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Abstract. Communication in multi-agent systems (MASS) is usually egaed
by agent communication languages (ACLs) and communicgiiotocols car-
rying a clear cut semantics. With an increasing degrempehnesshowever, the
need arises for more flexible models of communication thateandle the uncer-
tainty associated with the fact that adherence to a supposgcked specification
of possible conversations cannot be ensured on the sidberf agents.

In this paper, we argue fardaptivenessn agent communication. We present
a particular approach that combinesnversation patternas a generic way of
describing the available means of communication in a MAShwitdecision-
theoretic framework and various different machine leagrtechniques foap-
plying these patterns in aratlaptingthem from actual conversations.

1 Introduction

Traditional approaches to agent communication, with thaits in speech act theory
[1], do not respect thautonomyof individual agents in that they suppose effects of
communication on agent’s mental states [25, 3] or a norrafirality of publicly visi-
ble commitments [7, 26]. In environments involving someréegfopennesske, for
example, design heterogeneity or dynamically changingifations, such a “norma-
tive” attitude is put into question by the fact that adheestacsupposedly agreed modes
of communication cannot be ensured on the side of other agéfiile this can be seen
as a witness of a fundamental conflict between agent autoaoichyhe need for coop-
eration (and communication) with other agents toward a garal, there is also a more
practical side to this problem.

Compared to the long-established areas of interactiompoband agent communi-
cation language (ACL) research (see, e.g., [12,9]), theeldpwment of agent archi-
tectures suitable for dealing with provided communicatimachanisms in practical
terms has received fairly little attention. As yet, theréstexno uniform framework
for defining the interface between the inter-agent comnatign layer and intra-agent
reasoning, i.e. how specifications of interaction prote@id communication seman-
tics influence agent rationality or, in turn, are influendeehbselves by agents’ rational



decision-making processes. Moreover, there is a growingerm that most specifica-
tion methods for ACLs and interaction protocols do not pdevéufficient guidance as
to which part of the semantics of communication should beifipd at a supra-agent
level and which part of them is only a result of agents’ meptatessing and cannot be
captured without knowledge of their internal design. Aigaroncentrating on one of

these two sides may either overly constrain agent autonamydggents would merely

“execute” centralised communication procedures that fgatieir internal states) or

lead to uncertainty about the consequences of communic@ig. in terms of adher-

ence to previously created commitments) and loss of sotiattsre altogether. This

poses two central questions:

1. If strict adherence to communication languages and potgacannot be taken for
granted, how can meaningful and coherent communicatiombered?

2. Observing the course of conversations that take placeMA8&, how can agents
effectively organise this kind of knowledge and relate ietsting specifications,
so that they can actually benefit from it?

An obvious answer to these questions would be to deviselzabilisticmodel of agent
conversation, and update it in order to maximise communieaccess. There are
two problems, though. Firstly, generic “purely” probasiic models are not very well
suited to describe intelligent agents (including symbatient communication), since
their behaviour is not at all “random”. Instead, one wouldhea like to identify patterns
and relational properties of communication (like commatian protocols containing
variables, for example). The resulting view resemblessi@citheoretic learning and
reasoning, where the classical paradigm of direct conitetted on an uncertain en-
vironment is replaced by a more indirect influence via comication between (and
hence via the allegedly rational reasoning processes t#lligent agents. Secondly,
agent communication cannot exist on its own, but is only anmada the end of coor-
dinating or cooperating with respect to some “physicalia (i.e., communication
works as a kind of mediator between actions). Hence, su¢oesgptimality) in com-
munication will somehow have to be defined in terms of theoastit entails.

This view is in line withempirical communication semantifl], where the mean-
ing of an utterance (or sequence thereof) is defined soldblrims of its expected con-
sequences as given by past experience (to say it in termsetbmct theory [1], the
meaning of illocutions is defined solely in terms of their exfed perlocutions). Cur-
rently two different “flavours” of empirical communicati@@mantics exist, borrowing
from two different sociological schools of thought. Intetian frames [23] view empir-
ical semantics from the perspective of symbolic interasio (particularly [8]), thus
focusing on how an individual deals with the communicaticectranisms available in
a given social system, while expectation networks [14] thlkee(more global) point of
view of social systems theory (see, e.g., [13]) to develothots to analyse the evolv-
ing semantics of communication across an entire societgenis.

