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Abstract. In the process of designing multiagent systems, it is often the case that
some kind of specification of communication rules (in the form of protocols, ACL
semantics, etc.) is available. and The question naturally arises how appropriate
agents can be designed to can operate on such a specification.Moreover, if these
multiagent systems are viewed asopen systems, the problem is complicated even
further by the fact that adherence to such a supposedly agreed specification cannot
be ensured on the side of other agents.
This paper presents an architecture for dealing with a very generic type of pre-
specified communication patterns (which contain surface structure and logical
constraint specifications) based on anempirical semanticsmodel of communi-
cation. This model allows for flexible adaptation to evolving communication se-
mantics by combining existing expectations about the use ofcommunication with
empirical observation.
This architecture is based on theInFFrA social reasoning framework and the con-
cept of interaction frames. We show how interaction frames that represent classes
of interaction situations can be used to conduct decision-theoretic reasoning about
communication when interpreted using the empirical semantics approach.
We introduce the abstract architecture, a formal model for its probabilistic se-
mantics and present results of an experimental validation of our approach in a
complex domain that illustrate its effectiveness.

Keywords Agent interaction, agent communication languages, interaction protocols,
multiagent learning, social reasoning

1 Introduction

The process of designing agent communication languages, interaction protocols and
conversation policies is primarily concerned with what goes onbetweenrather thanin-
sideagents. It is therefore only natural that ACL research has rarely attacked the prob-
lem of how to build agents in accordance with a given set of semantic rules, protocol
structures, etc.

In the light of openmultiagent systems, in which agents are not controlled by a
central entity or pursue common goals and need not be benevolent, this design problem



is complicated even further. Not knowing how other agents will apply a given spec-
ification concerning the semantic and pragmatic propertiesof the provided means of
communication, the question for an agent is not only how to apply it by himself, but
also whether to comply with the supposedly agreed specification at all.

This is exactly the issue this paper deals with:Given the specification of a number of
communication patterns together with logical constraintsfor their application, how can
we design an agent that uses them appropriately to further his own goals, not knowing
whether other agents will comply?As a possible answer to this question, we propose
an agent architecture based on the concept ofempirical semantics[20]. This architec-
ture can be seen as a “communication reasoning” component that takes as inputs the
belief state and utility function of an agent as well as a set of models of communica-
tion patterns (so-calledinteraction frames) and outputs communication decisions. The
architecture is characterised by two essential features:

1. It uses decision-theoretic principles to make optimal action decisions while taking
previous communicationexperienceinto account.

2. It combines empirical knowledge witha priori specified logical constraints for
communication patterns.

Most importantly, the reasoning heuristics used in this architecture are computationally
tractable and can be implemented directly. We thus contribute to the task of engineering
agents that are able to operate flexibly on a given set of communication protocols and
semantic rules and under the assumption that the empirical semantics view is followed.

The remainder of this paper is structured as follows: In section 2 we review the
foundations of the empirical semantics approach. Subsequently, we introduce theInF-
FrA social reasoning framework that the proposed architectureis based on. Section 4
establishes a formal model of empirical semantics calledm
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InFFrA that usesInFFrA
frames to capture probabilistic expectations about communication. In section 5 we then
present the apparatus necessary for making decisions in this model. Experimental re-
sults from a concrete implementation of the model in a complex domain are given in
section 6 to underline its practical usefulness. Section 7 rounds up with some closing
remarks and conclusions as well as an outlook to future work.

2 Empirical Semantics

As stated in the introduction, the aim of our research is to develop agents that can reason
about communication inopen systems, in which adherence to a particular communica-
tion semantics cannot be taken for granted. That is, no matter what kind of specification
is provided for the meaning of utterances used in inter-agent communication, a strict in-
terpretation of agentautonomy[12] must include the possibility that agents are entirely
self-interested. For such self-interested agents there isno autonomy-respecting way of
imposing behavioural constraints, and hence any definitionof semantics that includes
someperlocutionaryaspects [1] that affect future actions of an agent (e.g. performing
an action one has promised to perform) may be violated in actual communication, if
agents decide to deviate from the behavioural pattern supposedly induced by their mes-
sages that have been previously exchanged. For this reason,the only way to obtain more



or less reliable models of the relationship between communication and agent action in
an entirely open view of communication semantics is throughempirical observation
and identification of regularities in others’ (and one’s own) behaviour.

At the same time, it makes little sense to assume that agents act randomly and that
the only way to predict their behaviour is to model them as arbitrary stochastic pro-
cesses. In most systems, somea priori agreement about communication semantics ex-
ists, whether it be defined in terms of mental states of the participating agents (e.g. [22,
4]) or commitments (e.g. [6, 23]) or in some other way. Also, interaction protocols that
are assumed to be common knowledge among agents are usually defineda priori so as
to restrict the range of admissible message sequences. In other words, from the point
of view of a reasoning agent who wants to employ the communication mechanisms
provided in a multiagent system, pre-constructed specifications of communication pro-
cesses and semantics are available, even if their reliability hinges on the ways other
agents will make use of the provided specifications.

These considerations lead us to regard pre-specified protocols and ACL semantics as
communicative expectationsrather thandefinitions of meaning, as their properties might
be confirmed or violated in actual (future) communication. In the following paragraphs,
we explain (i) how a model of meaning can be developed that is in accordance with
this expectation-based view and (ii) what the implicationsof this model are from the
standpoint of rational agent-level decision making.

2.1 Expectation-Based view

Our approach is based on the notion ofempirical semanticsfor multiagent systems,
which was first developed in [20] and [10] (but see also [11, 13, 14]). The empirical
semantics view is based on the simple idea that if we assume the meaning of agent
communication to be based on expectations (rather than reliable and statically verifiable
conditions), we must adapt it according to empirically observed communication and
action in the system.

As a consequence, communication must be thought of as a process of exchanged ob-
servable symbols which obtain their meaning through the interactions within which they
occur. The central instrument to establish this meaning arethe expectations constructed
by agents participating in or observing an interaction. These expectations “contain” the
current semantics of communication in a given social context and their evolution over
time mirrors the evolution of meaning.

To make things a bit more concrete, we quote the following central elements of the
empirical semantics approach from [20]:

1. The meaning of a message can only be defined in terms of itsconsequences, i.e. the
messages and actions that are likely to follow it. Two levelsof effects can be dis-
tinguished:
(a) The immediate reactions of other agents and oneself to the message.
(b) The “second-order” impact of the message on the expectation structures of any

observer, i.e. the way the utterance alters the causal modelof communicative
behaviour.



