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Abstract. Given a specification of communication rules in a multiagentsystem
(in the form of protocols, ACL semantics, etc.), the question of how to design
appropriate agents that can operate on such a specification is a very important
one. Inopen systems, the problem is complicated even further by the fact that
adherence to such a supposedly agreed specification cannot be ensured on the
side of other agents.
In this paper, we present an architecture for dealing with communication patterns
that encompass both a surface structure of admissible message sequences as well
as logical constraints for their application. This architecture is based on theInF-
FrA social reasoning framework and the concept of interaction frames. It assumes
an empirical semanticsstandpoint by which the meaning of communication is
pragmatically interpreted through decision-theoretic optimality considerations of
a reasoning agent. We introduce the abstract architecture and a formal model and
present experimental results from a complex domain to illustrate its usefulness.

1 Introduction

The process of designing agent communication languages, interaction protocols and
conversation policies is primarily concerned with what goes onbetweenrather thanin-
sideagents. It is therefore only natural that ACL research has rarely attacked the prob-
lem of how to build agents in accordance with a given set of semantic rules, protocol
structures, etc.

In the light of openmultiagent systems, in which agents are not controlled by a
central entity or pursue common goals and need not be benevolent, this design problem
is complicated even further. Not knowing how other agents will apply a given spec-
ification concerning the semantic and pragmatic propertiesof the provided means of
communication, the question for an agent is not only how to apply it by himself, but
also whether to comply with the supposedly agreed specification at all.

This is exactly the issue this paper deals with:Given the specification of a number of
communication patterns together with logical constraintsfor their application, how can
we design an agent that uses them appropriately to further his own goals, not knowing
whether other agents will comply?As a possible answer to this question, we propose
an agent architecture based on the concept ofempirical semantics[10]. This architec-
ture can be seen as a “communication reasoning” component that takes as inputs the



belief state and utility function of an agent as well as a set of models of communica-
tion patterns (so-calledinteraction frames) and outputs communication decisions. The
architecture is characterised by two essential features:

1. It uses decision-theoretic principles to make optimal action decisions while taking
previous communicationexperienceinto account.

2. It combines empirical knowledge witha priori specified logical constraints for
communication patterns.

Most importantly, the reasoning heuristics used in this architecture are computationally
tractable and can be implemented directly. We thus contribute to the task of engineering
agents that are able to operate flexibly on a given set of communication protocols and
semantic rules and under the assumption that the empirical semantics view is followed.

The remainder of this paper is structured as follows: In section 2 we review the
foundations of the empirical semantics approach. Subsequently, we introduce theInF-
FrA social reasoning framework that the proposed architectureis based on. Section 4
establishes a formal model of empirical semantics calledm

2

InFFrA that usesInFFrA
frames to capture probabilistic expectations about communication. In section 5 we then
present the apparatus necessary for making decisions in this model. Experimental re-
sults from a concrete implementation of the model in a complex domain are given in
section 6 to underline its practical usefulness. Section 7 rounds up with some closing
remarks and conclusions as well as an outlook to future work.

2 Empirical Semantics

In [10], we proposed a new model for communication based onempirical semantics.
The basic idea behind this model is that communication obtains its meaning through
the interactions within which it occurs. The central instrument to establish this meaning
are the expectations constructed by agents participating in or observing an interaction.
These expectations “contain” the current semantics of communication in a given social
context and their evolution over time mirrors the evolutionof meaning.

To make things a bit more concrete, we quote the following central elements of the
empirical semantics approach from [10]:

1. The meaning of a message can only be defined in terms of itsconsequences, i.e. the
messages and actions that are likely to follow it. Two levelsof effects can be dis-
tinguished:
(a) The immediate reactions of other agents and oneself to the message.
(b) The “second-order” impact of the message on the expectation structures of any

observer, i.e. the way the utterance alters the causal modelof communicative
behaviour.

2. Any knowledge about the effects of messages must be derived from empiricalob-
servation. In particular, a semantics of protocols cannot be established without tak-
ing into account how the protocols areusedin practice.

3. Meaning can only beconstructedthrough the eyes of an agent involved in the inter-
action, it strongly relies on relating the ongoing communication to the agent’s own
goals.