In this paper, we focus on a particular instance of the ictéya frame approach,
which is formally defined in section 2. In section 3, we intnod a formal framework
for decision-theoretic reasoning about communicatioimgumteraction frames to rep-
resent different classes of conversation and thus to stritite reasoning process hier-
archically. In section 4, we further use methods from thelfielf case-based reasoning,



inductive logic programming and cluster analysis to deddermal scheme for the
adaptation of interaction frames from the actual convesaiconducted in a MAS, en-
abling agents to autonomously (i.e., independent of usetsgstem designers) create
and maintain a concise model of the different classes ofe@aion on the basis of an
initial set of ACL and protocol specifications. To our knoddge, the work described
in this paper constitutes the first approach to adaptive conitation management for
deliberative, knowledge-based agents, which is an impbpeerequisite for building
agents that communicate and act in full appreciation of titereomy of their respective
peer.

2 Conversation Patterns

The greatest common denominator of the multitude of differeethods for specify-
ing ACL semantics and interaction protocols (see, e.g.,4Ibfor examples in this
volume) is that they describe trseirface structureof possible dialogues and logical
constraintsfor the applicability of these. The former corresponds tetao$ admissible
message sequences, the latter may include statementsesivoonmental conditions,
mental states of the participating agents, the state of domant stores, etc. In the
most simplistic case, these structure/constraint paindeaepresented as a setoh-
versation patternd.e. combinations of a conversation trace and a set of tiondi For
example,

(request(a,b,pay($100)) — do(b,pay($100)), {canb,pay($100))})

expresses that a request of agerns followed by an action if the requesteds able

to execute the action, i.e. payan amount of $100. The question serving as a point of
departure for the research presented in this paper is hovawbuild agents that are ca-
pable of processing a set of such (conditioned) converspadterns in a goal-oriented
and adaptive fashion, given that the reliability of thesec#cation is contingent on
others’ (and the agent's own) adherence to their presegigtntent.

Before turning to practical reasoning with and adaptatibcomversation patterns,
though, we introduce interactions frames as a slightly ngoraplex form of conversa-
tion pattern, quoting [4] for a formal definition of a partiauinstance of the interaction
frame data structure. This definition uses a langu#gef speech-act [1] like message
and action patterns of the forperf (A, B, X) ordo(A, Ac). In the case of messages (i.e.,
exchanged textual signalglert is a performative symbol (e.gequest, inform), A
andB are agent identifiers or agent variables ahid the content of the message taken
from a first-order languagé. In the case of physical actions (i.e., actions that ma-
nipulate the physical environment) with the pseudo-penftivedo, Ac is the action
executed byA (a physical action has no recipient as it is assumed to bervdide by
any agent in the system). Bo¥handAc may contain non-logical substitution variables
used for generalisation purposes (as opposed to logicaitéod’ variables used by
agents to indicate quantification or to ask for a valid bigdiWe further useM, ¢ M
to denote the language of “concrete” messages that agemts atsmmunication (and
that do not contain variables other than content variablegimes are then defined as
follows:



Definition 1 (Interaction frame). Aninteraction framés a tuple F=(T,0,C, hr,hg),
where

- T =(p1,p2,--..,Pn) iS a sequence of message and action patterns pf, the
trajectory

- ©=(381,...,9m) is an ordered list ofvariable substitutions

— C={cy,...,Cm) is an ordered list ofcondition setssuch that ¢ € 2~ is the condi-
tion set relevant under substitutia,

— hr e NIl is atrajectory occurrence countbst counting the occurrence of each
prefix of the trajectory T in previous conversations, and

— he € NI®l is asubstitution occurrence countést counting the occurrence of each
member of the substitution li§t in previous conversations.

While the trajectoryT (F) models the surface structure of message sequences that are
admissible according to franke each element d(F) resembles a past binding of the
variables inT (F), and the corresponding elementQ@(fF ) lists the conditions required
for or precipitated by the execution Bfin this particular casénhr (F) finally indicates
how oftenF has been executed completely or just in pasi,F) is used to avoid dupli-
cates in@(F) andC(F). What hence distinguishes interaction frames from the auzth
commonly used for the specification of ACL and protocol seticans that they allow
for an explicit representation ekperienceegarding their practical use.

The semantics of frames has been defined accordingly as alplibbdistribution
over the possible continuations of an interaction that hatexl withw € 94 and is
computed by summing up over a getof known frames:

PWw) =% P(3[F,w)P(F|w) (1)
e

This equation viewgF as a compact yet concise representation of the interadtians
have taken place so far and projects past regularities lretduture. This global view,
however, will hardly be computationally feasible in reatisilomains, and it also con-
tradicts the way conversation patterns are used in pradline would rather expect
different protocols for different purposes, and not allledrin need to be reasoned over
at the same time while engaging in a particular kind of irtéoa.