Fig. 1.Empirical semantics and its evolution

2. Any knowledge about the effects of messages must be derived from empiricalob-
servation. In particular, a semantics of protocols cannot be established without tak-
ing into account how the protocols areusedin practice.

3. Meaning can only beconstructedthrough the eyes of an agent involved in the inter-
action, it strongly relies on relating the ongoing communication to the agent’s own
goals.

In other words, our view is that the semantics of communication can be reduced to
its pragmatics as perceived by agents who are using communication. While this is an
overtly restrictive interpretation of meaning for generalcommunication, it can be very
useful for practical agent reasoning inopenmultiagent systems, in which “normative”
semantics may be proven wrong by others’ inability or unwillingness to comply with
them.

This is because the empirical semantics view can be used as aminimal-assumption
method for reasoning about communication which at least ensures that the agent will
not compromise his own welfare for the sake of complying witha pre-specified se-
mantics (when others do not comply, either). In other words,we can always “resort to”
observed regularities between utterences and subsequent (environment-manipulating,
i.e. “physical”) actions if all else fails.

Taking this as a point of departure for reasoning about communication raises the
following question: If the meaning of an utterance (or sequence of utterances) lies in
the expected consequences, how can we capture semantics using a model of causal-
ity and correlation that allows to predict these consequences for a given (sequence of)
utterance(s)? What is foremostly required to solve this problem are appropriate rep-
resentations for adaptable communicative expectations, i.e. representations that reflect
expectations and that can be adapted with new observations so as to enable the agent to
extrapolate past correlations into the future.

Expectation networks(ENs, [9, 13]) have been suggested as a very general method
of capturing this kind of expectations that relies on a probabilistic model of “continu-
ations” between interrelated messages derived from statistical observation. Instead of
going into the details of this formalism, we sketch the basicidea using the illustrations
of figure 1. In this figure, nodes represent communicative actions, edges correlations
between them (variable line width is used to indicate different degrees of correlation).
The shaded node sequence is used to describe the recently observed portion of the net-



work, e.g. an ongoing conversation. The decreasingly dark shaded regions of predicted
future actions denote that predictions regarding “distant” events are increasingly vague.
The transition from the situation shown on the left to that onthe right occurs upon ob-
servation of a new action that is appended to the currently relevant path. With this new
observation, the correlation between the message previously observed and the current
message increases compared to alternatives that did not occur.

This simple probabilistic process modelling view is obviously inadequately sim-
plistic and suggests that agents are nothing but the aforementioned stochastic processes
whose behaviour is arbitrary and not confined in any way by principles of rationality,
goal orientation or logical inference. In fact, this is quite deliberate for cases in which
other agents do not seem to be behaving according to any “higher-level” models the
observer may have, i.e. if the assumptions he makes regarding other agents, their men-
tal states, the state of commitments in the system etc. and – in particular – that part
of these assumptions that is concerned with communication semantics and interaction
rules fails. Hence, the purely probabilistic view is only useful in a zero-assumption case
in which all an observer can do is to correlate message and action sequences.

Yet the expressiveness of ENs goes far beyond that, as they contain elements that we
have not described in our oversimplified description of the EN formalism above: Firstly,
instead of messages agents actually use message patterns that may involve variables as
node labels, so that a path can be a generalisation of a set of observed ground message
sequences. Additionally, sets of instance values for thesevariables can be stored in
the node to re-construct previous cases generalised over ifnecessary (or to enhance
prediction capabilities with the help of similarity considerations for new cases in a case-
based reasoning fashion). Secondly, transitions between nodes are not only labelled
with numerical probability estimates derived from past frequency data, but may also
contain logical constraints that restrict the applicability of certain transitions.

With these additional facilities, ENs become a highly powerful tool to add semantic
information to expectations that reflects assumptions the observer makes, thus allowing
for a flexible mix between hard-coded constraints and adaptive probabilistic reasoning.

2.2 Decision-Theoretic view

In principle, adopting the standpoint of empirical semantics enables an agent to adapt
his expectations with new communication experience and to adjust his own behaviour
to the expected reactions of others. However, this conceptual view of semantics does
not say anything about how agents can use such expectations in practice.

What is therefore required is to integrate expectations in the decision-making pro-
cesses of an agent, and to this end we shall discuss a few decision-theoretic considera-
tions that are related to communication in different interaction situations.

As two famous examples for strategic interaction situations, consider the Prisoner’s
Dilemma (PD) game and the Coordination Game (CG), which are normal-form two-
player games characterised by the payoff matrices shown in tables 1 and 2.

In the PD game, there is an incentive for both agents to defect, sinceD is a better
choice whatever the other party chooses (hence(D, D) is the only Nash equilibrium in
this game). The dilemma arises because agents could both do better under the (Pareto



aj C D
ai

C (3,3) (0,5)
D (5,0) (1,1)

Table 1.Prisoner’s Dilemma payoff matrix. Matrix entries(ui, uj) contain the payoff values for
agentsai andaj for a given combination of row/column action choices, respectively. C stands
for each player’s “cooperate” option, D stands for “defect”.

aj A B
ai

A (1,1) (-1,-1)
B (-1,-1) (1,1)

Table 2. Coordination game, in which agents have two choicesA andB and receive a positive
payoff if they opt for the same alternative.

efficient) (C, C) combination, which neither of them is probably going to choose be-
cause it may imply getting the “sucker’s payoff”0 if the other defects. So the problem
is that while agents’ interests overlap in this game, cooperation is impeded by the po-
tential for mutual exploitation. In the CG, on the other hand, reaching an agreement is
trivial in theory, since agents receive the equal rewards. However, in the absence of any
means of communication, no agent can know what the other willchoose, resulting in a
(mixed-strategy Nash equilibrium) solution for the game where each agent will playA
or B with equal probability and only obtain an expected payoff of0.

Now let us assume prior to actually playing any of these gamesagents may ex-
change a number of messages. According to our consequentialist view, the only way
to interpret these messages would be as indicators for the “physical” actions (C/D or
A/B) that they will perform in the actual game. This is also the only realistic signifi-
cance messages would have in such an interaction scenario from a game-theoretic point
of view if the interaction situation is completely determined by the definitions of the
one-shot games (i.e. no externalities have to be taken into account to which communi-
cation might contribute).