Fig. 1.Empirical semantics and its evolution

In other words, our view is that the semantics of communication can be reduced to
its pragmatics as perceived by agents who are using communication. While this is an
overtly restrictive interpretation of meaning for generalcommunication, it can be very
useful for practical agent reasoning inopenmultiagent systems, in which “normative”
semantics (e.g. commitment-based speech act semantics [12]) may be proven wrong
by others’ inability or unwillingness to comply with them. This is because of the fact
that it can be used as aminimal-assumptionmethod for reasoning about communication
which at least ensures that the agent will not compromise hisown welfare for the sake
of complying with a pre-specified semantics (when others do not comply, either).

Generally speaking, if the meaning of an utterance (or sequence of utterances) lies in
the expected consequences, what is needed to capture semantics is a model of causality
and correlation that allows to predict these consequences for a given (sequence of)
utterance(s). This model will then be adapted with new observations so as to enable the
agent to extrapolate past correlations into the future.

Expectation networks[6, 7] have been suggested as a very general method of cap-
turing this kind of expectations that relies on a probabilistic model of “continuations”
between interrelated messages derived from statistical observation. Instead of going
into the details of this formalism, we sketch the basic idea using the illustrations of
figure 1. In this figure, nodes represent communicative actions, edges correlations be-
tween them (variable line width is used to indicate different degrees of correlation). The
shaded node sequence is used to describe the recently observed portion of the network,
e.g. an ongoing conversation. The decreasingly dark shadedregions of predicted future
actions denote that predictions regarding “distant” events are increasingly vague. The
transition from the situation shown on the left to that on theright occurs upon obser-
vation of a new action that is appended to the currently relevant path. With this new
observation, the correlation between the message previously observed and the current
message increases compared to alternatives that did not occur.

Taking the standpoint of empirical semantics enables an agent to adapt his expec-
tations with new communication experience and to adjust hisown behaviour to the
expected reactions of others. However, this conceptual view of semantics does not say
anything about how agents can use such expectations in practice.



3 The InFFrA Architecture

The Interaction Frames and Framing ArchitectureInFFrA [11] has originally been de-
veloped as a meta-framework for social reasoning architectures based on the notions of
“interaction frames” and “framing”.

The central idea behindInFFrA is to employ models of classes of interaction called
interaction frames to guide agents’ social behaviour. The process of applying frames ap-
propriately in interaction situations is referred to as framing. In the abstract architecture
InFFrA, a frame is a data structure that contains information about

– the possible courses of interaction (so-calledtrajectories) characteristic to a partic-
ular frame,

– roles and relationshipsbetween the parties involved in an interaction of this class,
– contextswithin which the interaction may take place, and
– beliefs, i.e. epistemic states of the interacting parties.

In computational terms, the trajectory model is usually a representation of a set of ad-
missible message and action sequences, while the latter three elements can be collapsed
into a single set of logical constraints which then have to beverified using the agent’s
internal belief state (usually represented by the contentsof a knowledge base).

InFFrA makes use of a number of frame-based data structures to conduct the steps
necessary for framing:

– the active frame, the unique frame currently activated to describe the expected
course of events,

– theperceived frame, an interpretation of the currently observed state of affairs,
– thedifference modelcontaining the differences between perceived frame and active

frame,
– thetrial frame, used when alternatives to the current frame are sought for,
– and theframe repository, in which the agent locally stores its frame knowledge.

Using these data structures, anInFFrA agent performs the following steps in each rea-
soning cycle:

1. Interpretation & Matching:Update the perceived frame and compare it with the
active frame.

2. Assessment:Assess the usability of the active frame in terms of
(i) adequacy (compliance of frame conditions with the current situation),
(ii) validity (the degree to which the active frame’s trajectory matches the perceived

encounter) and
(iii) desirability (depending on whether the implicationsof the frame correspond to

the agent’s private goals).
3. Framing decision:If the active frame seems appropriate, continue with 5. Else,

proceed with 4 to find suitable alternatives.
4. Adjustment/Re-framing:Search the frame repository for better frames. “Mock-

activate” them as trial frames iteratively and go back to 1; if no suitable frame
is found, end the encounter.