In the following section, we will instead introduce a framew for conducting
decision-theoretic reasoning about frame selection, dlsageaction selection within
a single frame. For this hierarchical approach to be redderss well as successful, it
is required that the different frames concisely capturediffferent classes of conver-
sations that can take place. This requirement has to holdeiav frames used by
external observers to model, analyse or describe the oitens in a MAS. Particular
emphasis will hence have to be put on the acquisition anctatiap of communication
patterns from the actual interactions in a MAS, such thatrdselting set of patterns
corresponds to the different classes of interactions asped by the agent or external
observer. Methods for the adaptation of interaction frawi#$e explored in section 4.



3 Reasoning with Conversation Patterns

The distinguishing feature of interaction frames as comg#w (the methods commonly
used for the specification of) interaction protocols isttlaility to capture instance in-
formation, i.e. information about how particular convéima patterns have been used
in the past according to the agent’'s experience. This aufditinformation provides
agents with a facility to reason about the semantics of conication in an adaptive
fashion. In accordance with the empirical semantics vieat donsiders the meaning
of communication as a function of its consequences as expard through the eyes
of a subjective observer, agents can adapt existing frameegbions with new obser-
vations of encounters and project past regularities ingoftiure. Inopen systemsn
which agents may or may not obey a set of pre-defined coni@ngadtterns, this can
be expected to improve agents’ communication abilitiesifigantly, particularly with
respect to a strategic use of communication.

3.1 Frame Semantics

To gain deeper insight into adaptive agent communicatiogeineral and reasoning
about communication patterns in particular, we will nowetakprocedural view on the
probabilistic semantics of interaction frames defined hyedion 1.

The semantics of a s¢t = {F,...,F,} of frames is as follows: Given ancounter
prefix we M, i.e. a sequence of messages already uttered in the cunentirgter
(possibly the empty sequence) ankimwledge base KB 2~ of beliefs currently held
by the reasoning agent# defines a set of possibt®ntinuations we A, which can
be computed as follows:

1. Filter out those frames whose trajectories do not prefteimnv.

2. For each remaining frame, consider the possible postfixes BfF) for prefix
w, each of them corresponding to a particular variable swibisth (wherew has
already committed certain variables to concrete values).

3. Only consider those substitutions for which at least dnta® context conditions
in C(F) is satisfied undekB.

For each of these possible continuations, we can then cargeantinuation prob-
ability by virtue of similarity, frequency and relevance considierss. The resulting
probability distribution over continuationg is thesemantic®f w under¥ .

Definition 2. Let 9 (F,w) = unifier(w, T(F)[1:|w|]) be the most general unifier of w
and the corresponding trajectory prefiXF)[1:|w|] of F. Then, theset of possible sub-
stitutionsunder frame F, beliefs KB, and conversation prefix w is defawed

OposdF, KB,w) = {8]39".8 = 8¢(F,w)9’ AJi.KB = C[i]9}.

11n equation 1, the agent's knowledge is implicit in the ter{§|F,w) and P(F|w). More
precisely, we could have writte(8|F,w,KB) and P(F|w, KB). For notational convenience,
we further assume that knowledge bases use the same I@gigaklge as is used in the content
language of messages.



In this definition,unifier(v,w) denotes the most general unifier of two message pattern
sequences andw, S5 denotes application of substitutidnto a (set or list of) logical
formula(e) or message(S)(depending on the context). In other wor@,ssis the set
of substitutions that are extensionsdf for which at least one condition i6(F) is
satisfied. Accordingly, the continuations of w that should be expected to occur with
non-zero probability (according & and undelKB) are exactly those that result from
the application of a substitution Bpessto the postfix ofT (F).

In order to conduct (quantitative) decision-theoreticsagang about frames, how-
ever, the exact quantities of the probabilit$} |F,w) have to be determined. In order
to obtain well-defined probabilities even for substitud@nthat have never occurred
before in actual interactions, we avail ourselves of a mettmmmonly used in the area
of case-based reasonirjgjl]. Starting from asimilarity measures defined on message
pattern sequences, we compute the similarity of any passiliystitution to a frame by
taking into account the frequencies of previous cases amdefevance of their corre-
sponding condition sets in a single frame.

Definition 3. Leto: M* x M* — [0,1] be a similarity measure on message pattern
sequences. Let(@,3,KB) denote the relevance of the ith condition of F unfieand
KB. Then, the similarity of substitutidhto frame F is defined as

oF)| similarity frequency relevance

—_——
0(0.F) = 3 (o(TF)9.T(FIO(F)l)-ho(F)lil-a(F.9.K8) )

In other wordsg (8, F ) assesses to which extehts “applicable” toF. Definition 4 in
section 4.1 will introduce a distance metdcon the setM;" of finite-length message
sequences, such thdit(v,w) is the distance between message sequeraedw. Using
this metric, we can defing(v,w) = 1—d.(v,w). A possible way to defing would be to
letci(F,9,KB) =1if KB |=C(F)[i]® and 0 otherwise, such that only those substitutions
of F contribute to the similarity whose corresponding condisi@are satisfied under
and under current beliéB.

