specification camrestsbired on the
side of other agents.

In this paper, we present an architecture for dealing withroainication patterns
that encompass both a surface structure of admissible geessguences as well
as logical constraints for their application. This arctiitee is based on theF-
FrA social reasoning framework and the concept of interactiamés. It assumes
an empirical semanticstandpoint by which the meaning of communication is
pragmatically interpreted through decision-theoretitroplity considerations of

a reasoning agent. We introduce the abstract architeatdra éormal model and
present experimental results from a complex domain totititis its usefulness.

1 Introduction

The process of designing agent communication languagesaation protocols and
conversation policies is primarily concerned with whatgoabetweerrather tharin-
sideagents. It is therefore only natural that ACL research hedyattacked the prob-
lem of how to build agents in accordance with a given set ofes#in rules, protocol
structures, etc.

In the light of openmultiagent systems, in which agents are not controlled by a
central entity or pursue common goals and need not be bearaydtis design problem
is complicated even further. Not knowing how other agents agiply a given spec-
ification concerning the semantic and pragmatic propedidbe provided means of
communication, the question for an agent is not only how fahaji by himself, but
also whether to comply with the supposedly agreed spedditat all.

This is exactly the issue this paper deals wiiven the specification of a number of
communication patterns together with logical constrafotsheir application, how can
we design an agent that uses them appropriately to furtheohin goals, not knowing
whether other agents will comply®s a possible answer to this question, we propose
an agent architecture based on the concephgbirical semantic§l0]. This architec-
ture can be seen as a “communication reasoning” componahtatkes as inputs the



belief state and utility function of an agent as well as a $ehodels of communica-
tion patterns (so-calledhteraction framesand outputs communication decisions. The
architecture is characterised by two essential features:

1. It uses decision-theoretic principles to make optim#baadecisions while taking
previous communicatioexperiencénto account.

2. It combines empirical knowledge with priori specified logical constraints for
communication patterns.

Most importantly, the reasoning heuristics used in thididecture are computationally
tractable and can be implemented directly. We thus corttritouthe task of engineering
agents that are able to operate flexibly on a given set of camwation protocols and
semantic rules and under the assumption that the empigngdstics view is followed.

The remainder of this paper is structured as follows: Inisac2 we review the
foundations of the empirical semantics approach. Subseiguee introduce thénF-
FrA social reasoning framework that the proposed archite¢subased on. Section 4
establishes a formal model of empirical semantics catféadrFFrA that usednFFrA
frames to capture probabilistic expectations about comcatinn. In section 5 we then
present the apparatus necessary for making decisionssimthilel. Experimental re-
sults from a concrete implementation of the model in a comglamain are given in
section 6 to underline its practical usefulness. Sectionunds up with some closing
remarks and conclusions as well as an outlook to future work.

2 Empirical Semantics

In [10], we proposed a new model for communication baseérmpirical semantics
The basic idea behind this model is that communication obt&s meaning through
the interactions within which it occurs. The central ingtient to establish this meaning
are the expectations constructed by agents participating dbserving an interaction.
These expectations “contain” the current semantics of conication in a given social
context and their evolution over time mirrors the evolutidmeaning.

To make things a bit more concrete, we quote the followindre¢elements of the
empirical semantics approach from [10]:

1. The meaning of a message can only be defined in termsafrisequencese. the
messages and actions that are likely to follow it. Two lewélsffects can be dis-
tinguished:

(a) The immediate reactions of other agents and oneselétm#ssage.

(b) The “second-order” impact of the message on the expentsiructures of any
observer, i.e. the way the utterance alters the causal neb@deimmunicative
behaviour.

2. Any knowledge about the effects of messages must be dérivm empirical ob-
servation. In particular, a semantics of protocols caneadiablished without tak-
ing into account how the protocols areedin practice.

3. Meaning can only beonstructedhrough the eyes of an agent involved in the inter-
action, it strongly relies on relating the ongoing commatin to the agent’s own
goals.