5. Enactment:Derive action decisions by applying the active frame.
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Fig. 2. Overview of the framing process

This entire (simplified) framing process is depicted in figure 2. It should be emphasised
that InFFrA only describes the social layer of agent reasoning; in orderto obtain an
integrated agent architecture, it has to be combined with a suitable component for lo-
cal rational reasoning (e.g. a BDI [8] reasoner), so that theagent’s private goals and
preferences can be taken into consideration during theassessmentphase. Looking at
InFFrA from an empirical semantics point of view, we can re-interpret the frames in
an agent’s repository as the expectations about communication patterns that the agent
holds. This provides us with a reasoning scheme for processing expectations which is
missing in the pure “expectation-modelling” view of expectation networks laid out in
the previous section. Moreover, if we ensure that frame conceptions are adapted with
new experience,InFFrA is ideally suited for applying pre-specified communicationpat-
terns (e.g. traces of protocol execution as envisioned by the designer) in a goal-oriented
fashion while making sure that others’ (or one’s own) deviance from these normative
patterns influences the expectations about validity and relevance of these patterns in the
future.

4 A Formal Model of Frame-Based Empirical Semantics

To obtain a formal computational model for representing andreasoning about com-
municative expectations based onInFFrA, we have developedm2

InFFrA, a simple yet
expressive model for describing two-party, discrete, turn-takingencounterswhich can
be thought of as conversations between two agents.m

2

InFFrA uses a sequence of mes-
sage patterns (i.e. messages containing variables) as its trajectory model specifying the
surface structure of the encounters described by a particular frame, together with a
list of substitutionsto capture concrete values of these variables in previouslyexperi-
enced interactions. Each substitution also corresponds toa set of logicalconditionsthat
were required for and/or precipitated by execution of the trajectory in the respective en-
counter. Finally,trajectory occurrenceandsubstitution occurrencecounters record the



frequency with which the frame has occurred in the past. Formally, a frame inm
2

InFFrA
is defined as follows:

Definition 1. A frameis a tupleF = (T, Θ, C, hT , hΘ), where

– T = 〈p1, p2, . . . , pn〉 is a sequence of message patternspi ∈ M, thetrajectoryof
the frame,

– Θ = 〈ϑ1, . . . , ϑm〉 is an ordered list ofvariable substitutions,
– C = 〈c1, . . . , cm〉 is an ordered list ofcondition sets, such thatcj ∈ 2L is the

condition set relevant under substitutionϑj ,
– hT ∈ N

|T | is a trajectory occurrence counterlist counting the occurrence of each
prefix of the trajectoryT in previous encounters, and

– hΘ ∈ N
|Θ| is asubstitution occurrence counterlist counting the occurrence of each

member of the substitution listΘ in previous encounters.

In this definition,M is a language of speech-act [1] like message and action patterns of
the formperf(A, B, X) or do(A,Ac). In the case of messages (i.e. exchanged textual
signals),perf is a performative symbol (request, inform, etc.),A andB are agent
identifiers or agent variables andX is the propositional content of the message taken
from a logical languageL. In the case of physical actions (i.e. actions that manipulate
the physical environment) with the special “performative”do, Ac is the action executed
byA (a physical action has no recipient as it is assumed to be observable by any agent in
the system). BothX andAc may contain non-logical substitution variables that are used
for generalisation purposes (as opposed to logical “content variables” used by agents
to indicate quantification or to ask for a valid binding) . We further useMc ⊂ M to
denote the language of “concrete” messages that agents use in communication (and that
do not contain variables other than “content variables”).

To illustrate these concepts and to explain the semantics ofa frame, we will consider
an example of how the FIPA contract net protocol [4] can be implemented inm2

InFFrA.
For ease of presentation, we will writeT (F ), C(F ), etc. to denote the respective el-
ements of a frameF and use the compact notation〈Th(F ), C(F ), Θh(F )〉 instead of
(T, C, Θ, hT , hΘ), where

Th(F ) =
hT (F )[1]
−−−−−→ p1

hT (F )[2]
−−−−−→ p2 · · ·

hT (F )[n]
−−−−−−→ pn

and
Θh(F )[i] =

hΘ(F )[i]
−−−−−→ Θ(F )[i].