The conditional probability?(3 |F,w) in equation 1 can be computed by assigning
a probability

P(®|F,w) O0(3,F) (2)

to all 9 € OposdF,KB,w) and a probability of zero to any other substituti®iF |w)
simply corresponds to the number(F)[|ht (F)|] of successful completions &f nor-
malised over all frames that prefix-mateh

3.2 Decision Making with Frames

In the introductory section, we have argued for the intégnadf agent communication
with decision-theoretic reasoning, by which agents stiirdong-term maximisation
of expected utility. We hence assume that agents are equipjtle a utility function

u: Mg x 2- — R, such thatu(w,KB) denotes the utility associated with executing a
message (and action) sequenda belief stateKB. As we have pointed out, substantial
positive or negative utility can only be assigned to phylsicions in the environment



(though messages may be given a small negative utility toesgthe communication
cost incurred by them).

In principle, such a utility function could be combined ditlg with the continuation
probabilities of equation 1 to derive utility-maximisingalsions in communication.
However, it will hardly be feasible to compute the continoatprobabilities directly,
and this approach would also contradict the role usuallygaaby conversation pat-
terns. As we have said, we will instead use a hierarchicalogmh based on selecting
the appropriate frame for a given situation and then optirgibehaviour within this
frame. The former activity is referred to '|mmingand will be described in the follow-
ing section. The latter is standard expected utility magation using frames and can
be described by the following abstract decision-makingedure:

1. If no encounter is running, consider starting one. If agagemis received, update
the encounter prefixy «— wm

. If no frameF has been selected, go to 10.

. Validity checkif |T(F)| =w, go to 9; ifunifier(T (F)[1 : |w|],w) = L, go to 10.

. Adequacy checkf OposdF,w,KB) =0, go to 10

. Compute the expected utility for eaotvn substitutiords:

AL wWN

Eu(9s,F,w,KB)] = ; (u(postfi)(T(F),W)Ssﬁp, KB) - P(99s, F,w))

p

. Determine the optimal substitutiérf = argmax E[u(ds, F,w, KB)].

. Desirability checkif u(postfiXT (F),w)9*9,,KB) < b, go to 10.

. Performm* = T(F)[|w| + 1]8*; update the encounter prefin.«— wni
. If no message arrives until deadline, terminate the emeougo to 1.
10. Framing: SelectF, go to 3.

©O© 00 ~NO®

The actual (framing) reasoning cycle is bracketed by stepadl 9 which cater for
initiating encounters and ending them if no more messagesezeived (i.e., if the
other agent does not reply when expected to, and to make sifeeed additional
messages sent by the other party after we considered ther@eca@ompleted). We
assume encounter initiation on the side of the agent to hergzhby some sub-social
reasoning layer, e.g. a BDI [19] engine, which determinegtivbr and about what
to converse with whom, depending on the possibility of farthg some private goal
through interaction.

Steps 3, 4 and 7 are used to evaluate the usefulness of trentyractive frame
F. The former two cases are straightforward: If the frame hsmnbcompleted, if it
does not match the encounter prefixor if ©pos{F,w,KB) is empty,F cannot be used
any longer. For the latter case, we have to assess the edpeaiity E[u(ds, F,w,KB)]
of any “own” substitution§s. To this end, we have to conduct an adversarial search
over substitutions jointly determined by the agent and hesrpas each of the two
agents commits certain variables to concrete values im thei-taking moves. Using
definition 3 and equation 2, the probability for an opporestibstitutiond, in the
remaining steps of (F) can be computed as

_ P@pASsFW) _ a(8(F.w)dsdp, F)
P(9plds,F,w) = PBF.W)  T50(9¢(F,W)99,F)’




whered p A 9s denotes the event of the peer choosipgnd the reasoning agent choos-
ing ¥ after having committed to the fixed substitutidn(F,w), so that the final “joint”
substitution will bed ¢ (F,w)8s9 p.

With this, u can be used to compute the utility of the postfiXTdF) for prefixw
(corresponding to application &f; (F,w)), with 8, andds applied to obtain a ground
message (and action) sequence still to be executed &lghy If the utility of the post-
fix under the optimal substitutio®* is below some threshold| the frame is discarded.
Otherwise, the next stap* along the trajectory df is performed.

So far, we have said nothing about the process of updatinfyahee repositoryF
upon encounter termination (whether after successful éstiop or failure of selecting
an appropriate frame). This will be done in detail in secdolVhat now remains to be
specified is a search strategy to decide between differentidate frames in step 10.
Effectively, it is this search strategy that determinesttbgree of complexity reduction
achieved by restricting the search space to a single actweaef while looking for the
optimal next message or action.