Fig. 1. Empirical semantics and its evolution

In other words, our view is that the semantics of communicatian be reduced to
its pragmatics as perceived by agents who are using comatioric While this is an
overtly restrictive interpretation of meaning for generammunication, it can be very
useful for practical agent reasoningapenmultiagent systems, in which “normative”
semantics (e.g. commitment-based speech act semantigsrjag be proven wrong
by others’ inability or unwillingness to comply with themhiE is because of the fact
that it can be used aswinimal-assumptiomethod for reasoning about communication
which at least ensures that the agent will not compromisewiswelfare for the sake
of complying with a pre-specified semantics (when othersata@amply, either).

Generally speaking, if the meaning of an utterance (or sexpief utterances) lies in
the expected consequences, what is needed to capture genimatmodel of causality
and correlation that allows to predict these consequermrea fjiven (sequence of)
utterance(s). This model will then be adapted with new olzg&Ems so as to enable the
agent to extrapolate past correlations into the future.

Expectation networkfs, 7] have been suggested as a very general method of cap-

turing this kind of expectations that relies on a probatidimodel of “continuations”
between interrelated messages derived from statisticsgrohtion. Instead of going
into the details of this formalism, we sketch the basic idsmg the illustrations of
figure 1. In this figure, nodes represent communicative astiedges correlations be-
tween them (variable line width is used to indicate diffeidggrees of correlation). The
shaded node sequence is used to describe the recently etbpention of the network,
e.g. an ongoing conversation. The decreasingly dark shadgzhs of predicted future
actions denote that predictions regarding “distant” evemé increasingly vague. The
transition from the situation shown on the left to that on tiglat occurs upon obser-
vation of a new action that is appended to the currently eglepath. With this new
observation, the correlation between the message prdyiobhserved and the current
message increases compared to alternatives that did nat occ

Taking the standpoint of empirical semantics enables antageadapt his expec-
tations with new communication experience and to adjusiohis behaviour to the
expected reactions of others. However, this conceptual sfesemantics does not say
anything about how agents can use such expectations irigeract



3 The InFFrA Architecture

The Interaction Frames and Framing ArchitectiméFrA [11] has originally been de-
veloped as a meta-framework for social reasoning architestbased on the notions of
“interaction frames” and “framing”.

The central idea behindFFrA is to employ models of classes of interaction called
interaction frames to guide agents’ social behaviour. Thegss of applying frames ap-
propriately in interaction situations is referred to agifiag. In the abstract architecture
INFFrA, a frame is a data structure that contains information about

— the possible courses of interaction (so-catlejectorieg characteristic to a partic-
ular frame,

— roles and relationshipbetween the parties involved in an interaction of this glass

— contextswithin which the interaction may take place, and

— beliefs i.e. epistemic states of the interacting parties.

In computational terms, the trajectory model is usually@esentation of a set of ad-
missible message and action sequences, while the latter ¢hements can be collapsed
into a single set of logical constraints which then have todr#fied using the agent’s
internal belief state (usually represented by the congfraknowledge base).

INFFrA makes use of a number of frame-based data structures to cidhduwsteps
necessary for framing:

— the active frame the unique frame currently activated to describe the ebepec
course of events,

— theperceived framgan interpretation of the currently observed state of effai

— thedifference modetontaining the differences between perceived frame ariakact
frame,

— thetrial frame, used when alternatives to the current frame are sought for,

— and theframe repositoryin which the agent locally stores its frame knowledge.

Using these data structures, lafrFrA agent performs the following steps in each rea-
soning cycle:

1. Interpretation & Matching:Update the perceived frame and compare it with the
active frame.
2. Assessmenfissess the usability of the active frame in terms of
(i) adequacy (compliance of frame conditions with the corsituation),
(i) validity (the degree to which the active frame’s trajgy matches the perceived
encounter) and
(i) desirability (depending on whether the implicationfthe frame correspond to
the agent’s private goals).
3. Framing decision:If the active frame seems appropriate, continue with 5. Else
proceed with 4 to find suitable alternatives.
4. Adjustment/Re-framingSearch the frame repository for better frames. “Mock-
activate” them as trial frames iteratively and go back tofInd suitable frame
is found, end the encounter.
5. EnactmentDerive action decisions by applying the active frame.
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Fig. 2. Overview of the framing process