Table 1 shows an interaction frame for the success path of thecontract net protocol, the
following should be noted about this example:

– As can be seen, the first condition set (corresponding to the empty substitution)
contains feasibility preconditions of the respective performatives (in FIPA-SL [3]
with additional timestamps of the form@i indicating at which trajectory step a
condition has to hold), as far as they are relevant for frame execution.

– Definition 1 does not constrain which conditions are to be stored for a specific
enactment of a frame (even allowing for empty condition sets), and the task of ex-
tractingrelevantor evencrucial information from the agent’s knowledge is clearly



Fcn =
D

˙

5

−→ cfp(A1, A2, 〈R, P 〉))
3

−→ propose(A2, A1, Q)

3
−→ accept-proposal(A1, A2, Q)

2
−→ do(A2, A1, R)

¸

,
˙

{ιX(P = Q) = Y,

¬Bref
A1

(any X IA2Done(R, P )) ∧ ¬BA1IA2Done(R) @1,

BA2IA2Done(R,Q) @2,

BA1IA1Done(R,Q) ∧ BA1IA2Done(R, Q) @3,

BA2Q @4}, {}, {damaged(tires)}
¸

,
˙

0

−→ [ ]

1
−→ [A1/agent

1
, A2/agent

2
, P/priceOf (tire , X),

Q/priceOf (tire, 75), R/sell(tire, 4)],

1
−→ [A1/agent

3
, A2/agent

1
, P/priceOf (tire , X),

Q/priceOf (tires , 400), R/replace(tires)]
¸

E

,

Table 1. Interaction frame for the success path of the FIPA contract net protocol

nontrivial. However, the reasoning framework to be defined in the following section
primarily uses conditions to identify similarities in encounters, while expectation
is drawn from utilities obtained during frame execution, making this approach less
sensitive to the way conditions are selected.

As for the different failure cases covered by the contract net protocol, these could ei-
ther be modelled implicitly by using timeouts and interpreting “silence as disapproval”
or explicitly by virtue of additional frames. For example, the frame of table 2 models
the refusal to submit a proposal.

Together,Fcn andFcr capture the following observations about previous encoun-
ters:

– Five encounters started with a message matchingcfp(A1, A2, 〈R, P 〉), three of
them continued with a proposal byA2, the other two with a refusal. In two of the
former three cases, the proposal was accepted byA1 and the respective physical
action carried out byA2.

– One encounter has terminated after the second message or wascontinued with a
message not matchingaccept-proposal(A1, A2, Q).

– For four of the five encounters, substitutions are available. Two contracts were
made, one about the delivery of four tires for a price of75 each, one about the
replacement of a set of tires for400. Two calls for proposals for the delivery of four
tires were refused because no tires were available (which isa generalisation over
two encounters, leavingA2 unspecified).

To usem
2

InFFrA frames for the prediction of future encounters, however, weneed
a formal model of theirprospectiverather thanretrospectivesemantics. Here, the idea
is (as in [10]) to use an entire repositoryF = {F1, . . . , Fn} of frames, each repre-
senting a set of message/action sequences by virtue of the substitutions that can still be



Fcr =
D

˙

5

−→ cfp(A1, A2, 〈R, P 〉)
2

−→ refuse(A2, A1, Q)
¸

,
˙

{¬Bref
A1

(any X IA2Done(R, P )) ∧ ¬BA1IA2Done(R) @1,

BA2(¬Feasible(R) ∧ Q ∧ ¬Done(R) ∧ ¬IA2Done(R)) @2},

{BA1(inStock(tire)) @1}
¸

,
˙

0

−→ [ ]

2
−→ [A1/agent1, P/priceOf (tire , X),

Q/¬inStock(tire), R/sell(tire, 4)]

Table 2. Interaction frame modelling the refusal to submit a proposal in the FIPA contract net
protocol

applied to its trajectory. Given anencounter prefix, i.e. a sequence of messages already
uttered in the current encounter, and the agent’s current belief state, we can filter out
those paths that either (a) do not match the encounter prefix or (b) are labelled with
logical conditions not satisfied under current knowledge base content. Considering the
remaining (i.e. relevant) paths, we can then assign probabilities to all the possibleen-
counter continuations(or postfixes) using the counter values ofF ∈ F . Additionally,
domain-dependentcase-based reasoning[5] techniques can be applied by introducing
a similarity measure on messages, such that different instances of a postfix pattern have
different probabilities depending on their similarity with past enactments of the respec-
tive frame. Hence,F represents a simplified version of an expectation network that has
the form of a tree.

