
Automated Deployment of Argumentation
Protocols

Ashwag MAGHRABY, Dave ROBERTSON,
Adela GRANDO and Michael ROVATSOS

School of Informatics, The University of Edinburgh, Edinburgh EH8 9LE, UK
A.O.Maghraby@sms.ed.ac.uk

Abstract. The objective of this paper is to try to fill the gap between: argumenta-
tion, electronic institutions and protocols by using a combination of automated
synthesis and model checking methods. More precisely, this paper proposes a
means of moving rapidly from argument specification to protocol implementation,
using an extension of the Argument Interchange Format as the specification lan-
guage and the Lightweight Coordination Calculus as an implementation language.

Keywords. Argumentation, Dialogue Games, Automated Synthesis, Interaction
models, Verification, Model Checking.

Introduction

Coordinating agents in open environments is a difficult problem that has engaged mul-
ti-agent systems researchers on three broad fronts: (1) argumentation [1] (the basis for
negotiation between agents); (2) electronic institutions [2] (the norms of social interac-
tion in agent groups) and (3) protocols (which focuses on deployment of interactions).
None of these areas subsumes the others but there is a strong interaction between them
in many cases. For example, if one wishes to construct a multi-agent trading system
then this will contain negotiation, restrictions on agents' group behaviour and protocols
relevant to each agent.

This is broadly analogous to the relationships between different views of formal
system requirements in software engineering, where different viewpoints give a struc-
ture within which complementary aspects of a system may be expressed. Accordingly,
an interesting challenge is how (or whether) the specification of one of these compo-
nents (argumentation, electronic institutions and protocols) can be used to constrain the
specification of the others. One way of addressing this issue is through automated syn-
thesis.

In this paper, a means of towards closing the gap between these three components
is suggested. We demonstrate how a generic argumentation representation (acting as a
high-level specification language) can be used to automate the synthesis of executable
specifications in a protocol language capable of expressing a class of multi-agent social
norms. As our argumentation language we have chosen the Argument Interchange
Format AIF [3] (a generic specification language for argument structure). As our pro-
tocol language we have chosen the Lightweight Coordination Calculus LCC [4] (an
executable specification language used for coordinating agents in open systems).

Computational Models of Argument
B. Verheij et al. (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-111-3-197

197

Figure 1. Overall structure of this research

1. Overall Structure of our System

Our approach attempts to close the gap between standard argument specification and
deployable protocols by automating the synthesis of protocols, in LCC, from argument
specifications, ideally written in the AIF. It consists of three steps (as shown in Figure
1): (1) Proposing a new high-level specification language, between the AIF and LCC,
for multi-agent protocols called a Dialogue Interaction Diagram (DID). The definition
of DIDs is provided in section 2; (2) Synthesising concrete LCC protocols from DID
specifications (automatically synthesise LCC protocols from DID specifications by
recursively applying LCC-Argument patterns). The fully automated synthesis is pro-
vided in section 3; (3) Providing a verification methodology based on model checking
to verify the semantics of the original DID specification against the semantics of the
synthesised LCC protocol. The verification methodology is provided in section 4.

2. Dialogue Interaction Diagram Language

The Argument Interchange Format (AIF) [3] would be a natural choice of a high
level specification language but fully automated synthesis starting only from the AIF is
not possible because AIF is an abstract language that does not capture some concepts
that are needed to support the interchange of arguments between agents (e.g. sequence
of argument, locutions and pre- and post-conditions for each argument). Rather, AIF
only specifies the properties that define an argument without prescribing how that ar-
gument may be made operational. Papers [5,6] discuss this problem in more detail.