This entire (simplified) framing process is depicted in fggQr It should be emphasised
that InFFrA only describes the social layer of agent reasoning; in ot@@btain an
integrated agent architecture, it has to be combined withitatde component for lo-
cal rational reasoning (e.g. a BDI [8] reasoner), so thatailpent’s private goals and
preferences can be taken into consideration duringaisessmerghase. Looking at
InFFrA from an empirical semantics point of view, we can re-intetghe frames in
an agent’s repository as the expectations about commioncadtterns that the agent
holds. This provides us with a reasoning scheme for pracgssipectations which is
missing in the pure “expectation-modelling” view of exps@in networks laid out in
the previous section. Moreover, if we ensure that frame eptions are adapted with
new experiencdnFFrA is ideally suited for applying pre-specified communicaai
terns (e.g. traces of protocol execution as envisioneddydésigner) in a goal-oriented
fashion while making sure that others’ (or one’s own) deg@from these normative
patterns influences the expectations about validity ardagice of these patterns in the
future.

4 A Formal Model of Frame-Based Empirical Semantics

To obtain a formal computational model for representing seasoning about com-
municative expectations based miFFrA, we have developedf’inFFrA, a simple yet
expressive model for describing two-party, discrete,tiaking encountersvhich can
be thought of as conversations between two agefitscFrA uses a sequence of mes-
sage patterns (i.e. messages containing variables) aajéstbry model specifying the
surface structure of the encounters described by a pati¢tdme, together with a
list of substitutiongo capture concrete values of these variables in previagheri-
enced interactions. Each substitution also corresporalsét of logicatonditionsthat
were required for and/or precipitated by execution of thgttory in the respective en-
counter. Finallytrajectory occurrencendsubstitution occurrenceounters record the



frequency with which the frame has occurred in the past. Btiya frame inm’InFFrA
is defined as follows:

Definition 1. Aframeis atupleF = (T,0,C, hr, ho), where

— T = (p1,p2,...,pn) is a sequence of message pattesn& M, thetrajectoryof

the frame,
- 0= (¥,...,9,) is an ordered list ofvariable substitutions
- C = {c1,...,cm) is an ordered list ofcondition setssuch thate; € 2¢ is the

condition set relevant under substitution,

— hy € N7l s atrajectory occurrence countlist counting the occurrence of each
prefix of the trajectoryl” in previous encounters, and

— he € N9l s asubstitution occurrence countist counting the occurrence of each
member of the substitution liét in previous encounters.

In this definition,M is a language of speech-act [1] like message and actiorrpatié
the formperf(A, B, X) ordo(A4, Ac). In the case of messages (i.e. exchanged textual
signals),perf is a performative symbolkgquest, inform, etc.),A and B are agent
identifiers or agent variables and is the propositional content of the message taken
from a logical languagé. In the case of physical actions (i.e. actions that mantpula
the physical environment) with the special “performatige; Ac is the action executed
by A (a physical action has no recipient as it is assumed to benaddsle by any agentin
the system). BotlX and Ac may contain non-logical substitution variables that ae=ius
for generalisation purposes (as opposed to logical “cantanables” used by agents
to indicate quantification or to ask for a valid binding) . Wether useM,. C M to
denote the language of “concrete” messages that agents cemimunication (and that
do not contain variables other than “content variables”).

To illustrate these concepts and to explain the semanteframe, we will consider
an example of how the FIPA contract net protocol [4] can bdémgnted invInFFrA.
For ease of presentation, we will wril&(F’), C'(F'), etc. to denote the respective el-
ements of a framé” and use the compact notati¢h, (F'), C(F'), ©(F)) instead of
(T,C,0,hr,ho), where

hr(F)[1 hr(F)[2 hr(F)[n
To(F) <MW, R e

and _
On(F)[i] =" O(F) ]

Table 1 shows an interaction frame for the success path efihigact net protocol, the
following should be noted about this example:

— As can be seen, the first condition set (corresponding to rinetye substitution)
contains feasibility preconditions of the respective perfatives (in FIPA-SL [3]
with additional timestamps of the formi indicating at which trajectory step a
condition has to hold), as far as they are relevant for fraxeewation.