More formally, letw ∈ M∗
c the encounter prefix and

ϑfixed(F, w) = unifier(w, T (F )[1:|w|])

the most general unifier (MGU) ofw and the corresponding trajectory prefix
T (F )[1:|w|] of F (whereunifier(·, ·) returns the most general unifier for two message
patterns or sequences thereof, or⊥ if they cannot be unified).

For a given knowledge baseKB ∈ 2L describing the belief state of an agent (KB is
assumed to be encoded in the same propositional languageL as the content of messages
for reasons of simplicity), this allows us to define

Θposs(F,KB , w) =
{
ϑ
∣
∣∃ϑ′.ϑ = ϑfixed(F, w)ϑ′ ∧ ∃i.KB |= C[i]ϑ

}

as the set of substitutions stillpossibleunderF , KB , andw. The elements ofΘposs are
extensions ofϑfixed for which at least one condition inC(F ) is satisfied.1

1 We use the notationLϑ here for the result of applyingϑ to each element of a list or setL, and
ϑϑ′ for the substitution that results from applyingϑ′ after ϑ. Further, we implicitly assume
that only minimal substitutions are considered forϑ′, only replacing variables that actually
occur inT (F ) or in someC(F )[i].



For a givensimilarity measureσ : M∗ ×M∗ → R on message pattern sequences,
we can define

σ(ϑ, F ) =

|Θ(F )|
∑

i=1

similarity
︷ ︸︸ ︷

σ(T (F )ϑ, T (F )Θ(F )[i])

frequency
︷ ︸︸ ︷

hΘ(F )[i]

relevance
︷ ︸︸ ︷

ci(F, ϑ,KB)

to assess to which extentϑ is “applicable” toF . In this definition,hΘ(F )[i] is used to
take the frequency of a past condition/substitution into account andci expresses how
relevant a particular frame conditionC[i] is in determining the applicability ofϑ.2 This
quantity can be used to derive a conditional probability distribution over the different
substitutionsϑ F may be enacted under:

P (ϑ|F, w) =

{

α · σ(ϑ, F ) if ϑ ∈ Θposs (F,KB , w)

0 otherwise
(1)

for some normalisation constantα. Finally, combining this formula with the frequency

P (F |w) =

{
hT (F )[|T (F )|]

P

F ′∈F,unify(T (F ′)[1:|w|],w) hT (F ′)[|T (F ′)|] if unify(T (F )[1:|w|], w)

0 else

of F matching any past encounter starting withw allows us to compute thecontinuation
probabilitywith which an encounter that started withw will be concluded withw′:

P (w′|w) =
∑

F∈F ,ww′=T (F )ϑ

P (ϑ|F, w)P (F |w)

Looking back at figure 1, this equation defines a probability distribution for the
possible continuations of an encounter given a current “path” in the expectation network
induced byF . Next, we will show how this semantics can be used to conduct rational
reasoning about communication inm

2

InFFrA.

5 Reasoning and Making Decisions About Communication

Based on the formal model presented in the previous section,the general principles of
InFFrA can be concretised and embedded into an agent architecture to endow agents
with the ability to reason and make decisions about communication. To illustrate how
this is done, we will again go through the individual steps ofthe abstract reasoning
cycle depicted in figure 2.

2 A simple definition ofci, considering only those conditions currently satisfied, isfor example
given by

ci(F, ϑ,KB) =

(

1 if KB |= C(F )[i]Θ(F )[i]ϑ

0 otherwise.



Interpretation and Matching/AssessmentAt the beginning of each reasoning cycle,
the knowledge baseKB and the encounter prefixw are updated from the peer’s last
utterance.

As for matching and assessment, the agent checks ifΘposs (Fa,KB , w) 6= ∅, i.e. if
the trajectoryT (Fa) of the active frameFa matchesw and the remaining steps ofT (Fa)
can still be executed underKB . Considerations about thedesirabilityof Fa could also
play a role in the framing decision, and a possible definitionfor such a desirability
criterion will be given in our description of frame enactment.