3.3 Framing

Given that the frames iff concisely capture the different classes of conversatioais t
can take place in a MASqjierarchical reinforcement learningHRL) techniques [2]
can be used learn an optimal strategy for frame selectiodRh, actions available in
a “generic” Markov Decision Process (MDP) are combined mtacro-operators that
can be applied over an extended number of decision stepggetieral idea being that
compound time-extended policies, which (hopefully) otily solve sub-problems of
the original MDP, help to reduce the overall size of the stpt@ce. Using such macro-
actions, an agent can use S(emi-)MDP (i.e., state histqgmtent) variants of learning
methods such as Q-learning [28] to optimise its long-ternetaftstrategy over these
macro-policies.

An intuitive HRL approach that lends itself to an applicatio interaction frames
particularly well is the options framework [17]. In this freework, anoptionis a triple
o= (I,m,B) consisting of an input set C § of MDP states, a (stationary, stochastic)
policy Tt: S x 4 — [0, 1] over primitive actions? and states, and a stochastic termina-
tion conditionB : § — [0, 1]. Optiono is admissible in a stat@ff s 1. Ifinvoked,o will
behave according to until it terminates stochastically accordingfoThis definition
can be used to re-interpret interaction frames as optionsravt is the (deterministic)
strategy defined by determinimg®, and I andp are defined by the validity, adequacy
and desirability checks performed during the reasoninggs®e of the previous section.

Lets: Mg x 2 — S be some state abstraction funcidhat returns a state for each
pair (w,KB) of perceived encounter prefix and beliefKB. If we regard each frame
F € # as an option in the above sense, we can apply the SMDP Q+gaupdate rule

Q(s.F) — (1-a)Q(s,F)+a F?(s,F)Jrv‘,gjé':\?XQ(S’,F’) ,

2 |t is unrealistic to assume thaify x 2~ itself could be used as state space due to its unman-
ageable size.



wheres = s(w,KB) ands = s(ww/,KB') are the states resulting from the encounter
sequence® andww and the corresponding knowledge base contéBteandKB' as
perceived between two re-framing decisiomss an appropriately decreasing learning
rate andr is the number of steps during whi¢hwas the active frame (i.et,= |w|).
Further,R(s,F) is the discounted reward accumulated in stepq, ...t + (1 — 1).

Using the long-term utility estimates representeddyve can determine the opti-
mal frame to select as

F*(w.KB) = argmaxQ(s(w.KB). F),
S

while applying a “greedy in the limit” infinite exploratiotrategy to avoid running into
local minima. It should be noted that this way of learningaanfe selection strategy al-
lows for optimising framing decisionsithin encounters as well d®tweersubsequent
encounters, at least if there is some utility-relevant eation between them.

4 Adaptation of Conversation Patterns

As we have already said, the need for its acquisition andtatiap from actual inter-
actions is an inherent property of empirical semanticsngsiset of interaction frames
for representation, we have further argued that these Bamed to model different
classes of interactions within a MAS. In particular, thiatfee is critical with respect
to the reasoning framework described in the previous sectio

In this section, we will present a method for the adaptatimhacquisition of models
of empirical semantics using the formalisation of intei@tframes given in section 2.
For this, we will introduce a metric on the spa®&* of finite-length message sequences
and then extend it to a metric between frames. This allows ugérpret a frame repos-
itory (i.e., a set of known frames) as a (possibly fuzzy) ®tigg in the “conversation
space”, and hence to measure the quality of a frame acouisitid adaptation method
in terms of the quality of the clustering it produces (reéerto as “cluster validity”
in [10]). According to this interpretation, adaptation ftca new conversation either
introduces a new cluster (viz frame) or it adds to an existing with or without mod-
ifying the trajectory of the respective frame. The diffdraliernatives can be judged
heuristically in terms of the corresponding cluster vaiési, which we will use to de-
vise an algorithm for the adaptation of frame repositori@sperform the necessary
frame modifications in any of the above cases, we will alssgmea generic algorithm
for merging two frames into one.

Due to lack of space, proofs and examples have largely beéttednfrom this
description. The interested reader is referred to [6] forameletailed description.