— Definition 1 does not constrain which conditions are to beestdor a specific
enactment of a frame (even allowing for empty condition)setsd the task of ex-
tractingrelevantor evencrucial information from the agent’'s knowledge is clearly



F., = < < 3, ctp(Ai, A2, (R, P))) 3 propose(Az, A1, Q)
3, accept- proposal(Ai, A2, Q) 2, do(A2, A1, R)>7
(LX(P=Q)=,
—Bref 4, (any X Ia, Done(R, P)) A ~Ba, I, Done(R) @1,
Ba,Ia,Done(R,Q) @2,
Ba,Ia,Done(R,Q) A Ba,I1a,Done(R,Q) @Q3,
Ba,Q @4}, {}, {damaged(tir@s)}>,
(=1
EN [A1/agent,, A2/ agenty, P/priceOf (tire, X),
Q/priceOf (tire, 75), R/ sell(tire,4)],

4 [A1/agents, Az /agent,, P/priceOf (tire, X),
Q/priceOf (tires, 400), R/replace(tires)]>>,

Table 1.Interaction frame for the success path of the FIPA contratprotocol

nontrivial. However, the reasoning framework to be defimettié following section
primarily uses conditions to identify similarities in engters, while expectation
is drawn from utilities obtained during frame execution king this approach less
sensitive to the way conditions are selected.

As for the different failure cases covered by the contratpnetocol, these could ei-
ther be modelled implicitly by using timeouts and interprgt'silence as disapproval”
or explicitly by virtue of additional frames. For exampleetframe of table 2 models
the refusal to submit a proposal.

Together,F,,, and F,- capture the following observations about previous encoun-
ters:

— Five encounters started with a message matchifig A1, Az, (R, P)), three of
them continued with a proposal by, the other two with a refusal. In two of the
former three cases, the proposal was accepted bgnd the respective physical
action carried out byl,.

— One encounter has terminated after the second message acomtasued with a
message not matchirgcept- proposal(A4;, A2, Q).

— For four of the five encounters, substitutions are availabieo contracts were
made, one about the delivery of four tires for a pricerdfeach, one about the
replacement of a set of tires fé00. Two calls for proposals for the delivery of four
tires were refused because no tires were available (whiahgisneralisation over
two encounters, leaving, unspecified).

To usenInFFrA frames for the prediction of future encounters, howeverneed
a formal model of theiprospectivaather tharretrospectivesemantics. Here, the idea
is (as in [10]) to use an entire repositafy = {Fi,..., F,} of frames, each repre-
senting a set of message/action sequences by virtue ofisétstions that can still be



F,.,. = << 3, ctp(Ai, Az, (R, P)) 2, refuse(Ag,Al,Q)>,

({—Bref 4, (any X 14, Done(R, P)) A —~Ba,Ia,Done(R) @1,
By, (—Feasible(R) A Q A ~Done(R) A —~la, Done(R)) @2},
{Ba, (inStock(tire)) @1}>7

(=11
2 [A1/agent1, P/priceOf (tire, X),

Q/—inStock(tire), R/ sell(tire,4)]

Table 2. Interaction frame modelling the refusal to submit a propaséhe FIPA contract net
protocol

applied to its trajectory. Given ancounter prefixi.e. a sequence of messages already
uttered in the current encounter, and the agent's currdigfistate, we can filter out
those paths that either (a) do not match the encounter preflx)are labelled with
logical conditions not satisfied under current knowledgesh@ontent. Considering the
remaining (i.e. relevant) paths, we can then assign prtitebito all the possiblen-
counter continuationgor postfixes) using the counter valuesfofe F. Additionally,
domain-dependemiase-based reasonirj§] techniques can be applied by introducing
a similarity measure on messages, such that differentiostaof a postfix pattern have
different probabilities depending on their similarity tvppast enactments of the respec-
tive frame. HenceF represents a simplified version of an expectation netwakhhs
the form of a tree.