To remedy the AIF problem, we will propose a new intermediate language be-
tween the AIF and LCC called a Dialogue-Interaction-Diagram (DID), which contains
information that cannot be deduced from AIF. In practice, DID is a new layer on top of
AIF. DID is used to specify the dialogue game protocols in a compact way. It has nine
elements: (1) Locutions: represent the set of permitted moves; (2) Participants Com-

Step1
DID

LCC

Automated
synthesis

By using LCC-Argument patterns

Step2

3

2

DID properties
(Standard ML
specification)

Result (True

Automatic
transformation

 CPNs

 State space

Step3

Automatic
generation Verification process

(General behaviour proper-
ty checking code in SML)

1

A. Maghraby et al. / Automated Deployment of Argumentation Protocols198

mitment Store: one Commitment Store (CS) for each participant. The CSs of the partic-
ipants reflect the state of the dialogue; (3) Commitment rules (post-conditions): define
the propositional commitments made by each participant with each move during the
dialogue; (4) Structural rules (reply rules or dialogue rules): define legal moves in
terms of the available moves that a participant can select to follow on from the previous
move; (5) Turn taking rules: specify the next player; (6) Starting rules (commencement
rules): define the conditions beginning the dialogue; (7) Termination rules: define the
conditions ending the dialogue; (8) Precondition rules: define the preconditions under
which the move will be achieved; (9) Sender and receiver roles: a set of functions that
an agent can used to interact with each other. Each role identifies the messages that an
agent can send or receive.

DID is not a general protocol specification language. In particular, it is more re-
strictive than any protocol specification language (such as LCC). It restricts agent
moves to unique-moves (agents can make just one move before the turn-taking shifts
and agents can reply just once to the other agent’s move) and immediate-reply moves
(the turn-taking between agents switches after each move and each agent must reply to
the move of the previous agent). This still allows us to include a large class of argu-
mentation systems in our synthesizer, for instance all argumentation systems that can
be described as dialogue games. In general, we can synthesise arguments that can be
described as a sequence of recursive steps (each of which involves turn-taking between
the pair of agents) terminating in a base case.

2.1. DID Elements

The basic element of every DID is a locution icon. A locution icon (as shown in Figure
2) is simply a rectangle divided into three sections. The topmost section contains the
name of the locution. The left section contains sender attributes (Role name, Role ar-
guments, and Agent ID), and the right section contains receiver attributes (Role name,
Role arguments, and Agent ID). A rhombus shape represents conditions which apply to
each move; when connected to the left section it represents sender conditions and when
connected to the right section it represents receiver conditions. Dotted rectangles
represent the locution type: Starting (can be used to open a dialogue), Termination (can
be used to terminate the dialogue), and Recursive locution (can be used to remain in the
dialogue).

Locution name
Role Name Role Name
Role Arguments Role Arguments
Agent ID Agent ID

Figure 2. Locution icon

2.2. DID Example

A DID is created by linking the locution icons together. The links between locution
icons represent reply relations between arguments. In Figure 3, there are three locu-
tions: two attack locutions which have a reply move (claim, and why), and one surrend-

Sender Information Receiver Information

 Sender
condition

 Receiver
condition

Locution Type

A. Maghraby et al. / Automated Deployment of Argumentation Protocols 199

er locution which does not have a reply move (concede). There are three types of locu-
tion: starting (claim), termination (concede), and recursive (why) locution.

In this example, a dialogue always starts with a claim and ends with a concede lo-
cution. A rhombus shape represents conditions which apply to each move. The variable
KB (knowledge base list) represents the agent’s private knowledge represented as ar-
guments expressed in the AIF. The variable CS (commitment store list) contains a list
of arguments expressed in the AIF to which the player has committed during the dis-
cussion. Initially the CS is empty.

In this dialogue, AgentA1 can open the discussion by sending a claim(Topic) (e.g.
claim("Tweety flies")) locution if it is able to satisfy AddToCS(Topic,CSA1) condition
(AddToCS(Topic,CSA1) which is used to update the agent commitment store CSA1 by
adding Topic to it). Then, turn-taking switches to AgentA2. AgentA2 has to choose be-
tween two different possible reply locutions: why(Topic) (e.g. why(Why does Tweety
fly?)) or concede(Topic) (e.g. concede(You are right. Tweety flies)). AgentA2 will make
its choice using the conditions which appear in the rhombus shape. In order to choose
concede(Topic), AgentA2 must be able to satisfy the two conditions which connect with
concede: Condition 1: FindInKBorCS(Topic,KBA2,CSA2) which is used to check wheth-
er Topic is acceptable in the agent argumentation system KBA2 and CSA2 or not. If Top-
ic is acceptable, this constraint returns true; Condition 2: AddToCS(Topic,CSA2) AgentA2
will use this constraint to update its commitment store by adding Topic to CSA2. If
AgentA2 is not able to satisfy these conditions, AgentA2 will send why(Topic). After that,
the turn switches to AgentA1, and so forth.