4.1 A Distance Metric on Message Sequences

As a basis of our interpretation of interaction frames astelts, we will start by intro-
ducing a distance metric on the set of possible messageandktend it to finite-
length message sequences. Since messages as defined abesseatially first-order
objects, we could simply use a general purpose first-ordéaiice like the one proposed



in [24]. In [6], we have instead introduced a family of mapgsron messages that are
parametrised on two functiordzy andDs and allow us to add a “semantic” flavour in
the form of domain-specific knowledge. The most basic (anmdaln-independent) in-
stance of this family is in fact a metric on messages (in paldr, it satisfies the triangle
inequality), and can easily be extended to message secience

Definition 4 (Distance between message sequencdsjt d: M x M; — [0,1] be a
mapping on messages with

dmm - { mrEldmn) ifm=n
1 otherwise.

Further, let|v| and v denote the length and ith element of sequence v. We define
V| .
o) — | 2 2d0Gw) V=
1 otherwise.

As we haven shown in [6l; is indeed a metric on the s@{." of finite-length message
sequences.

4.2 A Metric on Frames

Having defined a metrid, on the set of finite-length message sequences, we will now
extend this metric (a metric gmoints so to speak) to a metric on frames by interpreting
these as sets of the message sequences they represgmifitesets.

[18] proposes a general formalism to define a distance mia¢tiween finite sets
of points in a metric space. The distance between two/eatsdB is computed as the
weight of the maximal flow minimal weight flow through a speda&stance network
N[X,d,M,W, A, B] between the elements of the two sets.

Definition 5 (Netflow distance).Let X be a set with metric d and weighting function
W, M a constant. Then for all 8 € 2%, the netflow distancéetween A and B in X,
denoted ¢, \,\v(A B), is defined as the weight of the maximal flow minimal weight
flow from s to t in NX,d,M,W, A, BJ.

As further shown in [18]d{ ;\, (A B) is a metric on 2 and can be computed in
polynomial time (insizey(A) and sizey(B) and in the time needed to compute the
distance between two points) if all weights are integersoAthis metric is claimed to
be much better suited for applications where there is likgbpint with a high distance
to any other point than, for example, the Hausdorff metrii¢h only regards the
maximum distance of any point in one set to the closest pnitite other set).
Additionally, one can assign weights to the elementé ahdB in order to allevi-

ate the difference in cardinalities between the two seterpmeting (integer) weights
as element counts yields a metric mltisets which is ideally suited to measure the
distance between interaction frames in which multipleanses of a particular mes-
sage sequence have been stored (corresponding to a didostunt larger than one).
Mapping each frame to the set of messages it represents agHttinwg each element
with the respective substitution count, we directly ob&imetricds on frames.



Definition 6 (Distance between frames)Let
mi(F)={me M |39 € O(F). m=T(F)3}
be the set of message sequences stored in frame F. Let
W(me (F))(m) = he(F)]i] iff m =T (F)O(F)]i]

be a weighting function for elements of (&). Then, thedistance between two frames
F andG, denoted d(F,G), is defined as the maximal flow minimal weight flow from s
to t in the transport network M, d., L, W, m¢ (F),ms (G)].

As shown in [6],d¢ is a metric on the set of frames, adé(F,G) can be computed
in polynomial time iny;_ o) ho(F)[i], Yi<jo(c) he(G)[i] and the time required to
computed,.

4.3 Validity of Frame Modifications

Based on the metrics defined in the previous sections, we rdarpret interaction
frames as clusters of points in the space of message se@ueviteh in particular
allows us to define the quality of a set of frames as a modeldtuahinteractions in
terms of the quality of the corresponding clustering.

[10] refers to this quality asluster validityand defines the validity of a particular
cluster as the ratio between its compactness, i.e. aveisigacde between points within
this cluster, and its isolation, i.e. minimum distance tg ather cluster. Accordingly,
we define the compactness and isolation of a frame using thiecsd, andd; on
message sequences and frames, respectively.

Definition 7 (Frame compactness and isolation)et ¥ be a set of frames, E F a
single frame. Theompactnessf F is then defined as the (normalised) average distance
between the individual messages stored in it, weighed by dspective occurrence
counts:

[O(F)[1e(F)| _1 [8F)1e(F)]

C(F):( i; j%lhi.hj) . i; j:;lhi.hj.d*(T(F)Bi’T(F)aj)

where8; = ©(F)[i] and h = hg|i] denote the ith substitution of F and the corresponding
count. Thasolationof F in ¥ is defined as the minimal distance to any other frame in
F:

i(F = min_ d¢(F,G

( 77) GeF\(F} f( s )
Sincec(F) usesd, for distances within a single frame only, there exists a more
efficient way of computing it. If we writev(v,m) to denote theveightof a variablev
in a message pattem (i.e., the sum of coefficients af(v,-) in d.(m,m3) for some
substitutiond), then we can precomputgv, T (F)) for any variablev in the trajectory
of F, and rewritec(F) to



According to definition 7¢(F) is zero for frames with only one distinct substitution,
so defining overall validity as the sum or product of indiadlualiditiesi(F, F)/c(F)
is not a good idea. Instead, we define the validity of a franpesiory ¥ as the ratio
between average isolation and average compactness fdreaftames in#, taking
special care of situations where only frames with a singlesstution exist.

