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ABSTRACT
Communication in multiagent systems (MASs) is usually governed
by agent communication languages (ACLs) and communication
protocols carrying a clear cut semantics. With an increasing degree
of openness, however, the need arises for more flexible models of
communication that can handle the uncertainty associated with the
fact that adherence to a supposedly agreed specification of possible
conversations cannot be ensured on the side of other agents.

As one example for such a model,interaction framesfollow an
empirical semanticsview of communication, where meaning is de-
fined in terms of expected consequences, and allow for a combi-
nation of existing expectations with empirical observation of how
communication is used in practice.

In this paper, we use methods from the fields of case-based rea-
soning, inductive logic programming and cluster analysis to devise
a formal scheme for the acquisition and adaptation of interaction
frames from actual conversations, enabling agents to autonomously
(i.e. independent of users and system designers) create andmain-
tain a concise model of the different classes of conversation in a
MAS on the basis of an initial set of ACL and protocol specifica-
tions. This resembles the first rigorous attempt to solve this prob-
lem that is decisive for building truly autonomous agents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelli-
gence—Multiagent Systems, Languages and Structures

General Terms
Languages, Theory
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1. INTRODUCTION
Traditional approaches to agent communication, with theirroots

in speech act theory [1], do not respect theautonomy[10] of in-
dividual agents in that they suppose effects of communication on
agent’s mental states [18, 2] or a normative quality of publicly vis-
ible commitments [7, 19]. In environments involving some degree
of opennesslike, for example, design heterogeneity or dynamically
changing populations, such a “normative” attitude is put into ques-
tion by the fact that adherence to supposedly agreed modes ofcom-
munication cannot be ensured on the side of other agents. While
this problem stems from a fundamental conflict between agentau-
tonomy and the need for cooperation (and communication) with
other agents towards a joint goal, there is also a practical side to it
that can be phrased in the form of two questions:

1. If strict adherence to communication languages and proto-
cols cannot be taken for granted, how can meaningful and
coherent communication be ensured?

2. Observing the course of conversations that take place in
a MAS, how can agents effectively organise this kind of
knowledge and relate it to existing specifications, so that they
can actually benefit from it?

What is obviously required to answer these questions is aproba-
bilistic model of agent conversation. Generic “purely” probabilistic
models, however, are not very well suited for this task, since sym-
bolic agent communication is not at all “random”, and we would
rather like to identify patterns and relational propertiesof commu-
nication (in the same way as communication protocols containing
variables resemble patterns).

Interaction frames [16] are such a model of agent conversation,
capturing both the surface structure of possible messages or mes-
sage sequences and logical conditions regarding the context of their
execution. What distinguishes interaction frames from themethods
commonly used for the specification of ACL and protocol seman-
tics is that they allow for an explicit representation ofexperience
regarding their practical use. Instead of being interpreted norma-
tively, they are assigned anempirical communication semantics
[15], where the meaning of an utterance (or sequence thereof) is
defined solely in terms of it’s expected consequences, as given by
past experience with a frame (to say it in terms of speech act theory
[1], the meaning of illocutions are defined solely in terms oftheir
expected perlocutions). Currently two different “flavours” of em-
pirical communication semantics exist. While interactionframes
view empirical semantics from the perspective of symbolic interac-
tionism, expectation networks [11] take the point of view ofsocial
systems theory.



As a matter of fact, empirical semantics derives from actualinter-
actions and hence has to be acquired and adapted dynamicallyfrom
these using empirical observation. In this paper, we use methods
from the fields of case-based reasoning, inductive logic program-
ming and cluster analysis to devise a formalframe learning scheme
FLeaS for the acquisition and adaptation of interaction frames from
the actual conversations conducted in a MAS, enabling agents to
autonomously (i.e. independent of users and system designers)
create and maintain a concise model of the different classesof con-
versation on the basis of an initial set of ACL and protocol spec-
ifications. This resembles the first rigorous attempt to solve this
problem, which is a crucial one for building agents that communi-
cate and act in full appreciation of the autonomy of their respective
peer.

The remainder of this paper is structured as follows: In the fol-
lowing section we give a formal definition of interaction frames
and their semantics and identify desirable properties of methods
for their acquisition and adaptation. In section 3 we develop such
a method that views frames as clusters in the space of interactions
and aims at maximising the quality of the overall clustering. Sec-
tion 4 closes with some conclusions and a perspective of possible
future work.

2. INTERACTION FRAMES
Before turning to the acquisition and adaptation of frame-based

empirical semantics, we quote [4] for a formal definition of apar-
ticular instance of the interaction frame data structure. This defi-
nition uses a languageM of speech-act [1] like message and ac-
tion patterns of the formperf(A,B,X) or do(A,Ac). In the case
of messages (i.e. exchanged textual signals),perf is a performa-
tive symbol (e.g.request, inform), A andB are agent identifiers
or agent variables andX is the content of the message taken from
a first-order languageL . In the case of physical actions (i.e. ac-
tions that manipulate the physical environment) with the pseudo-
performativedo, Ac is the action executed byA (a physical action
has no recipient as it is assumed to be observable by any agentin
the system). BothX andAc may contain non-logical substitution
variables used for generalisation purposes (as opposed to logical
“content” variables used by agents to indicate quantification or to
ask for a valid binding) . We further useMc ⊂ M to denote the
language of “concrete” messages that agents use in communication
(and that do not contain variables other than content variables).