More formally, letw € M the encounter prefix and
Y fized (F, w) = unifier(w, T(F)[1:|w|])

the most general unifier (MGU) ofv and the corresponding trajectory prefix
T(F)[1:|w|] of F (whereunifier(-, ) returns the most general unifier for two message
patterns or sequences thereof loif they cannot be unified).

For a given knowledge bagéB < 2¢ describing the belief state of an ageAtX is
assumed to be encoded in the same propositional langliag¢he content of messages
for reasons of simplicity), this allows us to define

Oposs (F, KB, w) = {0309 = Vfigea(F, w)¥' A Ji. KB = Cli]9}

as the set of substitutions sibssibleunderF’, KB, andw. The elements a®,,,s, are
extensions of/ ;.4 for which at least one condition iff (F') is satisfiedt

1 We use the notatiof here for the result of applying to each element of a list or sét and
99’ for the substitution that results from applyirg after 9. Further, we implicitly assume
that only minimal substitutions are considered féf, only replacing variables that actually
occur inT'(F) or in someC'(F)[i].



For a giversimilarity measurer : M* x M* — R on message pattern sequences,
we can define

similarit frequenc relevance
(F)| Y i

——
o, F) = 3 G(T(F)9,T(F)O(F)[i]) he(F)li] «(F.9, KB)

i=1

to assess to which extetitis “applicable” toF. In this definition,he (F)[i] is used to
take the frequency of a past condition/substitution intooant ande; expresses how
relevant a particular frame conditi@is] is in determining the applicability af.? This
quantity can be used to derive a conditional probabilityritigtion over the different
substitutiong? F' may be enacted under:
PUSIF ) {a-a(ﬂ,F) i 0 € Oposs (F, KB, w) @
otherwise

for some normalisation constamt Finally, combining this formula with the frequency

ho (F)[|T(F)|] i : .
P(F|w) - {ZF’EFY'anZ/y(T(F’)[IJw]yw) hr (FO[|T(F")]] if umfy(T(F)[l|w|], w)

0 else

of F" matching any past encounter starting witlallows us to compute theontinuation
probability with which an encounter that started withwill be concluded withw':

P(w'|w) = > P(I|F,w)P(F|w)
FeF,ww'=T(F)?9

Looking back at figure 1, this equation defines a probabilitrithution for the
possible continuations of an encounter given a currenh"pathe expectation network
induced byZ. Next, we will show how this semantics can be used to condaiiinal
reasoning about communicationifinFFrA.

5 Reasoning and Making Decisions About Communication

Based on the formal model presented in the previous sec¢htiergeneral principles of
INFFrA can be concretised and embedded into an agent architeoterelow agents
with the ability to reason and make decisions about comnatioic. To illustrate how

this is done, we will again go through the individual stepshe abstract reasoning
cycle depicted in figure 2.

2 A simple definition ofc;, considering only those conditions currently satisfiedoissxample
given by
1 if KB = C(F)[HO(F)[i]¢

i(F,9, KB) = .
il ) {O otherwise.



Interpretation and Matching/AssessmeAt the beginning of each reasoning cycle,
the knowledge bas&B and the encounter prefix are updated from the peer’s last
utterance.

As for matching and assessment, the agent che@®s,if; (Fi,, KB, w) # 0, i.e. if
the trajectoryl'( F,,) of the active framé’, matchesv and the remaining steps f F,,)
can still be executed undéfB. Considerations about theesirability of F,, could also
play a role in the framing decision, and a possible definifansuch a desirability
criterion will be given in our description of frame enactrhen

Returning to the example of the previous section, we consihe encounter
with ¥ = {F.,,F.} and F, = F., for both agents and prefiw =
ctp(agent,, agent, (sell(tire, 1), priceOf (tire, X))), so thatagent, can success-
fully match F;, againstw. If for exampleagent, did only sell tires in fours, executability
of F,, would still fail and require a re-framing.