Definition 8 (Frame validity). Let ¥ be a set of frames. Thalidity of ¥ is defined
as

o(F)= % if IF € 7. |O(F)| > 1
1 3Feri(F.F) otherwise

In analogy to cluster analysis we conjecture that the highewralidity v(F) of a
frame repositoryF built from a particular set of concrete interactions, thitdrét mod-
els the different classes of conversation in a MAS. Faciffgrint alternatives for the
incorporation of an interaction that has just been percegach of them corresponding
to a specific modification of7, we can judge their quality simply by measuriw(gr)
before and after this modification and hence devise an dfgoithat tries to maintain a
frame repository with the highest possible validity.

4.4 Frame Abstraction and Merging

Before we can apply the results of the previous section tdgorithm for the acquisi-
tion and adaptation of interaction frames from actual extéons, we will first have to
make explicit the actual modifications that can be perfororethteraction frames and
sets thereof in order to adapt them to newly observed intierec We do so by pro-
viding a general algorithm for merging two interaction fresinto one. This algorithm
can then be used to simply add a new message to an existing {gnmterpreting the
message as a “singular” frame with ground trajectory ang thrd empty substitution)
or to reorganise a whole repository. In order to distingtisse two activities, and ac-
cording to the point in time they are performed relative te #ttual interactions, we
might refer to them as online and offline merging.

Starting with frame trajectories and following Occam’s Biazhe trajectory of the
frame obtained by merging andG should be the least abstract message pattern se-
quence that can be unified with both trajectoffé$) and T (G) using standard first-
order unification, i.e. théeast general generalisatiofigg) [16] of the two, denoted
I9gg(T (F), T(G)). The following inductive definition of least general gerisation for
message sequences can be turned into a simple algorithta émmputation.

Definition 9 (Least general generalisation)The least general generalisation (Igg) of
two terms is given by

f(lgg(st,ta),-.-,199(s,t)) if f =gand k=1

lgg(f t1,....4)) =
g9(f(st,---,%),9(t1,....1)) {x otherwise,

where x is a new variable (i.e., one that does not occur in angrg;) such that
lgg(s,t) is unique for any subterms s and t throughout the Igg (i.euakterms are



replaced with the same variable). The Igg of two messagéstigt same performative
is given by lggp(a,b,x), p(c,d,y)) = p(lgg(a,c),lgg(b,d),lgg(x,y)). It is undefined if
the performatives differ. The Igg of two message sequeriapial length is given by
lgg((my,...,mk), (N1,...,n)) = (lgg(me,n1),...,lgg(mg, nk)). As before, it has to be
ensured that Ig¢s, t) is unique throughout the Igg for any two subterms s and t.

In an algorithm, uniqueness of the Igg is usually achieveochbgins of a table that holds
the Iggs computed so far for any pair of arguments.

Along with the Igg, definition 9 also yields two substitutgymamely the most gen-
eral unifier (mgu) of the Igg with each of its arguments, anduse the abbreviation
Im(m,n) = mgum,Igg(m, n)). To obtain the substitutions and conditions of the merged
frame, thed, have to be applied to the substitutions and conditions ofékpective
frame. For this, leF be one of the frames to merge, tetlenote the trajectory of the
resulting frame and; andd; the condition and substitution of the resulting frame that
correspond t&€(F)[j] and®(F)[j]. If the new frame is to hold all the conversations of
F, thentd; = T(F)O(F)[i] has to hold for I< i < |®(F)|. The definition ofdy, implies
thatT (F) =t3m(T (F),-) and thugSm(T(F), )O(F)[i] =tJ;.

If accordingly$; is computed a®; = 9m(T(F),-)©(F)]i], however, information
might be lost about correlations between multiple conw@rsa originating from the
same frame. To retain this kind of information, substitnticshould be concatenated
rather than applied unless the right sidedgf(T (F),-) is a variable (which is quite
common, as it results from the introduction of a new varidibte variable in the course
of computing the Igg). The following definition formalisdsis concept of selective
application of a substitution.