In the PD, obviously, it makes no sense for any one agent to indicate his choice,
because he might be exploited if he is telling the truth, and the other agent has nothing
to lose by defecting (he can only gain from exploiting the other, should he be truthful).
In the CG game, on the other hand, truthfully indicating whatone will do is a dominant
strategy for both agents, and it makes no sense for them to lie.

This illustrates the different flavours communication may take on, ranging from
self-enforcing communication sharing (as in the CG) that merely serves to synchronise
agent activity to highly contingent exchange of proposals,to (potentially fraudulent)
offers for cooperation that are highly contingent and depend on the other’s cooperative
attitude.



But what is the significance of such communication from an empirical semantics
point of view? Under a consequentialist view of meaning, what we can infer from the
above examples is that any symbol uttered by an agent represents a course of joint
future actions (or, a set of different alternatives) in an interaction situation. Given an
EN-like representation of expectations, any message that corresponds to a node in the
network and is being uttered in the context of an ancestor path (e.g. by restricting the
temporal scope of what counts as “relevant” to the current interaction situation) denotes
the sum of its descendant paths (again, potentially restricted in depth and breadth by
some notion of interaction scope). So depending on the structure of the EN (which may
also suggest that certain paths are valid or invalid at the time of utterance depending on
logical constraints or may induce a stochastic distribution over possible continuations
in a probabilistic fashion) the agent uttering a message is selecting a set of possible
continuations, thereby “requesting” a (set of) desired outcome(s) from the other(s). The
message obtains precisely the predicted set of possible continuations of the current
message (viz outcomes of the interaction situation) as its intended meaning. Under this
interpretation, any message is a description of a set of expected outcomes as anticipated
by its utterer, and if we trace a sequence of messages, we can view subsequent steps
in this sequence as an incremental refinement of requests (oroffers) for possible states
of the world after the interaction. Along this communicative “encounter”, the agents
make communication decisions according to their subjective expectations with the goal
of reaching states that are desirable for themselves. If expectations are mutually com-
patible in the sense that the agents understand what each other is saying and trusts that
the expected outcomes will actually occur, and if there is sufficient overlap between
agents’ interests, reliable expectation structures can lead to coordinated behaviour.

As an illustration, let us look at an example of an expectation structure in which an
agent may indicate he wants to play a PD game by uttering an initial message, wherupon
the other party may agree or disagree to play. After this initial stage, the agents may
choose from different alternative messages to indicate what they will do, and the even-
tually occuring actual game moves are performed concurrently. This situation is shown
in figure 2. Depending on the probabilities of all transitions (and especially of those

In that case, I’ll defect as well.Let’s play!

OK, sounds like fun!

Leave me alone!

I’ll cooperate!

I’ll defect

I’ll cooperate, too!

I’ll defect!

(D,C)

(C,D)

(C,C)

(D,D)

Fig. 2. Expectation structure for pre-play communication in the PDgame; joint actions occur
concurrently, while communication steps alternate between the two agents.



leading to leaf nodes) and the utilities assigned to leaf nodes which are omitted in the
figure, agents can calculate best-/worst-case or expected utilities depending on their
decision rules so as to make communication and action choices at each step.

At a more practical level, if communication is inexpensive in comparison to the
outcomes of the physical actions, this leads to a “cheap talk” [2] view of communica-
tion, in which agents engage in conversations to maximise their own profit under the
assumptions of their own EN. Obviously, the usefulness of this EN depends strongly on
its reliability, i.e. on how well the symbol meaning is common knowledge and adhered
to. However, things can go wrong if agents do not share expectations or are deliber-
ately exhibitingdeviantbehaviour (we refer the interested reader to [18] for a detailled
discussion of deviance and, as one of its most interesting manifestations i.e. conflict).

To bridge the gap between the expectation-based and the decision-theoretic views,
we need to devise appropriate representations that agents can use to record and reason
about their interaction experience. For interactions in the form of two-party, turn-taking
dialogues, we suggestinteraction framesas one such representation. The following
sections introduce theInFFrA architecture that is used for this purpose and discuss the
reasoning mechnisms employed in .

3 The InFFrA Architecture

The Interaction Frames and Framing ArchitectureInFFrA [21] has originally been de-
veloped as a meta-framework for social reasoning architectures based on the notions of
“interaction frames” and “framing”. It provides abstractions for the data and processes
involved in reasoning about patterns of communication at a meta-architectural level,
i.e. without pinning down concrete implementation details. In the following, a brief in-
troduction to the abstract framework is provided. After this, we will explain how this
framework can be combined with the empirical semantics viewlaid out in the previous
sections.

3.1 Abstract Architecture

The central idea behindInFFrA is to employ models of classes of interaction called
interaction frames to guide agents’ social behaviour. The process of applying frames
appropriately in interaction situations is referred to as framing. In the abstractInFFrA
architecture, a frame is a data structure that contains information about1

– the possible courses of interaction (so-calledtrajectories) characteristic to a partic-
ular frame,

– roles and relationshipsbetween the parties involved in an interaction of this class,
– contextswithin which the interaction may take place, and
– beliefs, i.e. epistemic states of the interacting parties.

1 We include only so-calleddescriptiveframe attributes in our discussion. In the actual model
[18], frames may also containmeta-levelattributes that describe relationships between frames,
frame history, statements about the extent to which knowledge about frames is distributed
among agents, etc.



At the conceptual level, this allows for modelling all relevant features of a class of
interactions: its participants, its surface structure, the context within which instances
of it may occur and the associated beliefs of participating parties.InFFrA makes no
assumptions as regards representation, thus also allowingfor informal and semi-formal
modelling methods where appropriate.

For computational purposes, a representation of a set of admissible message and
action sequences is usually taken to represent the trajectory model (e.g. a DFA, a Petri
Net, etc.) while the latter three elements can be collapsed into a single set of logical
constraints whose fulfillment has to be verified using the agent’s internal belief state
(usually represented by some kind of knowledge base for which tractable proof pro-
cedures are available) if the respective frame is to be considered applicable in a given
situation.

InFFrA makes use of a number of frame-based data structures to conduct the steps
necessary for framing:

– The active frame, the unique frame currently activated to describe the expected
course of events,

– theperceived frame, an interpretation of the currently observed state of affairs,
– thedifference modelcontaining the differences between perceived frame and active

frame,
– thetrial frame, used when alternatives to the current frame are sought for,
– and theframe repository, in which the agent locally stores its frame knowledge.