Adjustment/Re-Framind he idea behind grouping different courses of interactida i
frames is to exploit the fact that (usually) similar typesmi€raction (e.g. negotiation
dialogues, contracting, etc.) exist which differ only i tbpecific content of messages,
but not in what they achieve for the interacting partiessTiierarchical view enables
agents to optimisavithin the current frame while disregarding other frames during a
conversation. However, if the active frame cannot be cduoigt any longer, the search
space for appropriate continuations has to be expanded.

In this case, a variety of frame selection heuristics can e uo find suitable
alternatives. In our implementation, experimental ressiat which are presented in the
following section, we use hierarchical reinforcement iéiag techniques [13] to learn
an optimal frame selection strategy over time. Also, we troics new frames through
concatenation in a planning-like manner to achieve themalgyoal of a conversation
that went awry. An extensive treatment of the resulting ieckure can be found in [2].

Atthe end of an encounter —in order to maintain a concise hufgast interactions
—the active frame is augmented by a substitution that unifi¢sajectory withw, along
with a set of conditions that were required for or precigithlby the execution.

Enactmentlf the active frame contains no further steps, the agentlgitepminates the
encounter, as is the case if no active frame could be fours#, Bie next message or
action is chosen by applying the locally optimal substitnti* to the next step of the
active frame’s trajectory.

To determined*, we assume that the agent’s preference towards differeridwo
states is expressed by means of a real-valiiity functionu : M* x 2 — R, where
u(w, KB) is the utility associated with a message sequenbeing executed for initial
knowledge bas&B.

Since some variables af* will be bound by the agent himself, while concrete
values for others will be “selected” by his peer with a certednditional probability,
the optimal substitution is defined as the one with the higdsgsecteditility. Normally,
this notion of expected utility will also be used during framssessment to determine
the desirability of a specific substitution or entire frarRer example, one could force
a re-framing unless executing the postfix of the active framaer the most desirable
substitution yields a positive utility.



If we write ©, and©,, for the sets of possible substitutions the agent and hisipeer
the current encounter can apply, respectively, the exgedtkty of executing a frame
F underd, € O, is given by

Elu(0s|F,w,KB)] = Y u(postfiz(T(F),w)d,, KB) - P(0,|,, F,w),
9,€0,

wherepostfiz (T (F),w) is the postfix ofF corresponding to prefixy (which can be
determined by applying the most general unifierond the corresponding prefix of
T(F) to the respective rest) arfel(d, |95, F, w) is the probability with which the peer
will conditionally choose some substitutialy € ©, depending on the agent’s choice
Yy € O,

An approximation ofP (9, |9, F, w) can be computed from the past cases stored in
F'. Using Bayes’ rule and applying equation 1 to both numeranar denominator, we
can approximate

U(ﬁﬁzed (F, U))19519p, F)
P09, F,w) =
(Op[Js, F, w) S 00 iged (F, w)0,9, F)

if O fged (F, w)0s0, € Oposs(F, KB, w) (and 0, else). By means of standard expected
utility maximisation, the optimal substitutia#* is then given by

9 (F,w, KB) = arg max Elu(9s|F,w, KB)].

Concluding the above example under the assumption that-framéng was nec-
essaryagent,; Now has to select an appropriate proposal. That is, eactecdléments
of ©,,ss yields a different price for a tire, and the search for thet babstitution is a
search for the highest possible price (@asill usually increase with higher profit) such
thatagent, will still accept (as the probability for the accept will wbly decrease with
an increasing price) and will be guided by similar past cateied inO(F.,,), i.e. by
past prices for tires.

6 Experimental results

In order to show their performance in practice, the concppsented so far have been
implemented and tested in the multiagent-based link exgphagstenLIESON [9]. In
this system, agents representing Web sites engage in coitation to negotiate over
mutual linkage with the end of increasing the popularity né's own site and that of
other preferred sites.

Available physical actions in this domain are the additiad deletion of numeri-
cally rated links originating from one’s own site and the rificdtion of ratings (where
the probability of attracting more traffic through a link égls on the rating value).