This said, frames are formally defined as follows:

Definition 1 (interaction frame) An interaction frameis a tuple
F = (T,Θ,C,hT ,hΘ), where

• T = 〈p1, p2, . . . , pn〉 is a sequence of message and action pat-
terns pi ∈ M , thetrajectoryof the frame,

• Θ = 〈ϑ1, . . . ,ϑm〉 is an ordered list ofvariable substitutions,

• C = 〈c1, . . . ,cm〉 is an ordered list ofcondition sets, such that
c j ∈ 2L is the condition set relevant under substitutionϑ j ,

• hT ∈ N
|T| is a trajectory occurrence counterlist counting the

occurrence of each prefix of the trajectory T in previous con-
versations, and

• hΘ ∈ N
|Θ| is a substitution occurrence counterlist counting

the occurrence of each member of the substitution listΘ in
previous conversations.

While the trajectoryT(F) models the surface structure of mes-
sage sequences that are admissible according to frameF, each el-
ement ofΘ(F) resembles a past binding of the variables inT(F),
and the corresponding element ofC(F) lists the conditions required
for or precipitated by the execution ofF in this particular case.
hT(F) finally indicates how oftenF has been executed completely
or just in part,hΘ(F) is used to avoid duplicates inΘ(F) andC(F).

Example 1 Consider the following frame (for the sake of readabil-
ity, we write the hT and hΘ values next to the corresponding trajec-
tory steps and substitutions):

F =
〈

〈 6
−→ request(A1,A2,X)

4
−→ accept(A2,A1,X)

3
−→ confirm(A1,A2,X)

3
−→ do(A2,X)

〉

,
〈

{self(A1),other(A2),can(A2,do(A2,X)},

{owns(A1, ticket(Y,CPE))}
〉

,
〈 2
−→ 〈[A1/a2], [A2/a1],

[X/book(flight(MEX,CPE))]〉,

1
−→ 〈[A1/a3], [A2/a1],

[X/book(hotel(CPE))]〉
〉

〉

According to F, a total number of six requests has been issued,
four of which have been accepted by the respective peer. Three of
these were then followed by a confirmation and execution of the
designated action, and substitutions and conditions existfor the
cases in which the frame has been “executed” as a whole. WhileF
implicitly states how many conversations have ended prematurely
or turned out differently, any further information would have to be
stored outside F (i.e. in another frame).

The semantics of frames has been defined accordingly as a prob-
ability distribution over the possible continuations of aninteraction
that has started withw∈ Mc and is computed by summing up over
a setF of known frames:

P(w′|w) = ∑
F∈F

ww′=T(F)ϑ

P(ϑ|F,w)P(F|w)

To reduce the complexity associated with reasoning about a par-
ticular interaction, an agent can alternatively select a single frame
as a (normative) model of this interaction and restrict reasoning to
this frame. For this hierarchical approach to be reasonableas well
as successful, however, it is required that the different frames con-
cisely capture the different classes of conversations thatcan take
place. This requirement has to hold as well for frames used byex-
ternal observers to model, analyse or describe the interactions in a
MAS.

What is hence required is a method for the acquisition and adap-
tation of interaction frames from the actual interactions in a MAS,
such that the resulting set of frames corresponds to the different
classes of interactions as perceived by the agent or external ob-
server. We propose such a method in the following section.

3. ACQUISITION AND ADAPTATION OF
FRAMES

As we have said, the need for its acquisition and adaptation from
actual interactions is an inherent property of empirical semantics.
Using a set of interaction frames for representation, we have further
argued that these frames need to model different classes of interac-
tions within a MAS.



We will now present a method for the adaptation and acquisition
of empirical semantics using the previous section’s formalisation
of interaction frames. For this, we will introduce a metric on the
spaceM ∗

c of finite-length message sequences and then extend it to
a metric between frames. This allows us to interpret a frame repos-
itory (i.e. a set of known frames) as a (possibly fuzzy) clustering
in the “conversation space”, and hence to measure the quality of a
frame acquisition and adaptation method in terms of the quality of
the clustering it produces (referred to as “cluster validity” in [8]).

According to this interpretation, adaptation from a new conver-
sation either introduces a new cluster (viz frame) or it addsto an
existing one with or without modifying the trajectory of therespec-
tive frame. The different alternatives can be judged heuristically in
terms of the corresponding cluster validities, which we will use to
devise an algorithm for the adaptation of frame repositories. To per-
form the necessary frame modifications in any of the above cases,
we will also present a generic algorithm for merging two frames
into one.