Using these data structures, anInFFrA agent performs the following steps in each rea-
soning cycle:

1. Interpretation & Matching:Update the perceived frame and compare it with the
active frame.

2. Assessment:Assess the usability of the active frame in terms of
(i) adequacy (compliance of frame conditions with the current situation),
(ii) validity (the degree to which the active frame’s trajectory matches the perceived

encounter) and
(iii) desirability (depending on whether the implicationsof the frame correspond to

the agent’s private goals).
3. Framing decision:If the active frame seems appropriate, continue with 5. Else,

proceed with 4 to find suitable alternatives.
4. Adjustment/Re-framing:Search the frame repository for better frames. “Mock-

activate” them as trial frames iteratively and go back to 1; if no suitable frame
is found, end the encounter.

5. Enactment:Derive action decisions by applying the active frame.

The entire2 framing process is depicted in figure 3. It should be emphasised thatInF-
FrA only describes the social layer of agent reasoning; in orderto obtain an integrated

2 This is a largely simplified view of the actualInFFrA-based social reasoning cycle. [18] intro-
duces a much more intricate data flow model that involves complex interactions between the
data structures, a cyclic model of trial instantiation, distinguishing between frame enactment
and actual behaviour generation, etc.



deviate 

adjustmentenactmentaction

perception interpretation and matching

repository
frame

framing decision

perceived frame activated frame difference model

trial instantiate

comply

assessment

Fig. 3. Overview of the framing process

agent architecture, it has to be combined with a suitable component for local rational
reasoning (e.g. a BDI [16] reasoner), so that the agent’s private goals and preferences
can be taken into consideration during theassessmentphase.

3.2 Frames as Expectation Structures

Looking atInFFrA from an empirical semantics point of view, we can re-interpret the
frames in an agent’s repository as the expectations about communication patterns that
the agent holds.

In retrospectiveterms, the agent can use observed interaction situations toderive
new frames (or store them as instances of already known frames) and extend his own
repository using new interaction experience. This will allow to re-construct interaction
experience (ideally) from a reasonably small set of classesof interactions. Inprospec-
tive terms, the agent can apply his repository to determine a set of admissible frames
in any given interaction situation and to use these for prediction of possible continu-
ations. This enables the application of decision-theoretic principles to frame selection
and frame adjustment (and, in very elaborate architecturesalso to creative construction
of completely novel frames).

The frame-based approach lends itself to reasoning with empirical semantics for
two main reasons:

– InFFrA provides us with a practical reasoning scheme for processing expectations
which is missing in the pure expectation-based view of expectation networks de-
scribed above.

– InFFrA is ideally suited for combining pre-specified communication patterns
(e.g. protocols and ACL rules specified by the designer) in a goal-oriented fash-
ion with empirical knowledge about how the interaction actually turns outin the
system.



In the next section, we are going to explain how a formal modelof an instance of the
InFFrA architecture can be developed that is in keeping with these considerations.

4 A Formal Model of Frame-Based Empirical Semantics

To obtain a formal computational model for representing andreasoning about com-
municative expectations based onInFFrA, we have developedm2

InFFrA, a simple yet
expressive model for describing two-party, discrete, turn-takingencounterswhich can
be thought of as conversations between two agents.

4.1 Them2inffra model

m
2

InFFrA frames use with linear sequence of message patterns (i.e. messages contain-
ing variables) as its trajectory model specifying the surface structure of the encounters
described by a particular frame, together with a list ofsubstitutionsto capture concrete
values of these variables in previously experienced interactions. Each substitution also
corresponds to a set of logicalconditionsthat were required for and/or precipitated by
execution of the trajectory in the respective encounter. Finally, trajectory occurrence
andsubstitution occurrencecounters record the frequency with which the frame has
occurred in the past. Formally, a frame inm

2

InFFrA is defined as follows:

Definition 1. A frameis a tupleF = (T, Θ, C, hT , hΘ), where

– T = 〈p1, p2, . . . , pn〉 is a sequence of message patternspi ∈ M, thetrajectoryof
the frame,

– Θ = 〈ϑ1, . . . , ϑm〉 is an ordered list ofvariable substitutions,
– C = 〈c1, . . . , cm〉 is an ordered list ofcondition sets, such thatcj ∈ 2L is the

condition set relevant under substitutionϑj ,
– hT ∈ N

|T | is a trajectory occurrence counterlist counting the occurrence of each
prefix of the trajectoryT in previous encounters, and

– hΘ ∈ N
|Θ| is asubstitution occurrence counterlist counting the occurrence of each

member of the substitution listΘ in previous encounters.

In this definition,M is a language of speech-act [1] like message and action patterns of
the formperf(A, B, X) or do(A,Ac). In the case of messages (i.e. exchanged textual
signals),perf is a performative symbol (request, inform, etc.),A andB are agent
identifiers or agent variables andX is the propositional content of the message taken
from a logical languageL. In the case of physical actions (i.e. actions that manipulate
the physical environment) with the special “performative”do, Ac is the action executed
byA (a physical action has no recipient as it is assumed to be observable by any agent in
the system). BothX andAc may contain non-logical substitution variables that are used
for generalisation purposes (as opposed to logical “content variables” used by agents
to indicate quantification or to ask for a valid binding) . We further useMc ⊂ M to
denote the language of “concrete” messages that agents use in communication (and that
do not contain variables other than “content variables”).

To illustrate these concepts and to explain the semantics ofa frame, we will consider
an example of how the FIPA contract net protocol [5] can be implemented inm2

InFFrA.



Fcn =
D

˙

5

−→ cfp(A1, A2, 〈R, P 〉))
3

−→ propose(A2, A1, Q)

3
−→ accept-proposal(A1, A2, Q)

2
−→ do(A2, A1, R)

¸

,
˙

{ιX(P = Q) = Y,

¬Bref A1
(any X IA2Done(R, P )) ∧ ¬BA1IA2Done(R) @1,

BA2IA2Done(R,Q) @2,

BA1IA1Done(R,Q) ∧ BA1IA2Done(R, Q) @3,

BA2Q @4}, {}, {damaged(tires)}
¸

,
˙

0

−→ [ ]

1
−→ [A1/agent

1
, A2/agent

2
, P/priceOf (tire , X),

Q/priceOf (tire, 75), R/sell(tire, 4)],

1
−→ [A1/agent

3
, A2/agent

1
, P/priceOf (tire , X),

Q/priceOf (tires , 400), R/replace(tires)]
¸

E

,

Table 3. Interaction frame for the success path of the FIPA contract net protocol

For ease of presentation, we will writeT (F ), C(F ), etc. to denote the respective el-
ements of a frameF and use the compact notation〈Th(F ), C(F ), Θh(F )〉 instead of
(T, C, Θ, hT , hΘ), where

Th(F ) =
hT (F )[1]
−−−−−→ p1

hT (F )[2]
−−−−−→ p2 · · ·

hT (F )[n]
−−−−−−→ pn

and

Θh(F )[i] =
hΘ(F )[i]
−−−−−→ Θ(F )[i].