Returning to the example of the previous section, we consider an encounter
with F = {Fcn , Fcr} and Fa = Fcn for both agents and prefixw =
cfp(agent2, agent1, 〈sell (tire, 1), priceOf (tire, X)〉), so thatagent1 can success-
fully matchFa againstw. If for exampleagent1 did only sell tires in fours, executability
of Fa would still fail and require a re-framing.

Adjustment/Re-FramingThe idea behind grouping different courses of interaction into
frames is to exploit the fact that (usually) similar types ofinteraction (e.g. negotiation
dialogues, contracting, etc.) exist which differ only in the specific content of messages,
but not in what they achieve for the interacting parties. This hierarchical view enables
agents to optimisewithin the current frame while disregarding other frames during a
conversation. However, if the active frame cannot be carried out any longer, the search
space for appropriate continuations has to be expanded.

In this case, a variety of frame selection heuristics can be used to find suitable
alternatives. In our implementation, experimental results for which are presented in the
following section, we use hierarchical reinforcement learning techniques [13] to learn
an optimal frame selection strategy over time. Also, we construct new frames through
concatenation in a planning-like manner to achieve the original goal of a conversation
that went awry. An extensive treatment of the resulting architecture can be found in [2].

At the end of an encounter – in order to maintain a concise model of past interactions
– the active frame is augmented by a substitution that unifiesits trajectory withw, along
with a set of conditions that were required for or precipitated by the execution.

EnactmentIf the active frame contains no further steps, the agent simply terminates the
encounter, as is the case if no active frame could be found. Else, the next message or
action is chosen by applying the locally optimal substitution ϑ∗ to the next step of the
active frame’s trajectory.

To determineϑ∗, we assume that the agent’s preference towards different world
states is expressed by means of a real-valuedutility functionu : M∗ × 2L → R, where
u(w,KB) is the utility associated with a message sequencew being executed for initial
knowledge baseKB .

Since some variables ofϑ∗ will be bound by the agent himself, while concrete
values for others will be “selected” by his peer with a certain conditional probability,
the optimal substitution is defined as the one with the highest expectedutility. Normally,
this notion of expected utility will also be used during frame assessment to determine
the desirability of a specific substitution or entire frame.For example, one could force
a re-framing unless executing the postfix of the active frameunder the most desirable
substitution yields a positive utility.



If we write Θs andΘp for the sets of possible substitutions the agent and his peerin
the current encounter can apply, respectively, the expected utility of executing a frame
F underϑs ∈ Θs is given by

E[u(ϑs|F, w,KB)] =
∑

ϑp∈Θp

u(postfix(T (F ), w)ϑsϑp,KB) · P (ϑp|ϑs, F, w),

wherepostfix(T (F ), w) is the postfix ofF corresponding to prefixw (which can be
determined by applying the most general unifier ofw and the corresponding prefix of
T (F ) to the respective rest) andP (ϑp|ϑs, F, w) is the probability with which the peer
will conditionally choose some substitutionϑp ∈ Θp depending on the agent’s choice
ϑs ∈ Θs.

An approximation ofP (ϑp|ϑs, F, w) can be computed from the past cases stored in
F . Using Bayes’ rule and applying equation 1 to both numeratorand denominator, we
can approximate

P (ϑp|ϑs, F, w) =
σ(ϑfixed (F, w)ϑsϑp, F )

∑

ϑ σ(ϑfixed (F, w)ϑsϑ, F )

if ϑfixed(F, w)ϑsϑp ∈ Θposs (F,KB , w) (and 0, else). By means of standard expected
utility maximisation, the optimal substitutionϑ∗ is then given by

ϑ∗(F, w,KB) = arg max
ϑs∈Θs

E[u(ϑs|F, w,KB)].

Concluding the above example under the assumption that no re-framing was nec-
essary,agent1 now has to select an appropriate proposal. That is, each of the elements
of Θposs yields a different price for a tire, and the search for the best substitution is a
search for the highest possible price (asu will usually increase with higher profit) such
thatagent2 will still accept (as the probability for the accept will usually decrease with
an increasing price) and will be guided by similar past casesstored inΘ(Fcn ), i.e. by
past prices for tires.

6 Experimental results

In order to show their performance in practice, the conceptspresented so far have been
implemented and tested in the multiagent-based link exchange systemLIESON [9]. In
this system, agents representing Web sites engage in communication to negotiate over
mutual linkage with the end of increasing the popularity of one’s own site and that of
other preferred sites.