3.1 A distance metric on message sequences
As a basis of our interpretation of interaction frames as clus-

ters, we will start by introducing a distance metric on the set of
possible messages and then extend it to finite-length message se-
quences. Since messages as defined above are essentially first-
order objects, we could simply use a general purpose first-order
distance like the one proposed in [17]. Instead, we introduce a fam-
ily of mappings on messages that are parametrised on two functions
ds andDs and allow us to add a “semantic” flavour in the form of
domain-specific knowledge. As we will see, the most basic (and
domain-independent) instance of this family is in fact a metric on
messages (i.e. it particularly satisfies the triangle inequality), which
can easily be extended to message sequences.

Definition 2 Let ds : S×S 7→ [0,1] a (normalised) metric on the
set S of primitive symbols (i.e. function and predicate names) of
M and L . Let D : (S×N)2 7→ [0,1] a (normalised) mapping on
pairs of symbols and their respective parameters. We then define a
mapping dp : Mc×Mc parametrised on ds and Ds with

dp(m,n) =
1

1+∑i, j Ds(m, i,n, j)
·

·
(

ds
(

m,n
)

+
|m|

∑
i=1

|n|

∑
j=1

Ds(m, i,n, j) ·dp(mi ,n j )
)

where x, |x| and xi denote the operator symbol (or “head”), number
of arguments (i.e. arity of the operator symbol) and ith argument of
x, respectively.

Hence, the distance of two messagesm and n is computed from
the distances of both their heads and their arguments, where
D(m, i,n, j) determines in how far the distance betweenm andn
depends on the distance between theith argument ofm and thej th
argument ofm.

Example 2 Consider a genealogy domain with predicates
parents(·, ·, ·), mother(·, ·) and child(·, ·). The following (partial)
definition of ds induces an intuitive (but otherwise arbitrary)
similarity between these concepts:

parents mother child
parents 0 1/2 1/2
mother 1/2 0 1/2
child 1/2 1/2 0

We further define Ds(x, ·,y, ·) to be the identity matrix and assume
that D(x, i,y, j) = D(y, j ,x, i). The following partial definitions of
D(x, i,y, j) establish a connection between the corresponding pa-
rameters ofdifferent predicates (e.g., the parameters of parents
denote mother, father and child, whereas those of child denote child
and parent):

parents
mother father child

child 0 0 1

ch
ild

parent 1 1 0

parents
mother father child

mother 1 0 0

m
o
th

e
r

child 0 0 1

child
child parent

mother 0 1

m
o
th

e
r

child 1 0

For three individuals Al, Bo, and Zoe and using a trivial definition
of ds for these symbols, dp for example takes the following values:

m n dp(m,n)
child(Zoe,Al) child(Zoe,Bo) 1/3
child(Zoe,Bo) parents(Bo,Al,Zoe) 3/8

parents(Bo,Al,Zoe) child(Zoe,Al) 3/8
mother(Bo,Zoe) child(Zoe,Al) 2/3

So what are the general requirements onds andDs such thatdp
is a metric? Formally, to resemble a metric, a mappingδ needs to
satisfy the following three conditions:

1. δ(m,n) ≥ 0 with equality iff m= n

2. δ(m,n) = δ(n,m) (symmetry)

3. δ(m,o) ≤ δ(m,n)+δ(n,o) (triangle inequality)

If the latter part of the first condition is dropped, the resulting map-
ping is called a pseudometric. For example, this would be thecase
for ds if it was to encode the fact that two symbols denote the same
individual. It could be argued, however, that such equalities (and
more complex ones likefatherOf(Bert) = Craig) should be treated
on the knowledge (i.e. semantic) rather than symbol (i.e. syntac-
tic) level. On the other hand, the above example shows thatds and
Ds can indeed be used to treat certain features of the application
domain at the symbolic level.ds andDs might even be adjusted
depending on the way different symbols are used in actual com-
munication (hence learning how different symbols, predicates and
functions relate to each other).

Since we requireds to be a metric (i.e., it particularly satisfies
the first condition),dp trivially satisfies this condition as well. If
additionallyDs is symmetric, i.e.D(m, i,n, j) = D(n, j ,m, i) for all
m,n,i, j , thendp can easily be shown to satisfy the second condi-
tion by means of structural induction (this is the reason whyin the
above example values of D have only been given for one direction).
In [13], measures that satisfy the first two properties are called sim-
ilarity measures. When used in clustering, however, such similarity
measures tend to cause strange behaviour.

A formal treatment of the triangle inequality could again bedone
by means of structural induction, imposing specific constraints on
Ds. This is beyond the scope of this paper, though, and will be
omitted for lack of space. Instead, we will henceforth concentrate



on the following generic and domain-independent definitions of ds
andDs (observe thatds is indeed a metric onS):

ds(x,y) =

{

0 if x = y

1 otherwise

Ds(x, i,y, j) =

{

1
|x| if x = y andi = j

0 otherwise

This means that every two distinct elements ofS have maximum
distance, only the distances of corresponding arguments ofthe
same predicate or function are taken into account, and the overall
distance is made up in equal parts by the distance of the operator
symbols and the average distance of the arguments. We will now
show thatdp is indeed a metric for this definition ofds andDs.