Table 3 shows an interaction frame for the success path of thecontract net protocol, the
following should be noted about this example:

– As can be seen, the first condition set (corresponding to the empty substitution)
contains feasibility preconditions of the respective performatives (in FIPA-SL [4]
with additional timestamps of the form@i indicating at which trajectory step a
condition has to hold), as far as they are relevant for frame execution.

– Definition 1 does not constrain which conditions are to be stored for a specific
enactment of a frame (even allowing for empty condition sets), and the task of ex-
tractingrelevantor evencrucial information from the agent’s knowledge is clearly
nontrivial. However, the reasoning framework to be defined in the following section
primarily uses conditions to identify similarities in encounters, while expectation
is drawn from utilities obtained during frame execution, making this approach less
sensitive to the way conditions are selected.

As for the different failure cases covered by the contract net protocol, these could ei-
ther be modelled implicitly by using timeouts and interpreting “silence as disapproval”
or explicitly by virtue of additional frames. For example, the frame of table 4 models
the refusal to submit a proposal.



Fcr =
D

˙

5

−→ cfp(A1, A2, 〈R, P 〉)
2

−→ refuse(A2, A1, Q)
¸

,
˙

{¬Bref A1
(any X IA2Done(R, P )) ∧ ¬BA1IA2Done(R) @1,

BA2(¬Feasible(R) ∧ Q ∧ ¬Done(R) ∧ ¬IA2Done(R)) @2},

{BA1(inStock(tire)) @1}
¸

,
˙

0

−→ [ ]

2
−→ [A1/agent1, P/priceOf (tire , X),

Q/¬inStock(tire), R/sell(tire, 4)]

Table 4. Interaction frame modelling the refusal to submit a proposal in the FIPA contract net
protocol

Together,Fcn andFcr capture the following observations about previous encoun-
ters:

– Five encounters started with a message matchingcfp(A1, A2, 〈R, P 〉), three of
them continued with a proposal byA2, the other two with a refusal. In two of the
former three cases, the proposal was accepted byA1 and the respective physical
action carried out byA2.

– One encounter has terminated after the second message or wascontinued with a
message not matchingaccept-proposal(A1, A2, Q).

– For four of the five encounters, substitutions are available. Two contracts were
made, one about the delivery of four tires for a price of75 each, one about the
replacement of a set of tires for400. Two calls for proposals for the delivery of four
tires were refused because no tires were available (which isa generalisation over
two encounters, leavingA2 unspecified).

4.2 Making predictions with m2inffra frames

To usem
2

InFFrA frames for the prediction of future encounters we need a formal model
of their prospectiverather than theretrospectivesemantics informally described in the
previous section.

Here, the idea is (as in [20]) to use an entire repositoryF = {F1, . . . , Fn} of
frames, each representing a set of message/action sequences by virtue of the substitu-
tions that can still be applied to its trajectory. Given anencounter prefix, i.e. a sequence
of messages already uttered in the current encounter, and the agent’s current belief state,
we can filter out those paths that either (a) do not match the encounter prefix or (b) are
labelled with logical conditions not satisfied under current knowledge base content.
Considering the remaining (i.e. relevant) paths, we can then assign probabilities to all
the possibleencounter continuations(or postfixes) using the counter values ofF ∈ F .
Additionally, domain-dependentcase-based reasoning[8] techniques can be applied by
introducing a similarity measure on messages, such that different instances of a postfix
pattern have different probabilities depending on their similarity with past enactments



of the respective frame. Hence,F represents a simplified version of an expectation
network that has the form of a tree.

More formally, letw ∈ M∗
c the encounter prefix and

ϑfixed(F, w) = unifier(w, T (F )[1:|w|])

the most general unifier (MGU) ofw and the corresponding trajectory prefix
T (F )[1:|w|] of F (whereunifier(·, ·) returns the most general unifier for two message
patterns or sequences thereof, or⊥ if they cannot be unified).

For a given knowledge baseKB ∈ 2L describing the belief state of an agent (KB is
assumed to be encoded in the same propositional languageL as the content of messages
for reasons of simplicity), this allows us to define

Θposs(F,KB , w) =
{
ϑ
∣
∣∃ϑ′.ϑ = ϑfixed(F, w)ϑ′ ∧ ∃i.KB |= C[i]ϑ

}

as the set of substitutions stillpossibleunderF , KB , andw. The elements ofΘposs are
extensions ofϑfixed for which at least one condition inC(F ) is satisfied.3

For a givensimilarity measureσ : M∗ ×M∗ → R on message pattern sequences,
we can define

σ(ϑ, F ) =

|Θ(F )|
∑

i=1

similarity
︷ ︸︸ ︷

σ(T (F )ϑ, T (F )Θ(F )[i])

frequency
︷ ︸︸ ︷

hΘ(F )[i]

relevance
︷ ︸︸ ︷

ci(F, ϑ,KB)

to assess to which extentϑ is “applicable” toF . In this definition,hΘ(F )[i] is used to
take the frequency of a past condition/substitution into account andci expresses how
relevant a particular frame conditionC[i] is in determining the applicability ofϑ.4 This
quantity can be used to derive a conditional probability distribution over the different
substitutionsϑ F may be enacted under:

P (ϑ|F, w) =

{

α · σ(ϑ, F ) if ϑ ∈ Θposs (F,KB , w)

0 otherwise
(1)

for some normalisation constantα. Finally, combining this formula with the frequency

P (F |w) =

{
hT (F )[|T (F )|]

P

F ′∈F,unify(T (F ′)[1:|w|],w) hT (F ′)[|T (F ′)|] if unify(T (F )[1:|w|], w)

0 else

3 We use the notationLϑ here for the result of applyingϑ to each element of a list or setL, and
ϑϑ′ for the substitution that results from applyingϑ′ after ϑ. Further, we implicitly assume
that only minimal substitutions are considered forϑ′, only replacing variables that actually
occur inT (F ) or in someC(F )[i].