LIESON provides a highly dynamic and complex interaction testtoedHe follow-
ing reasons:

— Agents only have a partial and incomplete view of the linkwaek. In particular,
agents engage in non-communicative goal-oriented aatidrefween encounters,
so that the link network (and hence the agents’ utility giarg may change while
a conversation is unfolding.



— The number of possible link configurations is vast, and agyeah only predict
possible utilities for a very limited number of hypothetifigture layouts.

— There is no notion of commitment — agents choose frames itf-inserested way
and may or may not execute the physical actions that resutt them. Also, they
may undo their effects later on.

LIESON agents consist of a non-social BDI [8] reasoning kernelphajects future link
network configurations and prioritises goals accordingil@yconsiderations. If these
goals involve actions that have to be executed by other agéwem’ InFFrA component
starts a framing process which runs until the specific goal heen achieved or no
adequate frame can be found. We report on experiments irhvalgients were equipped
with frames with the following six trajectories:

request(4, B, X) — accept(B, A, X) — confirm(A, B, X) — do(B, X)

request(A4, B, X) — propose(B, A,Y) — accept(A4, B,Y) — do(B,Y)

request(A4, B, X) — propose — also(B, A,Y) — accept(4,B,Y) —
do(B,X) — do(A,Y)

request(4, B, X) — reject(B, A, X)

request(A4, B, X) — propose(B, A,Y) — reject(B,A,Y)

request(A4, B, X) — propose — also(B, A,Y) — reject(B, A,Y)

The first three frames allow for accepting to perform a retpeeactionX, making a
counter-proposal in whicl” is suggested instead &f, or usingpropose — also to
suggest thaB3 executesX if A agrees to execufg. The last three frames can be used
to explicitly re ject a request or proposal. In that, andY are link modification ac-
tions; each message is available in every state and incurst éhat is almost negligible
compared to the utilities gained or lost through linkagéomst (yet high enough to en-
sure no conversation goes on forever). Also, agents caryslgend st op action to
indicate that they terminate an encounter if they cannotdinditable frame.

After their termination, encounters are stored in the frafnem which
they have originated. For example, ageni would store the encounter
request(ay, as, add(az,a1,2)) — reject(ai,as,add(as,a1,2)) by adding a
substitution[A/a, B/a2, X/add(az,a1,2)] to the respective frame together with
an automatically generated list of conditions that wereuiregl for physical action
execution.

As state abstraction, we use generalised lists of statemefitthe form
{T}{I,R},{I,R,T},{+,—,7}) representing the physical actions talked about in
an encounter] and | stand for a positive or negative link modification (i.e. addi
tion/deletion of a link or an increase/decrease of its gatialue),// R for the initiator
and responder of the encounté&rfor a third party;+/—/? indicates whether the (learn-
ing) agent likes, dislikes or doesn’t know the target sitehaf link modification. For
example, ifa; andas talk aboutdo(ay, deleteLink (a1, as)) in an encounter initiated
by a1 (while the learning agent; is the responder and likes’s site) this is abstracted
to |(I,T,+). If in the same conversatian, suggests to modify his own link toward



a1 (whom he does not like) from a rating value bfo 3, the state (visubjecj of the
encounter becomdd (I, 7T, +), T(R, I, —)}. The intuition behind this state abstraction
method is to capture, in a generalised form, gloal of the conversation that can cur-
rently be realised while at the same time reducing the statessto a reasonable size.

Figure 3 shows a comparison for a system with ten agents witbemtical profile
of private ratings (preferences) towards other agents(plots show the performance
of the best and the worst agent in the group as well as thegwetdity over all agents).
In the first plot, agents employ BDI reasoning and addititysénd requests to others
whenever they favour execution of someone else’s actioordow to their BDI queue.
These requests are then enqueued by the recipient as if Héhleadht of” executing
the respective action himself. Thus, it depends on the ietip goal queue and on his
utility considerations whether the request will be honduwenot. As one can see, after
a certain amount of time agents do no longer execute any dddtiens requested by
others, and cannot find any profitable action to execute tales either. The system
converges to a stable state.