Proposition 1 d = dp
∣

∣

ds,Ds
with ds and Ds as defined above is a

metric onMc.

Proof: For the above definitions ofds andDs, dp can be written in
simplified form as

d(m,n) =

{

1
|m|+1 ∑|m|

i=1d(mi ,ni) if m= n

1 otherwise.

In order to prove that this resembles a metric, we have to show
that the three conditions given above hold for allm,n,o∈ Mc. The
first two conditions are trivially satisfied ifm 6= n or m = n and
|m| = |n| = 0 and can be show to hold for allm andn by means of
structural induction.

As for the triangle inequality, we only need to consider the case
m 6= o, since otherwised(m,o) = 0 and the condition is trivially
satisfied. Sinced(x,y) ≤ 1 for all x,y ∈ Mc (which is due to the
fact thatd is normalised and can again be shown by means of in-
duction), so that the inequality holds if eitherm 6= n or n 6= o, we
can restrict the proof to the casem= n = o. Thus, we have

d(m,o) = 1/(|m|+1)
|m|

∑
i=1

d(mi ,oi),

d(m,n) = 1/(|m|+1)
|m|

∑
i=1

d(mi ,ni), and

d(n,o) = 1/(|n|+1)
|n|

∑
i=1

d(ni ,oi),

such that the inequality is trivially satisfied for|m| = 0 and we can
again use structural induction to show that it holds for allm,n,o∈
Mc. 2

Example 3 The distance of the two messages

m= request(a2,a1,book(flight(MEX,CPE))) and

n = request(a3,a1,book(hotel(CPE)))

is given by

d(m,n) = 1/3·
(

d(a2,a3)+d(a1,a1)+

+d(book(. . . ),book(. . . ))
)

=

= 1/3· (1+0+1/2) = 1/2.

To finally obtain a metricd∗ : M ∗
c ×M ∗

c 7→ [0,1] on message
sequences, we simply compute the mean pairwise distance of the
corresponding elements for sequences of equal length.

Definition 3 (distance between message sequences)Let |v| and
vi denote the length and ith element of sequence v. We define

d∗(v,w) =

{

1
|v| ∑|v|

i=1d(vi ,wi) if |v| = |w|

1 otherwise.

Proposition 2 d∗ is a metric on the setM ∗
c of finite-length message

sequences.

Proof: Again, we have to show thatd∗ satisfies the three conditions
for being a metric. The first two conditions follow directly from the
definition ofd∗ and proposition 1.

As for the triangle inequality

d∗(u,w) ≤ d∗(u,v)+d∗(v,w),

we again use the fact thatd∗ is normalised andd∗(v,w) ≤ 1 for all
v,w∈ M ∗

c . We distinguish three different cases.
If |u| 6= |v| or |v| 6= |w|, then the r.h.s. is≥ 1, while the l.h.s. is

≤ 1, which satisfies the condition.
If |u| 6= |w|, the l.h.s. equals 1, but for the r.h.s. to be≤ 1 we

would require that|u| = |v| and |v| = |w|, which violates the as-
sumption.

If finally |u| = |v| = |w|, the inequality can be written as

|u|

∑
i=1

d(ui ,wi) ≤
|u|

∑
i=1

d(ui ,vi)+
|v|

∑
i=1

d(vi ,wi).

Sinced is a metric onMc and hence

d(ui ,wi) ≤ d(ui ,vi)+d(vi ,wi)

holds for alli, this is satisfied as well. 2

3.2 A metric between frames
Having defined a metricd∗ on the set of finite-length message

sequences, we will now extend this metric (a metric onpoints, so
to speak) to a metric on frames by interpreting these as sets of the
message sequences they represent (i.e., pointsets).

[13] proposes a general formalism to define a distance metricbe-
tween finite sets of points in a metric space. The distance between
two setsA andB is computed as the weight of the maximal flow
minimal weight flow through a special distance network between
the elements of the two sets. Additionally, one can assign weights
to the elements ofA andB in order to alleviate the difference in
cardinalities between the two sets. Interpreting (integer) weights as
element counts yields a metric onmultisets, which is ideally suited
to measure the distance between interaction frames in whichmul-
tiple instances of a particular message sequence have been stored
(corresponding to a substitution count larger than one). Wewill
briefly outline the general idea behind this metric and quotethe
relevant definitions. First recall some basic definitions regarding
transport networks.

Definition 4 (integer flow network) Let (V,E) a loop-free con-
nected finite directed graph with s,t ∈V and|{x∈V|(x,s)∈ E}| =
|{x ∈V|(v,t) ∈ E}| = 0. Let cap a function cap: E 7→ N. Let w a
function w: E 7→ N. Then N(V,E,cap,s,t,w) is called aninteger
flow network.