4 A simple definition ofci, considering only those conditions currently satisfied, isfor example
given by

ci(F, ϑ,KB) =

(

1 if KB |= C(F )[i]Θ(F )[i]ϑ

0 otherwise.



of F matching any past encounter starting withw allows us to compute thecontinuation
probabilitywith which an encounter that started withw will be concluded withw′:

P (w′|w) =
∑

F∈F ,ww′=T (F )ϑ

P (ϑ|F, w)P (F |w)

Looking back at figure 1, this equation defines a probability distribution for the
possible continuations of an encounter given a current “path” in the expectation network
induced byF . Next, we will show how this semantics can be used to conduct rational
reasoning about communication inm

2

InFFrA.

5 Reasoning About Communication inm2inffra

Based on the formal model presented in the previous section,the general principles of
InFFrA can be concretised and embedded into an agent architecture to endow agents
with the ability to reason and make decisions about communication. To illustrate how
this is done, we will again go through the individual steps ofthe abstract reasoning
cycle depicted in figure 3.

Interpretation and Matching/AssessmentAt the beginning of each reasoning cycle,
the knowledge baseKB and the encounter prefixw are updated from the peer’s last
utterance.

As for matching and assessment, the agent checks ifΘposs (Fa,KB , w) 6= ∅, i.e. if
the trajectoryT (Fa) of the active frameFa matchesw and the remaining steps ofT (Fa)
can still be executed underKB . Considerations about thedesirabilityof Fa could also
play a role in the framing decision, and a possible definitionfor such a desirability
criterion will be given in our description of frame enactment.

Returning to the example of the previous section, we consider an encounter
with F = {Fcn , Fcr} and Fa = Fcn for both agents and prefixw =
cfp(agent2, agent1, 〈sell (tire, 1), priceOf (tire, X)〉), so thatagent1 can success-
fully matchFa againstw. If for exampleagent1 did only sell tires in fours, executability
of Fa would still fail and require a re-framing.

Adjustment/Re-FramingThe idea behind grouping different courses of interaction into
frames is to exploit the fact that (usually) similar types ofinteraction (e.g. negotiation
dialogues, contracting, etc.) exist which differ only in the specific content of messages,
but not in what they achieve for the interacting parties. This hierarchical view enables
agents to optimisewithin the current frame while disregarding other frames during a
conversation. However, if the active frame cannot be carried out any longer, the search
space for appropriate continuations has to be expanded.

In this case, a variety of frame selection heuristics can be used to find suitable
alternatives. In our implementation, experimental results for which are presented in the
following section, we use hierarchical reinforcement learning techniques [24] to learn
an optimal frame selection strategy over time. Also, we construct new frames through
concatenation in a planning-like manner to achieve the original goal of a conversation
that went awry. An extensive treatment of the resulting architecture can be found in [3].



At the end of an encounter – in order to maintain a concise model of past interactions
– the active frame is augmented by a substitution that unifiesits trajectory withw, along
with a set of conditions that were required for or precipitated by the execution.

EnactmentIf the active frame contains no further steps, the agent simply terminates the
encounter, as is the case if no active frame could be found. Else, the next message or
action is chosen by applying the locally optimal substitution ϑ∗ to the next step of the
active frame’s trajectory.

To determineϑ∗, we assume that the agent’s preference towards different world
states is expressed by means of a real-valuedutility functionu : M∗ × 2L → R, where
u(w,KB) is the utility associated with a message sequencew being executed for initial
knowledge baseKB .

Since some variables ofϑ∗ will be bound by the agent himself, while concrete
values for others will be “selected” by his peer with a certain conditional probability,
the optimal substitution is defined as the one with the highest expectedutility. Normally,
this notion of expected utility will also be used during frame assessment to determine
the desirability of a specific substitution or entire frame.For example, one could force
a re-framing unless executing the postfix of the active frameunder the most desirable
substitution yields a positive utility.

If we write Θs andΘp for the sets of possible substitutions the agent and his peerin
the current encounter can apply, respectively, the expected utility of executing a frame
F underϑs ∈ Θs is given by

E[u(ϑs|F, w,KB)] =
∑

ϑp∈Θp

u(postfix(T (F ), w)ϑsϑp,KB) · P (ϑp|ϑs, F, w),

wherepostfix(T (F ), w) is the postfix ofF corresponding to prefixw (which can be
determined by applying the most general unifier ofw and the corresponding prefix of
T (F ) to the respective rest) andP (ϑp|ϑs, F, w) is the probability with which the peer
will conditionally choose some substitutionϑp ∈ Θp depending on the agent’s choice
ϑs ∈ Θs.

An approximation ofP (ϑp|ϑs, F, w) can be computed from the past cases stored in
F . Using Bayes’ rule and applying equation 1 to both numeratorand denominator, we
can approximate

P (ϑp|ϑs, F, w) =
σ(ϑfixed (F, w)ϑsϑp, F )

∑

ϑ σ(ϑfixed (F, w)ϑsϑ, F )

if ϑfixed(F, w)ϑsϑp ∈ Θposs (F,KB , w) (and 0, else). By means of standard expected
utility maximisation, the optimal substitutionϑ∗ is then given by

ϑ∗(F, w,KB) = arg max
ϑs∈Θs

E[u(ϑs|F, w,KB)].

Concluding the above example under the assumption that no re-framing was nec-
essary,agent1 now has to select an appropriate proposal. That is, each of the elements
of Θposs yields a different price for a tire, and the search for the best substitution is a
search for the highest possible price (asu will usually increase with higher profit) such



thatagent2 will still accept (as the probability for the accept will usually decrease with
an increasing price) and will be guided by similar past casesstored inΘ(Fcn ), i.e. by
past prices for tires.

6 Experimental validation

In order to show their performance in practice, the conceptspresented so far have
been implemented and tested in the multiagent-based link exchange simulation system
LIESON [17]. In this system, agents representing Web sites engage in communication
to negotiate over mutual linkage with the end of increasing the popularity of one’s own
site and that of other preferred sites. Prior to reporting onthe actual simulation results
obtained with simple proposal-based negotiation frames inthis application scenario, we
briefly discuss theLIESON system and howm2

InFFrA agents are realised in this simula-
tion system.

6.1 TheLIESON system

TheLIESON environment is populated by a number of agent who represent web sites
and seek to optimise those web-sites linkage situation on behalf of human web site
owners. It is assumed that in-links increase traffic on a site, and that agents are trying to
maximise the popularity of their own site, and that of other sites which they rate highly.
Private ratings are not visible to other agents and represent the site owner’s opinion of
the content of other sites. In contrast to private ratings, numerical link weights can be
used to displaypublic ratings that can be observed by anyone in the system.