Available physical actions in this domain are the addition and deletion of numeri-
cally rated links originating from one’s own site and the modification of ratings (where
the probability of attracting more traffic through a link depends on the rating value).

LIESON provides a highly dynamic and complex interaction testbed for the follow-
ing reasons:

– Agents only have a partial and incomplete view of the link network. In particular,
agents engage in non-communicative goal-oriented action in between encounters,
so that the link network (and hence the agents’ utility situation) may change while
a conversation is unfolding.



– The number of possible link configurations is vast, and agents can only predict
possible utilities for a very limited number of hypothetical future layouts.

– There is no notion of commitment – agents choose frames in a self-interested way
and may or may not execute the physical actions that result from them. Also, they
may undo their effects later on.

LIESON agents consist of a non-social BDI [8] reasoning kernel thatprojects future link
network configurations and prioritises goals according to utility considerations. If these
goals involve actions that have to be executed by other agents, them

2

InFFrA component
starts a framing process which runs until the specific goal has been achieved or no
adequate frame can be found. We report on experiments in which agents were equipped
with frames with the following six trajectories:

request(A, B, X) → accept(B, A, X) → confirm(A, B, X) → do(B, X)

request(A, B, X) → propose(B, A, Y ) → accept(A, B, Y ) → do(B, Y )

request(A, B, X) → propose− also(B, A, Y ) → accept(A, B, Y ) →

do(B, X) → do(A, Y )

request(A, B, X) → reject(B, A, X)

request(A, B, X) → propose(B, A, Y ) → reject(B, A, Y )

request(A, B, X) → propose− also(B, A, Y ) → reject(B, A, Y )

The first three frames allow for accepting to perform a requested actionX , making a
counter-proposal in whichY is suggested instead ofX , or usingpropose− also to
suggest thatB executesX if A agrees to executeY . The last three frames can be used
to explicitly reject a request or proposal. In that,X andY are link modification ac-
tions; each message is available in every state and incurs a cost that is almost negligible
compared to the utilities gained or lost through linkage actions (yet high enough to en-
sure no conversation goes on forever). Also, agents can always send astop action to
indicate that they terminate an encounter if they cannot finda suitable frame.

After their termination, encounters are stored in the framefrom which
they have originated. For example, agenta1 would store the encounter
request(a1, a2, add(a2, a1, 2)) → reject(a1, a2, add(a2, a1, 2)) by adding a
substitution [A/a1, B/a2, X/add(a2, a1, 2)] to the respective frame together with
an automatically generated list of conditions that were required for physical action
execution.

As state abstraction, we use generalised lists of statements of the form
{↑|↓}({I, R}, {I, R, T }, {+,−, ?}) representing the physical actions talked about in
an encounter.↑ and ↓ stand for a positive or negative link modification (i.e. addi-
tion/deletion of a link or an increase/decrease of its rating value),I/R for the initiator
and responder of the encounter,T for a third party;+/−/? indicates whether the (learn-
ing) agent likes, dislikes or doesn’t know the target site ofthe link modification. For
example, ifa1 anda2 talk aboutdo(a1, deleteLink (a1, a3)) in an encounter initiated
by a1 (while the learning agenta2 is the responder and likesa3’s site) this is abstracted
to ↓(I, T, +). If in the same conversationa2 suggests to modify his own link toward



a1 (whom he does not like) from a rating value of1 to 3, the state (vizsubject) of the
encounter becomes{↓(I, T, +), ↑(R, I,−)}. The intuition behind this state abstraction
method is to capture, in a generalised form, thegoal of the conversation that can cur-
rently be realised while at the same time reducing the state space to a reasonable size.

Figure 3 shows a comparison for a system with ten agents with an identical profile
of private ratings (preferences) towards other agents (both plots show the performance
of the best and the worst agent in the group as well as the average utility over all agents).
In the first plot, agents employ BDI reasoning and additionally send requests to others
whenever they favour execution of someone else’s action according to their BDI queue.
These requests are then enqueued by the recipient as if he had“thought of” executing
the respective action himself. Thus, it depends on the recipient’s goal queue and on his
utility considerations whether the request will be honoured or not. As one can see, after
a certain amount of time agents do no longer execute any of theactions requested by
others, and cannot find any profitable action to execute themselves, either. The system
converges to a stable state.