Definition 5 (flow) Let N(V,E,cap,s,t,w) an integer flow net-
work. Then a function f: E 7→ N is a flow for N iff

• f (e) ≤ cap(e) for all e∈ E and



• ∑u∈V f (v,u) = ∑u∈V f (u,v) for all v ∈ V\{s,t} (and
f (v,u) = 0 if (v,u) 6∈ E).

For a flow f , val( f ) = ∑v∈V f (s,v) = ∑v∈V f (v,t) is called the
valueof f and w( f ) = ∑e∈E w(e) · f (e) is called theweightof f .

Definition 6 (maximal flow minimal weight flow) Let f a flow
for N(V,E,cap,s,t,w). f is called a maximal flow for N iff for all
flows f′ for N, val( f ′)≤ val( f ). f is called a maximal flow minimal
weight flow for N iff for all maximal flows f′ for N, w( f ′) ≥ w( f ).

The following definition is used to assign integer weights tothe
elements of a set.

Definition 7 (integer weighting function) Let X a set. Then a
function W: 2X 7→ (X 7→ N) is an integer weighting functionon
X. sizeW : 2X 7→ N denotes the size of a set under weighting func-
tion W, i.e. sizeW(A) = ∑a∈AW(A)(a).

For given X and W, we further define QW
X = maxA∈2X sizeW(A)

as the tight upper bound for the size of any subset of X under W.

Based on that, a special distance network is defined through the
elements ofA andB.

Definition 8 (distance network) Let X a set with metric d and
weighting function W, M a constant. Then for all finite A,B∈ 2X ,
a distance networkN[X,d,M,W,A,B] = N(V,E,cap,s,t,w) is de-
fined as follows:

• V is a set of vertices, given by V= A∪B∪{s,t,a−,b−} (such
that s,t,a−,b− 6∈ A∪B);

• E is a set of edges given by E= ({s}× (A∪{a−}))∪ ((B∪
{b−})×{t})∪ ((A∪{a−})× (B∪{b−}));

• cap assigns a capacity to each edge, such that for arbitrary
a∈ A and b∈ B: cap(s,a) =W(A)(a), cap(b,t) =W(B)(b),
cap(s,a−) = QW

X − sizeW(A), cap(b−,t) = QW
X − sizeW(B),

and cap(a,b) = cap(a−,b) = cap(a,b−) = cap(a−,b−) =
∞; and

• w assigns a weight to each edge, such that for arbitrary a∈A
and b∈ B: w(a,b) = d(a,b), w(s,a) = w(b,t) = w(s,a−) =
w(b−,t) = w(a−,b−) = 0, and w(a−,b) = w(a,b−) = M/2.

Figure 1 shows an example of such a distance network and the ca-
pacities and weights assigned to the different edges.

Now, sincecap(s,a−) ≥ 0, cap(b−,t) ≥ 0, and cap(s,a−) +
∑m

i=1cap(s,ai) = cap(b−,t)+∑m
i=1 cap(bi ,t) = QW

X , the flow of the
maximal flow minimal weight flow froms to t of a distance net-
work equalsQW

X . [13] uses this fact for the following definition of
a distance between sets of points in a metric space.

Definition 9 (netflow distance) Let X a set with metric d and
weighting function W, M a constant. Then for all A,B ∈ 2X , the
netflow distancebetween A and B in X, denoted dN

X,d,M,W(A,B), is
defined as the weight of the maximal flow minimal weight flow from
s to t in N[X,d,M,W,A,B].

[13] further shows thatdN
X,d,M,W(A,B) is a metric on 2X and can

be computed in polynomial time (insizeW(A) and sizeW(B) and
in the time needed to compute the distance between two points) if
all weights are integers. Also, this metric is claimed to be much
better suited for applications where there is likely a pointwith a
high distance to any other point than, for example, the Hausdorff

s

a1

a2

a3

a4

a5

a−

b1

b2

b3

b4

b−

t

(W
(A
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0)

(Q W
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sizew (A),0)

(∞,d(a1,b1))

(∞
,M

/2
)

(∞
,M

/2)

(∞,0)

(W
(B)(b
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(Q
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−
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zew

(B
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Figure 1: Distance network for two setsA = {a1, . . . ,a5} and
B = {b1, . . . ,b4} (adopted from [13]). Edge labels are given in
the form (cap(a,b),w(a,b)) for an edge betweena and b.

metric (which only regards the maximum distance of any pointin
one set to the closest point in the other set).

Mapping each frame to the set of messages it represents and
weighting each element with the respective substitution count, we
directly obtain a metricdf on frames.

Definition 10 (distance between frames)Let

mf (F) = {m∈ M ∗
c |∃ϑ ∈ Θ(F). m= T(F)ϑ}

the set of message sequences stored in frame F. Let

W(mf (F))(m) = hΘ(F)[i] iff m = T(F)Θ(F)[i]

a weighting function for elements of mf (F). Then, the distance
between two frames F and G, denoted df (F,G), is defined as the
maximal flow minimal weight flow from s to t in the transport net-
work N[M ∗

c ,d∗,1,W,mf (F),mf (G)].