Although this example is simple, DID can handle embedded dialogues (complex
dialogues) [7] which involve embedding more than one type of dialogue game within
another game such as an embedded persuasion dialogue within an inquiry dialogue.

Figure 3. Partial DID for a Persuasion Dialogue

2.3. Differences between DID and Existing Languages

The most notable differences between DID and existing languages for argumentation-
based interaction protocols are: (1) DID arguments are ideally expressed in AIF. Others
have assumed specific argument formats which are dependent on the type of dialogue
or the particular context of application considered. For an extensive review of the state
of the art in the field of argumentation-based dialogues in MAS we refer the reader to
[1]; (2) DID uses a high-level graphical language resembling ones with which people in
the agent community are familiar, such as Agent UML [8]. Also, specifying argumen-

Termination Locution

KBA2,CSA2,Topic,IDA1

ReplyToClaimA1 ReplyToClaimA2

 KBA1,CSA1,Topic,IDA2

IDO IDA1

concede(Topic)

AddToCS
(Topic, CSA2)

FindInKBorCS
(Topic,KBA2,CSA2)

KBA2,CSA2,Topic,IDA1

ReplyToClaimA1
NotFindInKBorCS

(Topic,KBA2,CSA2)

Recursive Locution

why(Topic)
ReplyToClaimA2

 KBA1,CSA1,Topic,IDA2

IDA2 IDA1

AddToCS
(Topic,CSA1)

Starting Locution

claim(Topic)
StartClaimA1 StartClaimA2

KBA2,CSA2,IDA1

IDA2

 KBA1,CSA1,Topic,IDA2

IDA1

A. Maghraby et al. / Automated Deployment of Argumentation Protocols200

tation protocols using programming-level protocol languages is error-prone, and a
higher-level graphical language can help avoid low-level errors through automated
synthesis of low level details.

3. Automated Synthesis Method

Given the turn-taking assumption implicit in DID diagram, we can synthesise agent
protocols (which are executable) directly from DID specifications. However, a DID
cannot explain how two or more agents can cooperate and interact with each other in
situations where more complex protocols involving more than turn-taking are required.

To overcome this problem, we supply LCC-Argument patterns, which are re-
usable, parameterisable LCC specifications that can be embedded in automated synthe-
sis tools and used with DID to support agent protocol development. This allows us to
reduce the effort of building more complex argumentation protocols by re-using design
patterns to generate argumentation protocols.

3.1. LCC

To support formal analysis and verification, the AIF community suggests [3] using a
process language to implement the dialogue games protocol. For this reason we choose
LCC, a process calculus-based, executable specification language for choreography
which is based on logic programming and is used for specifying the message-passing
behaviour of MAS interaction protocols.

An Example LCC protocol

We now demonstrate LCC using the simplest example of a persuasion protocol be-
tween two agents A1 and A2. A1 and A2 have arguments for and against Topic (e.g. the
Flying Abilities of the "Tweety" Bird). Agent A1 sends a claim(Topic) message and
agent A2 receives this claim(Topic) message. A fragment of theLCC protocol for this
interchange in this argument is:

 a(R1,A1)::
 claim(Topic) => a(R2, A2) � C1 then a(R3,A1).
 a(R2,A2)::
 claim(Topic) <= a(R1, A1) then a(R4,A2).

This is read as: role R1 of agent A1 sends a claim message, which is achieved by

the constraint C1, to the role R2 of agent A2 and then role R2 of agent A2 receives the
claim message from role R1 of agent A1. Then A1 changes its role to R3 and A2
changes its role to R4. See paper [4] for more information about the abstract syntax of
an LCC clause.

3.2. LCC- Argument Patterns

Our patterns capture the different relationships and interactions between LCC agents'
roles. These LCC-Argument patterns provide common code for developing protocols
and their components along with explaining how two or more agents can interact with
each other. They are generic solutions to the common LCC-Argumentation protocol

A. Maghraby et al. / Automated Deployment of Argumentation Protocols 201

development problem that recur across protocols repeatedly and can be adapted to gen-
erate specific protocols.