The second plot shows the results of a simulation with the same setup as above but
usingm

2

InFFrA agents. Again, agents issue requests whenever they identify that some-
one else could do something useful. After this initial message, the framing procedure
takes over. Quite clearly, despite the fact that there is a greater variation in maximal,
minimal and average agent utility, the average and the best agent perform significantly
better than in the BDI case, while the weakest agent performsjust as good as in the BDI
case on the average.

While on first glance the performance ofm
2

InFFrA agents might not be strikingly
different from those using plain BDI, it should be noted thatthe results establish a
lower bound on the performance gained by usingm

2

InFFrA. In environments with (pos-
sibly non-benevolent) peer agents showing non-stationarybehaviour, the performance
of agents using prespecified communication protocols or assuming a fixed semantics of
communication can become arbitrarily bad, whilem

2

InFFrA includes the ability to learn
what to expect from a given peer in a specific interaction situation. However, additional
experiments will be necessary to allow for any quantitativestatements.

Yet another interesting interpretation can be drawn from the fact that the average
utility of m

2

InFFrA agents lies within the range of the two horizontal lines in the plot.
These denote the average utilities for two special linkage configurations: the lower one
of the two corresponds to a fully connected linkage graph, inwhich each agent (hon-
estly) displays the ratings of his out-links (i.e. reveals his true opinions about others).
The slightly higher utility shown by the upper line is attained if agents do not lay any
links toward agents they dislike. It is an interesting property of the utility function used
in LIESON, that acting “politically correct” is slightly better thanbeing honest. The fact
that agent utilities evolve around these benchmarks indicates that they truly strive to
make strategic communication moves and exploit the advantages of concealing certain
beliefs.
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7 Conclusions

In this paper we have presented an architecture for reasoning about communication
patterns within the framework of empirical semantics. Froma practical point of view,
this contributes to the “agent side” of ACL research, as it offers methods to construct
and implement agents that are able to deal with given specifications of rules that govern
the communication in a system. Three features are particularly interesting about our
approach:

1. The m
2

InFFrA frames used in our formal model combine information about the
surface structure of communication sequences, logical constraints (frame condi-
tions) and empirical data (counters). This allows for greatflexibility with respect
to what is defined in commonly agreed protocols, semantics, etc. Forexample, in
non-exploitable protocols as those used in mechanism design, it may suffice to just
specify admissible message sequences (because it does not matter what the agents
think, for example), while other types of interactions suchas contracting may re-
quire commitment rules, descriptions of agents’ mental states, etc.

2. Agents are capable of exploiting past communication experience. Thus, they are
able to “start out” with a predefined set of patterns and to test to which degree
their peers comply with them, which offers a major advantagein open systems
where adherence to protocols, truthfulness constraints, etc. cannot be guaranteed.
In particular, this paves the way for the use ofmachine learningmethods (as we
have done) that make minimal assumptions about others’ behaviour and simply
accumulate communication knowledge as they go.

3. The architecture combines decision-theoretic (probabilistic) reasoning methods
with symbolic communication. This constitutes an important contribution to the
practical design of communicating agents, but also an initial step to explore the spe-
cial character of communication as opposed to general action. In [10], for example,
we have argued for trading off optimality against predictability in communication
so that more reliable communication patterns can occur. Using decision theory as
a firm foundation for rational reasoning can help formalising what agents (should)
do in communication and whether and in which way this differsfrom the models
used in, e.g. game theory and economics.

A major advantage of our approach is that it allows us to combine the decision-theoretic
power of RL models with the knowledge-based aspects of symbolic agent communica-
tion, interaction protocols and ACL research in general. Itis this aspect that makes
rational action and learning possible for high-level agentarchitectures that employ log-
ical reasoning.

In the future, we intend to look at more complex models of interaction frames with
trajectories more expressive than simple sequences. Also,we want to investigate to
which degreem2

InFFrA agents are capable of exchanging meta-frame information to
reach consensus about which frames to use. Finally, a lot of work needs to be done
on automatically transforming ACL and interaction protocol specifications into readily
usablem

2

InFFrA frames.
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