Proposition 3 df is a metric on the set of frames. df (F,G)
can be computed in polynomial time in∑i<|Θ(F)|hΘ(F)[i],
∑i<|Θ(G)|hΘ(G)[i] and the time required to compute d∗.

Proof: The former follows directly from proposition 2 and from
theorem 7 of [13]. The latter follows directly form the definition of
W and from theorem 8 of [13]. 2

Observe that sinced∗ is normalised, we can safely setM = 1.
Further, viewing a particular frame repositoryF and assigning a
weight of zero to each message sequence not stored in any of the
frames inF , we obtainQW

M ∗
c

= ∑FinF ∑i≤|ΘF |hΘ(F)[i].

3.3 Validity of frame modifications
Based on the metrics defined in the previous sections, we can in-

terpret interaction frames as clusters of points in the space of mes-
sage sequences, which in particular allows us to define the quality
of a set of frames as a model for actual interactions in terms of the
quality of the corresponding clustering.

[8] refers to this quality ascluster validityand defines the va-
lidity of a particular cluster as the ratio between its compactness,



i.e. average distance between points within this cluster, and its iso-
lation, i.e. minimum distance to any other cluster. Accordingly, we
define the compactness and isolation of a frame using the metrics
d∗ anddf on message sequences and frames, respectively.

Definition 11 (frame compactness and isolation)Let F a set
(repository) of frames, F∈ F a single frame. Thecompactness
of F is then defined as the (normalised) average distance between
the individual messages stored in it, weighed by their respective
occurrence counts:

c(F) =
(

1
/

|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j

)

·

|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·d∗
(

T(F)ϑi ,T(F)ϑ j
)

whereϑi = Θ(F)[i] and hi = hΘ[i] denote the ith substitution of F
and the corresponding count. Theisolationof F in F is defined as
the minimal distance to any other frame inF :

i(F,F ) = min
G∈F \F

df (F,G)

Sincec(F) usesd∗ for distances within a single frameF only, there
exists a more efficient way of computing it. If we writew(v,m) to
denote theweightof a variablev in a message patternm (i.e. the
sum of coefficients ofd(v, ·) in d∗(m,mϑ) for some substitution
ϑ), then we can precomputew(v,T(F)) for any variablev in the
trajectory ofF , and rewritec(F) to

c(F) ∝
|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·∑
v

w
(

v,T(F)
)

·d∗
(

vϑi ,vϑ j
)

According to definition 11,c(F) is zero for frames with only one
distinct substitution, so defining overall validity as the sum or prod-
uct of individual validitiesi(F,F )/c(F) is not a good idea. Instead,
we define the validity of a frame repositoryF as the ratio between
average isolation and average compactness for all the frames in F ,
taking special care of situations where only frames with a single
substitution exist.

Definition 12 (frame validity) Let F a set (repository) of frames.
Thevalidity of F is then defined as

v(F ) =







∑F∈F i(F,F )

∑F∈F c(F)
if ∃F ∈ F . |Θ(F)| > 1

1
|F | ∑F∈F i(F,F ) otherwise

In analogy to cluster analysis we conjecture that the higherthe
validity v(F ) of a frame repositoryF built from a particular set
of concrete interactions, the better it models the different classes of
conversation in a MAS. Facing different alternatives for the incor-
poration of an interaction that has just been perceived, each of them
corresponding to a specific modification ofF , we can judge their
quality simply by measuringv(F ) before and after this modifica-
tion and hence devise an algorithm that tries to maintain a frame
repository with the highest possible validity.

3.4 Frame abstraction and merging
Before we can apply the results of the previous section to an

algorithm for the acquisition and adaptation of interaction frames
from actual interactions, we will first have to make explicitthe ac-
tual modifications that can be performed on interaction frames and
sets thereof in order to adapt them to newly observed interactions.

We do so by providing a general algorithm for merging two interac-
tion frames into one. This algorithm can then be used to simply add
a new message to an existing frame (by interpreting the message as
a “singular” frame with ground trajectory and only the emptysub-
stitution) or to reorganise a whole repository. In order to distinguish
these two activities, and according to the point in time theyare per-
formed relative to the actual interactions, we might refer to them as
online and offline merging.

Starting with frame trajectories and following Occam’s Razor,
the trajectory of the frame obtained from mergingF andG should
be the least general message pattern sequence that can be unified
with both T(F) and T(G) using standard first-order unification,
i.e. theleast general generalisation(lgg) [12] of the two, denoted
lgg(T(F),T(G)). The following inductive definition of least gen-
eral generalisation for message sequences can be turned into a sim-
ple algorithm for its computation.