The only available physical (i.e. utility-affecting) actions in this domain are the ad-
dition and deletion of numerically rated links originatingfrom one’s own site and the
modification of rating values (where the probability of attracting more traffic through a
link depends on the rating value). Additionally, agents mayengage in low-cost commu-
nication with each other to request certain physical actions of others.

Thus, the strategic aspect of this application derives fromthe fact that agents can use
public weights to influence others’ popularity and that theycan employ this “power” to
influence their peer’s behaviours. At the same time, there isa dilemma between being
honest about one’s own opinion of others (after all, one aimsto “speak his mind”) and
agreeing to deviate from private belief in selecting publicratings in order to “massage”
the other into a more cooperative stance.

LIESON provides a highly dynamic and complex interaction testbed for the follow-
ing reasons:

– Agents only have a partial and incomplete view of the link network. In particular,
agents engage in non-communicative goal-oriented action in between encounters,
so that the link network (and hence the agents’ utility situation) may change while
a conversation is unfolding.

– The number of possible link configurations is vast, and agents can only predict
possible utilities for a very limited number of hypothetical future network layouts.



– There is no notion of commitment – agents choose frames in a self-interested way
and may or may not execute the physical actions that result from them. Also, they
may undo the effects of these actions later on.

As utility benchmarks for our experiments we use the averagescore5 of all agents in
two particular link network layouts:

– Complete, honest linkage: The network is fully connected and each link displays
the truthful private rating the source site agent holds of the target site.

– Complete, politically correct rating: The network contains exactly those links
whose private rating values are positive, i.e. if an agent has a positive opinion of
another agents the two sites will be connected by a link displaying the correct pri-
vate rating, if not the source site agent “remains silent” regarding hisd opinion of
the target site.

Interestingly, the politically correct linkage patterns results in a higher average score
(and higher social welfare) and, although we have not derived analytical bounds for this
utility function, no other linkage configuration seems to bemore rational at a global
level. In particular, extreme configurations (such as a network with empty link set or
fully connected networks with random/highly positive/highly negative link weights re-
gardless of private ratings) yield much smaller utility values. Hence, attaining the level
of these benchmark values would be an impressive achievement for agents given that
they know nothing about this behaviour of the global utilityfunction.

6.2 m2inffra agents inLIESON

LIESON agents consist of a non-social BDI [16] reasoning kernel that projects future
link network configurations and prioritises goals according to utility considerations. If
these goals involve actions that have to be executed by otheragents (and the agent is
not already engaged in another conversation), them

2

InFFrA component initiates a new
framing process.

This framing process begins with an initial message, by which the agent contacts
any agent that can perofm the desired action (in the case ofLIESON, the appropriate
communication partner can be unambiguously determined since only an the agent own-
ing a web-site can modify the outgoing links of that site) andruns until either (i) the
goal in question has been achieved and the encounter can be terminated, (ii) no ade-
quate frame can be found and the agent chooses to terminate the conversation, or (iii)
the other party terminates the encounter.

5 The score of agents in each rounds is calculated by combiningthe current popularity of their
own site and the popularities of preferred sites, while alsotaking into account to which ex-
tent these sites express similar opinions (in terms of public rating values i.e. link weights).
Popularity estimates for hypothetical link configurationsare obtained by using a shortest-path
model of stochastically behaving web users, where link transition probabilities depend on the
numerical link weights.



We report on experiments in which agents were equipped with simple proposal-
based frames with the following six trajectory models:

request(A, B, X) → accept(B, A, X) → confirm(A, B, X) → do(B, X)

request(A, B, X) → propose(B, A, Y ) → accept(A, B, Y ) → do(B, Y )

request(A, B, X) → propose-also(B, A, Y ) → accept(A, B, Y ) →

do(B, X) → do(A, Y )

request(A, B, X) → reject(B, A, X)

request(A, B, X) → propose(B, A, Y ) → reject(B, A, Y )

request(A, B, X) → propose-also(B, A, Y ) → reject(B, A, Y )

The first three frames allow for accepting to perform a requested actionX , making a
counter-proposal in whichY is suggested instead ofX , or usingpropose-also to
suggest thatB will executeX if A agrees to executeY . The last three frames can be
used to explicitlyreject a request or proposal. In that,X andY are link modification
actions; each message is available in every state and incursa cost that is almost negligi-
ble compared to the utilities gained or lost through linkageactions (yet high enough to
ensure no conversation goes on forever). Also, agents can always send astop action
to indicate that they terminate an encounter if they cannot find a suitable frame.

After their termination, encounters are stored in the framefrom which
they have originated. For example, agenta1 would store the encounter
request(a1, a2, add(a2, a1, 2)) → reject(a1, a2, add(a2, a1, 2)) by adding a
substitution [A/a1, B/a2, X/add(a2, a1, 2)] to the respective frame together with
an automatically generated list of conditions that were required for physical action
execution.

As state abstraction, we use generalised lists of statements of the form
{↑|↓}({I, R}, {I, R, T }, {+,−, ?}) representing the physical actions talked about in
an encounter.↑ and ↓ stand for a positive or negative link modification (i.e. addi-
tion/deletion of a link or an increase/decrease of its rating value),I/R for the initiator
and responder of the encounter,T for a third party;+/−/? indicates whether the (learn-
ing) agent likes, dislikes or doesn’t know the target site ofthe link modification. For
example, ifa1 anda2 talk aboutdo(a1, deleteLink (a1, a3)) in an encounter initiated
by a1 (while the learning agenta2 is the responder and likesa3’s site) this is abstracted
to ↓(I, T, +). If in the same conversationa2 suggests to modify his own link toward
a1 (whom he does not like) from a rating value of1 to 3, the state (vizsubject) of the
encounter becomes{↓(I, T, +), ↑(R, I,−)}. The intuition behind this state abstraction
method is to capture, in a generalised form, thegoal of the conversation that can cur-
rently be realised while at the same time reducing the state space to a reasonable size.

Figure 4 shows a comparison for a population of ten agents anda fixed profile of
private ratings (preferences) towards other agents (both plots show the performance of
the best and the worst agent in the group as well as the averageutility over all agents).
The constants “upper benchmark” and “lower benchmark” denote the quantities for
politically correct and honest linkage as discussed above,respectively.
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In the first plot, agents employ BDI reasoning and additionally send requests to
others whenever they favour execution of someone else’s action according to their BDI
queue. These requests are then enqueued by the recipient as if he had “thought of”
executing the respective action himself. Thus, it depends on the recipient’s goal queue
and on his utility considerations whether the request will be honoured or not. As one
can see, after a certain amount of time agents do no longer execute any of the actions
requested by others, and cannot find any profitable action to execute themselves, either.
The system converges to a stable state.