The second plot shows the results of a simulation with theessgtup as above but
usingm’InFFrA agents. Again, agents issue requests whenever they igléifsome-
one else could do something useful. After this initial mgssdhe framing procedure
takes over. Quite clearly, despite the fact that there iseatgr variation in maximal,
minimal and average agent utility, the average and the lgesttgperform significantly
better than in the BDI case, while the weakest agent perfurstas good as in the BDI
case on the average.

While on first glance the performance wlinFFrA agents might not be strikingly
different from those using plain BDI, it should be noted tkizé¢ results establish a
lower bound on the performance gained by usifigFFrA. In environments with (pos-
sibly non-benevolent) peer agents showing non-statiobehaviour, the performance
of agents using prespecified communication protocols amasg) a fixed semantics of
communication can become arbitrarily bad, whifenFFrA includes the ability to learn
what to expect from a given peer in a specific interactiorasitun. However, additional
experiments will be necessary to allow for any quantitasizéements.

Yet another interesting interpretation can be drawn froenfdtt that the average
utility of m’InFFrA agents lies within the range of the two horizontal lines ie tot.
These denote the average utilities for two special linkaggigurations: the lower one
of the two corresponds to a fully connected linkage graphwhiich each agent (hon-
estly) displays the ratings of his out-links (i.e. reveaksthue opinions about others).
The slightly higher utility shown by the upper line is attaéhif agents do not lay any
links toward agents they dislike. It is an interesting pmtypef the utility function used
in LIESON, that acting “politically correct” is slightly better thdreing honest. The fact
that agent utilities evolve around these benchmarks itectinat they truly strive to
make strategic communication moves and exploit the adgestaf concealing certain
beliefs.
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7 Conclusions

In this paper we have presented an architecture for reag@iinut communication
patterns within the framework of empirical semantics. Frpractical point of view,

this contributes to the “agent side” of ACL research, asfiersf methods to construct
and implement agents that are able to deal with given spatidits of rules that govern
the communication in a system. Three features are partigutaeresting about our
approach:

1. Them'InFFrA frames used in our formal model combine information aboet th
surface structure of communication sequences, logicastcaints (frame condi-
tions) and empirical data (counters). This allows for gifesadibility with respect
to whatis defined in commonly agreed protocols, semantics, etcekample, in
non-exploitable protocols as those used in mechanismmlgsigay suffice to just
specify admissible message sequences (because it doesttet what the agents
think, for example), while other types of interactions sashcontracting may re-
guire commitment rules, descriptions of agents’ mentaéstaetc.

2. Agents are capable of exploiting past communication egpee. Thus, they are
able to “start out” with a predefined set of patterns and to tiesvhich degree
their peers comply with them, which offers a major advantagepen systems
where adherence to protocols, truthfulness constraitdscannot be guaranteed.
In particular, this paves the way for the usenséchine learningnethods (as we
have done) that make minimal assumptions about others'vimivaand simply
accumulate communication knowledge as they go.

3. The architecture combines decision-theoretic (prdiséib) reasoning methods
with symbolic communication. This constitutes an impotteontribution to the
practical design of communicating agents, but also arairstep to explore the spe-
cial character of communication as opposed to generalradtig10], for example,
we have argued for trading off optimality against predidiahin communication
so that more reliable communication patterns can occundJdecision theory as
a firm foundation for rational reasoning can help formatisivhat agents (should)
do in communication and whether and in which way this diffeosn the models
used in, e.g. game theory and economics.

A major advantage of our approach is that it allows us to combiie decision-theoretic
power of RL models with the knowledge-based aspects of slimagent communica-
tion, interaction protocols and ACL research in generals lthis aspect that makes
rational action and learning possible for high-level agenhitectures that employ log-
ical reasoning.

In the future, we intend to look at more complex models ofriatéion frames with
trajectories more expressive than simple sequences. Msayant to investigate to
which degreen’InFFrA agents are capable of exchanging meta-frame information to
reach consensus about which frames to use. Finally, a lotook weeds to be done
on automatically transforming ACL and interaction protisecifications into readily
usablem’InFFrA frames.
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