Definition 13 (least general generalisation)The least general
generalisation (lgg) of two terms is given by

lgg( f (s1, . . . ,sk),g(t1, . . . ,tl )) =
{

f (lgg(s1,t1), . . . , lgg(sk,tk)) if f = g and k= l

x otherwise,

where x is a new variable (i.e. does not occur in any si or ti) such
that lgg(s,t) is unique for any subterms s and t throughout the lgg
(i.e. equal terms are replaced with the same variable).

The lgg of two messages is only defined for messages with equal
performatives and is given by

lgg(p(a,b,x), p(c,d,y)) =

p(lgg(a,c), lgg(b,d), lgg(x,y)).

The lgg of two message sequences with the same length is given
by

lgg((m1, . . . ,mk),(n1, . . . ,nk)) =

(lgg(m1,n1), . . . , lgg(mk,nk)).

As before, it has to be ensured that lgg(s,t) is unique throughout
the lgg for any two subterms s and t.

In an algorithm, uniqueness of the lgg is usually achieved bymeans
of a table that holds the lggs computed so far for any pair of argu-
ments.

Along with the lgg, definition 13 also yields two substitu-
tions, namely the most general unifier (mgu) of the lgg with
each of its arguments, and we use the abbreviationϑm(m,n) =
mgu(m, lgg(m,n)).

Example 4 The lgg of the two messages m and n of example 3
yields

lgg(m,n) = request(A,a1,book(X))

ϑm(m,n) = [A/a2,X/flight(MEX,CPE)]

ϑm(n,m) = [A/a3,X/hotel(CPE)]

To obtain the substitutions and conditions of the merged frame,
the ϑm have to be applied to the substitutions and conditions of
the respective frame. For this, letF one of the frames to merge,
let t denote the trajectory of the resulting frame andc j andϑ j the
condition and substitution of the resulting frame that correspond to
C(F)[ j ] andΘ(F)[ j ]. If the new frame is to hold all the conversa-
tions ofF , thentϑi = T(F)Θ(F)[i] has to hold for 1≤ i ≤ |Θ(F)|.



The definition ofϑm implies thatT(F) = tϑm(T(F), ·) and thus
tϑm(T(F), ·)Θ(F)[i] = tϑi .

If accordinglyϑi is computed asϑi = ϑm(T(F), ·)Θ(F)[i], how-
ever, information might be lost about correlations betweenmultiple
conversations originating from the same frame. To retain this kind
of information, substitutions should be concatenated rather than ap-
plied unless the right side ofϑm(T(F), ·) is a variable (which is
quite common, as it results from the introduction of a new variable
for a variable in the course of computing the lgg). The following
definition formalises this concept of selective application of a sub-
stitution.

Definition 14 Letϑ = [v1/t1, . . . ,vn/tn] a single variable substitu-
tion andΘ = 〈s1, . . . ,sm〉 a list of substitutions. Then,ϑ ⋊ Θ de-
notes the list of substitutions that results fromselectively prepend-
ing ϑ to each element ofΘ and is given by

ϑ⋊ Θ = 〈r1, . . . , rm〉

where

r i = [v1/r i1, . . . ,vn/r in] ·si

and

r i j =

{

t jsi if t j is a variable

t j otherwise

Example 5 Recall message pattern p:= lgg(m,n) and substitu-
tions ϑ1 := ϑm(m,n) and ϑ2 := ϑm(n,m) of example 4. Further
generalisation to a message pattern q= request(B,C,Y) (observe
that lgg(p,q) = q) yields the intermediary result

ϑm(p,q) = [B/A,C/a1,Y/book(X)]

and

ϑm(p,q)⋊ 〈ϑ1,ϑ2〉 =

= 〈[B/a2,C/a1,Y/book(X),X/flight(MEX,CPE)],

[B/a3,C/a1,Y/book(X),X/hotel(CPE)]〉

as the list of substitutions corresponding to q.

As for the conditions of the merged frame,ciϑi = C(F)Θ(F)[i]
has to hold analogously. Replacingϑi with the above result yields
ciϑmΘ(F)[i] = C(F)Θ(F)[i] and thusciϑm = C(F). Writing ϑ−1

for the “inverse” of a substitutionϑ (replacing terms by variables),
ci can hence be defined asci = C(F)ϑ−1

m .
This finally leads us to the following definition of a merging op-

eration on frames:

Definition 15 (frame merging) Let F and G two interaction
frames with|T(F)| = |T(G)|. Then, the result ofmergingF and
G, denoted by M(F,G), is given by

M(F,G) =
〈

lgg
(

T(F),T(G)
)

,

C(F)ϑm
(

T(F),T(G)
)−1

·C(G)ϑm
(

T(G),T(F)
)−1

,

ϑm
(

T(F),T(G)
)

⋊ Θ(F) ·ϑm
(

T(G),T(F)
)

⋊ Θ(G),

hmax(F,G),

hΘ(F) ·hΘ(G)
〉

,

where hmax(F,G) = 〈h1,h2, . . .〉 with

hi =















max
{

hT(F)[i],hT(G)[i],

∑
k

hΘ(M(F,G))[k]
} if i = |T(F)|

max
{

hT(F)[i],hT(G)[i],hi+1
}

if i < |T(F)|.