Maghraby [9] describes these patterns in detail so we will not repeat these here. In-
stead we give in Figure 4 the simplest LCC-Argument pattern called the Starter pattern.

Figure 4. Starter Pattern Structure

This pattern is used to start the dialogue between two agents (A1 and A2). It is
composed of two roles: sender role, RoleOneA1, and receiver role, RoleOneA2.The gen-
eral idea of this pattern is that the agent with role RoleOneA1 sends a starting message,
SL(Topic), to the agent playing role RoleOneA2 and then both change their roles in or-
der to remain in the dialogue.

Patterns are parameterisable LCC components that, when the parameters are in-
itiated via DID, return executable LCC code. For the Starter pattern in Figure 4, the
designer must supply: the names of the roles of the two agents (RoleOneA1, RoleOneA2,
RoleTwoA1, RoleTwoA2); the name of the initial message (SL); the condition on send-
ing the initial message (C1); and the condition on receiving it (C2).

3.3. Automated Synthesis of Agent Protocols from DID

The main aim of this research (as shown in Figure 1- step 2) is to synthesise LCC pro-
tocols automatically from DID specifications by recursively applying LCC-Argument
patterns.

Automated Synthesis Steps Example

In general, during the automated synthesis process, every time we progress from level
to level in the DID diagram the tool generates a pair of LCC clauses or roles and
switches roles (the sender agent will became the receiver and vice versa). The auto-
mated synthesis process follows the diagram from top to bottom and from left to right.
This matches each level of the DID with only one LCC-Argument pattern.

In this section, we will describe how to synthesise a partial LCC protocol from the
starting locution (the claim) from the DID in Figure 3 automatically, using the Starter
Pattern (Figure 4), Figure 5 illustrates the final LCC protocol.

The automated synthesis process of two-agents protocol consists of four steps: (1)
The tool begins with the locution icon at the top of the DID of the persuasion dialogue,
which is claim(Topic). Note that if more than one locution icon appears in one level,
then the tool begins with the locution to the left (since it works from left to right); (2)
Following this, the tool selects one pattern from the LCC-Argument patterns. This
pattern depends on the locution type. In this example, the tool selects the Starting Pat-
tern (since the locution type is Starting Locution). (3) Next, the tool applies the Start-
ing Pattern by matching formal parameters in the Starting Pattern to its corresponding
values in the claim(Topic) icon, starting from the top to bottom and left to right and

 a(RoleOneA1(KBA1,CSA1, Topic, IDA2),IDA1)::=
SL(Topic) => a(RoleOneA2(KBA2,CSA2,IDA1),IDA2) � C1
then a(RoleTwoA1 (KBA1,CSA1, Topic, IDA2),IDA1).

a(RoleOneA2(KBA2,CSA2,IDA1),IDA2)::=

 C2 � SL(Topic) <= a(RoleOneA1(KBA1,CSA1,Topic, IDA2),IDA1)
then a(RoleTwoA2(KBA2,CSA2,Topic,IDA1),IDA2).

A. Maghraby et al. / Automated Deployment of Argumentation Protocols202

matches: (a) Starting from the top of the locution icon, the tool matches SL to
claim(Topic); (b) Moving to the left section of the locution icon, the tool matches Ro-
leOneA1 with StartClaimA1, role parameters with (KBA1,CSA1,Topic,IDA2), and role id
with IDA1; (c) Moving to the right section of the locution icon, the tool matches RoleO-
neA2 with StartClaimA2, role parameters with (KBA2, CSA2,IDA1), and role id with
IDA2;(d) Moving to the left section conditions, the tool matches C1with Add-
ToCS(Topic, CSA1); Moving to the next level, because the Starting Pattern has recur-
sive roles the sender agent will become the receiver and vice versa in the next level.
The tool matches agent A1's recursive role with the right section of the locution icon. It
matches RoleTwoA1 with replyToClaimA1, role parameters with (KBA1,CSA1,Topic,IDA2),
and role id with IDA1. Then, the tool matches agent A2's recursive role with the left
section of the locution icon. It matches RoleTwoA2 with replyToClaimA2, role parame-
ters with (KBA2, CSA2, Topic,IDA1), and role id with IDA2. (4) Finally, the tool moves to
the next level (in this example, it moves to level two) in the DID and repeats steps 2
and 3. Note that the automated synthesis process finishes when the tool matches the last
level in the DID with one LCC-Argument pattern. If the selected pattern has recursive
(changing) roles, the tool moves to the locution icon reply level, which represents the
reply rules of the selected locution icon, and matches the recursive roles in the pattern
with the recursive roles in the locution icon on the this level.