The second plot shows the results of a simulation with the same setup as above
but usingm

2

InFFrA agents. Again, agents issue requests whenever they identify that
someone else could do something useful. Quite clearly, these agents perform much
better than in the BDI case. In fact, more than one hundred simulations with identical
settings have shown that we can ensure that agents will always reach a utility level close
to that of the upper benchmark and this is quite impressive considering thatm2

InFFrA
agents know nothing about cooperation potentials, others’preferences or the like. As in
the BDI case, they prioritise their goals and actions only according to projected scores
and contact others whenever they need someone else to perform an action that appears
beneficial to them.

At first glance, it may seem only natural thatm
2

InFFrA agents outperform BDI agents
who use very simplistic means of communication. The important insight, however, lies
in the fact thatany rational agent design would perform poorly in this situation that is
based on an pre-determined specification of communication semantics. What these sim-
ple BDI agents do is nothing but assess the usefulness of requests given that requestees
always perform the actions others ask them to do. If this assessment suggests that oth-
ers’ actions are more desirable than those one can perform himself, it is only rational to
prefer requests to physical actions. And yet, because of agents’ egotistical stance, this
results in a complete deadlock of the system where agents even fail to improve their
situation using those actions they can perform themselves.Thus, implicitly, they are
presupposing that everyone will adhere to a pre-specified semantics (namely, that all
agents strictly obey therequest(A, B, X) → do(B, X) pattern) but cannot respond
to a situation in which this is not the case (for example by giving up and not issueing
any more requests).

In the light of these results, we can state our main conjecture: In environments
with (possibly non-benevolent) peer agents showing non-stationary behaviour, the per-
formance of agents using prespecified communication protocols or assuming a fixed
semantics of communication can become arbitrarily bad, while m

2

InFFrA includes the
ability to learn what to expect from peers in a specific interaction situation.

Yet another interesting interpretation can be drawn from the fact that the average
utility of m

2

InFFrA agents lies within the range of the two benchmark values. Thefact
that agent utilities evolve around these benchmarks indicates that they truly strive to
make strategic communication moves and exploit the advantages of concealing certain
beliefs.



7 Conclusions

In this paper we have presented an architecture for reasoning about communication
patterns within the framework of empirical semantics. Froma practical point of view,
this contributes to the “agent side” of ACL research, as it offers methods to construct
and implement agents that are able to deal with given specifications of rules that govern
the communication in a system. Three features are particularly interesting about our
approach:

1. The m
2

InFFrA frames used in our formal model combine information about the
surface structure of communication sequences, logical constraints (frame condi-
tions) and empirical data (counters). This allows for greatflexibility with respect
to what is defined in commonly agreed protocols, semantics, etc. Forexample, in
non-exploitable protocols as those used in mechanism design, it may suffice to just
specify admissible message sequences (because it does not matter what the agents
think, for example), while other types of interactions suchas contracting may re-
quire commitment rules, descriptions of agents’ mental states, etc.

2. Agents are capable of exploiting past communication experience and to combine
this experience with specifications of communication patterns that have been pro-
videda priori. Thus, they are able to “start out” with a predefined set of patterns and
to test to which degree their peers comply with them. This offers a major advantage
in open systems where adherence to protocols, truthfulnessconstraints, etc. cannot
be guaranteed. At the same time, it paves the way for the use ofmachine learn-
ing methods that make minimal assumptions about others’ behaviour and simply
accumulate communication knowledge as they go.

3. The architecture combines decision-theoretic (probabilistic) reasoning methods
with symbolic communication. This constitutes an important contribution to the
practical design of communicating agents, but also an initial step to explore the spe-
cial character of communication as opposed to general action. In [20], for example,
we have argued for trading off optimality against predictability in communication
so that more reliable communication patterns can occur. Using decision theory as
a firm foundation for rational reasoning can help formalising what agents (should)
do in communication and whether and in which way this differsfrom the models
used in, e.g. game theory and economics.

A major advantage of our approach is that it allows us to combine the decision-theoretic
power of RL models with the knowledge-based aspects of symbolic agent communica-
tion, interaction protocols and ACL research in general. Itis this aspect that makes
rational action and learning possible for high-level agentarchitectures that employ log-
ical reasoning.

Not all aspects of research onm
2

InFFrA have been covered in the present article. An
extensive treatment of the additional components requiredto use frame-based learning
as part of a complete agent architecture can be found in [3]. One of the most inter-
esting aspectd discussed there is a generalisation method for frame trajectories, which
uses cluster validation techniques [7] on the (possibly fuzzy) clustering a set of frames
induces on the space of possible message sequences. This endows agents with the ca-
pacity to create frames for encounters not matching any existing frame and to extend



the use of these frames to similar encounters in the future byabstracting from indi-
vidual instances. Details of the application of hierarchical reinforcement methods on
m

2

InFFrA are covered in [19]. Also, we have tested the architecture using more com-
plex argumentation-based negotiation frames in [18]. Building on the framework of
interest-based negotiation[15], these frames enable agents to gather information about
other’s goals and assumptions, to argue about the proposalsthey make, to attack others’
claims, etc. To our knowledge, this work constitutes the first attempt to use learning in
multiagent argumentation, and it can be considered a major advantage of our frame-
work that it allows for the application of machine learning techniques to such complex
forms of communication as argumentation-based negotiation. Finally, in [9] we discuss
the potential of translating general expectation networksto m

2

InFFrA frames and vice
versa.

In the future, we intend to look at more complex models of interaction frames
with trajectory models that are more expressive than simplelinear message pattern se-
quences. Also, we want to investigate to which degreem

2

InFFrA agents are capable of
exchanging meta-frame information to reach consensus about which frames to use. As
far as learning capabilities are concerned, we would like tointroduce methods for induc-
tive learning of context constraints. I.e., rather than just generalise over existing frames
in terms of trajectory surface structure and updating frequency counters and substitution
lists, we would like to enable agents to generalise from the belief states in which frames
where applicable (positive samples) or not (negative samples). Finally, a lot of work
needs to be done on automatically transforming ACL and interaction protocol specifi-
cations into readily usablem2

InFFrA frames. In particular, them2

InFFrA formalism needs
to be adapted to established frameworks for ACL and protocolsemantics specification
to facilitate automated transformation methods.
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