The rather complex definition of the step counter values for the
merged frame stems from the fact that it is impossible to determine
the valuehT(merge(F,G)) would have taken ifmerge(F,G) had
been in the repository during all the conversations stored in F and
G just from the information provided byF andG. On the other
hand, it is also impossible to determine which additional conver-
sations would have been stored inmerge(F,G) if this had been the
case, so it seems fair to approximatehT based on the following
observations: Obviously, max(hT(F),hT(G)) is a lower bound for
hT(merge(F,G)). In addition to that, the sum of the values ofhΘ
is a lower bound for the value ofhT [|T|], since it resembles the ex-
act number of past conversations stored in the frame. Finally, for
eachi, hT [i] is a lower bound forhT [ j ] with j < i. Hence, as we
cannot infer any upper bounds from the counter values alone,we
simply choose the values ofhT (merge(F,G)) such that the bounds
are tight. If only online merging is used, this approximation always
yields accurate values forhT .

3.5 An algorithm for learning frames
Based on the formal notion of validity of a set of frames pre-

sented in section 3.3, which extends cluster validity to thespace
of multi-agent conversations, and on the frame merging procedure
given in section 3.4, the following simple algorithm computes the
best way to incorporate a newly observed message sequencem into
a frame repositoryF :

function flea(F ,m) returns a frame repository
inputs: frame repositoryF , message sequencem

/* compute the singular frameF for m */
F :=

(

m,Cm,{},〈1, . . . ,1〉,〈1〉
)

/* compute the setF of alternatives for inclusion ofm */
F :=

{

F ∪{F}
}

∪
S

F ′∈F

{

F \F ′∪M(F ′,F)
}

/* return the most valid frame repository*/
return argmaxF ′∈F v(F ′)

While the surface structure of a particular message sequence
equals the message sequence itself, identification of a setCm of
logical conditions that held during a conversation (according to the
observer’s world model) and that wererelevantor crucial is clearly
a nontrivial task. If frames exist, however, the execution of which
was hindered due to reasons of context (especially if pre-specified
“protocol” frames are used), these can be used to identify condi-
tions other than those (physically) required for the execution of the
individual messages.

Since the above algorithm only considers a single frame at a time
for inclusion into the repository, it is unable to detect structures in
the space of interactions that develop over time. This corresponds
to a more general problem oforder dependencein incremental un-
supervised learning and might in practice result in severalframes
actually modelling the same class of interactions. This problem
can be handled, though, by supplementing the above online merg-
ing algorithm with one that periodically checks if two frames in the
repository can be merged to increase its overall validity.

4. CONCLUSIONS
In this paper, we have presented a novel approach for build-

ing and maintaining a probabilistic model of agent conversations



from an initial set of communication primitives and protocols and
from the actual conversations that take place in a MAS. Agents in
open environments that communicate according to high-level pre-
specified conversational patterns can use this approach to augment
these patterns with empirical observation of actual conversations,
such that they can be attributed an empirical semantics.

A formal schemeFLeaS has been provided which uses a particu-
lar instance of the interaction frame data structure for representing
the probabilistic model. This allows for an integration of the re-
sults presented here with previous work on interaction frames, par-
ticularly an architecture for reasoning about communication within
the framework of empirical semantics [5, 4] and an application of
hierarchical reinforcement learning to the task of learning commu-
nication strategies [14, 6]. The basic principles of our approach,
however, could also be applied to other, possibly more complex,
forms of representation.

The scheme itself uses distance metrics between message se-
quences and between frames to interpret a set of frames as a clus-
tering in the space of possible conversations and tries to maintain
a good quality of this clustering as new conversations are stored.
It is thus properly grounded in the theory of clustering and cluster
analysis.

Our current work focuses on an experimental exploration of the
benefits and limitations of our approach in real-world “communi-
cation learning” tasks (some initial results are reported on in [3]).
Depending on the perspective from which empirical observations
are taken, different applications of interaction frames are possible.
As shown in [5, 4], individual agents can put them into relation to
their private goals and use them to derive their communicative ac-
tions in order to “communicate optimally” towards these. From the
perspective of an external observer, on the other hand, interaction
frames can be interpreted as a global model of the communication
in a MAS and hence used to measure the performance of the MAS
or of individual agents w.r.t. communication, to design newcom-
munication protocols or to devise open ontologies [9] that dynami-
cally capture concepts and how communications refer to them.

An open issue that has to be dealt with in future work to allow
for the creation of interaction frames from scratch is the discov-
ery of conditions that were relevant or crucial for the execution of
a specific conversation. While inductive logic programmingtech-
niques may again be the appropriate means to attack this problem,
a transition to relative least general generalisation (which might be
required to handle background knowledge already availablefor a
particular class of conversation) would make this one dispropor-
tionately harder to solve.
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