Definition 10. Let 8 = [vq/t1,...,Vn/tn] be a single variable substitution an@ =
(s1,...,Sn) a list of substitutions. Therf} x ® denotes the list of substitutions that
results fromselectively prepending to each element a and is given byd x © =
(r1,...,rm) where § = [v1/ri1,...,Vn/rin] - 5 and

_— tjs iftjis a variable
Y71t otherwise
As for the conditions of the merged franog}; = C(F )©(F)]i] has to hold analogously.
Replacingd; with the above result yieldsS O (F)[i] = C(F)©(F)[i] and thuxi9m =
C(F). Writing 91 for the “inverse” of a substitutiof (replacing terms by variables),

can hence be defined as= C(F)9;;L. This finally leads us to the following definition
of a merging operation on frames:

Definition 11 (frame merging).Let F and G be two interaction frames wifh(F)| =
|T(G)|. Then, the result omergingF and G, denoted by M, G), is given by
M(F,G) = (lgg(T (F),T(G)),
C(F)9n(T(F).T(G)) *-C(G)9 (T(G):(F))
Im(T(F),T(G)) xO(F)-8m(T(G),T(F)) »O(G
hmaxF,G),
he(F)-he(G)),

l



where hma{F, G) = (hy, hy,...) with

_ maX{hT(F)[i],hT(G)[i],%he(M(F,G))[k]} ifi =[T(F)|
| max{hr (F)i], hr (G)[i], i1} ifi < [T(F)|.

The rather complex definition of the step counter valuesterrherged frame stems
from the fact that it is impossible to determine the vatgémergdF, G)) would have
taken if mergéF, G) had been in the repository during all the conversationsdtar

F and G just from the information provided bi and G. On the other hand, it is
also impossible to determine which additional conversatiwould have been stored
in mergéF, G) if this had been the case, so it seems fair to approxirhatéased
on the following observations: Obviously, m&x (F),ht(G)) is a lower bound for
ht (mergéF, G)). In addition to that, the sum of the valuestef is a lower bound for
the value othr[|T|], since it resembles the exact number of past conversatioress
in the frame. Finally, for each hr[i] is a lower bound fohr[j] with j <i. Hence, as
we cannot infer any upper bounds from the counter valueseale simply choose
the values ohr (merg€F, G)) such that the bounds are tight. If only online merging is
used, this approximation always yields accurate valueb-for

4.5 An Algorithm for Learning Frames

Based on the formal notion of validity of a set of frames pnésd in section 4.3, which
extends cluster validity to the space of multi-agent cosatons, and on the frame
merging procedure given in section 4.4, the following sienglgorithm computes the
best way to incorporate a newly observed message sequoeinte a frame repository
F:
function flea( 7, m) returns a frame repository
inputs: frame repositoryf, message sequenge

/* compute the singular frantefor m*/

Fi=(mCn{},(1,....1),(1))

/* compute the s€f of alternatives for inclusion ah*/

Fi={FU{F}} UUres {F \{FTUM(F F)}

/* return the most valid frame repositofly

return argmaxgcpV(F')

While the surface structure of a particular message seguengals the message
sequence itself, identification of a $&#, of logical conditions that held during a con-
versation (according to the observer’s world model) and wexe relevantor crucial
is clearly a nontrivial task. If frames exist, however, th@eution of which was hin-
dered due to reasons of context (especially if pre-specifietocol” frames are used),
these can be used to identify conditions other than thosgsigdily) required for the
execution of the individual messages.

Since the above algorithm only considers a single frameiat@afor inclusion into
the repository, it is unable to detect structures in the sdiénteractions that develop



over time. This corresponds to a more general problewwrdér dependencia incre-
mental unsupervised learning and might in practice resufteiveral frames actually
modelling the same class of interactions. This problem ednamdled, though, by sup-
plementing the above online merging algorithm with one geattodically checks if two
frames in the repository can be merged to increase its dwadality.

5 Conclusion

In this paper, we have presented a novel approacdaptive agent communication
Agents in open environments that communicate accordindgio-level pre-specified
conversational patterns can use the approach to augmesat fiadterns with empiri-
cal observation of actual conversations, and conductideetheoretic reasoning about
them in the framework of empirical semantics. Interactiamfes have been used as the
central data structure, allowing for the integration withr previous work on interaction
frames [4, 5, 20]. The basic principles of the approach, weweould also be applied
to other, possibly more complex, forms of representation.

Our current work focuses on an experimental exploratiohettenefits and limita-
tions of our approach in real-world “communication leagfitasks. An experimental
evaluation in the context of proposal-based and argunienthsed negotiation can
be found in [22]. Further applications include performameasurement of a MAS or
of individual agents with respect to communication or thsigie of new interaction
protocols. An open issue that will have to be dealt with irufatwork to allow for
the acquisition of conversation patterns from scratchasdiscovery of conditions that
were relevant or crucial for a particular class of convéosatWhile inductive logic
programming techniques may again be the appropriate meaattack this problem,
the transition to relative least general generalisatidmni¢tvmight be required to handle
background knowledge already available for a particulasglof conversation) would
make this one disproportionately harder to solve.
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