Figure 5: General LCC Protocol for Claim Locution

3.4. Automated Synthesis of Agent Protocols for N-agents

The DID notation is general across all dialogues but is limited to two agents. Our de-
sign patterns extend to N-agents but only accommodate those protocols that fit the
patterns, so we extend protocol coverage but we are only as general as our library of
patterns. However, we can reclaim some generality for patterns in which parts of the
protocol are dialogues. Our idea is to consider the dialogue among N-agent as a dialo-
gue between two agents by dividing agents into groups composed of two agents under
certain conditions. Practically, our automated synthesis method uses an LCC-
argumentation broadcasting pattern [9] to divide agents into groups composed of two
agents and then it follows the automated synthesis process of two agents' protocol (see
section 3.3) to generate the LCC protocol for DID for two agents, which allows the
selected pairs of each group to communicate with each other.

4. Verification Method

We also provide a verification methodology based on model checking (as shown in
Figure 1- step 3) to verify the semantics of the DID specification against the semantics
of the synthesised LCC protocol. Space limitations prevent us from gives details of this
but we sketch the main elements here. The model checking system is built in three
stages: (1) automatically mapping the LCC specification into an equivalent Coloured

a(startClaimA1(KBA1,CSA1, Topic, IDA2),IDA1)::=
 claim (Topic) => a(startClaimA2(KBA2,CSA2,IDA1),IDA2) � AddToCS(Topic, CSA1)

 then a(replyToClaimA1(KBA1,CSA1, Topic, IDA2),IDA1).
a(startClaimA2(KBA2,CSA2,IDA1),IDA2)::=

 claim(Topic) <= a(startClaimA1(KBA1,CSA1,Topic, IDA2),IDA1)
then a(replyToClaimA2(KBA2,CSA2,Topic,IDA1),IDA2)

A. Maghraby et al. / Automated Deployment of Argumentation Protocols 203

Petri Net (CPN) [10]. The formal semantics of the CPN model allows us to prove that
certain (un)desirable properties are (un)satisfied in a LCC protocol. Proof of properties
in LCC protocols mapped into CPNs is supported by a state-space technique, which is
used to compute exhaustively all possible execution states; (2) automatically generating
DID properties as a Standard ML(Meta-Language) specification. For instance, in the
DID shown in Figure 3 the claim locution is a starting locution, therefore we can infer
as a significant property that every LCC synthesised dialogue should start with a claim
locution; (3) automatically verifying the satisfaction of the Standard ML specification
in the state-space graph computed from the LCC protocol. For more details please see
[5].

5. CONCLUSION

This research describes a synthesis and verification approach to bridging the gap be-
tween argument specification and multi-agent implementation using AIF as an example
of an argumentation language and LCC as an example of a multi-agent implementation
(coordination) language. Although the resulting synthesis and verification system is not
an industry-strength specification tool, it demonstrates how automated synthesis me-
thods can connect argumentation to the class of electronic institutions that can be ex-
pressed as protocols in a process language. This, potentially, could allow developers of
argumentation systems to use specification languages to which they are accustomed (in
our case AIF/DID) to generate systems capable of direct deployment on open infra-
structures (in our case LCC).

References

[1] Rahwan I. and Moraitis P. Argumentation in Multi-Agent Systems. In Proceedings of the 5th Internation-
al Workshop on Argumentation in Multi-Agent Systems (ArgMAS2008). 2009.

[2] Esteva M., Vasconcelos W., Sierra C., and Rodríguez-Aguilar J. Norm consistency in electronic institu-
tions. In Proceedings of the XVII Brazilian Symposium on Artificial Intelligence - SBIA'04, Lecture
Notes in Artificial Intelligence, volume LNAI. 2004; 3171: 494-505.

[3] Chesnevar C., McGinnis J., Modgil S., Rahwan I., Reed C., Simari G., South M., Vreeswijk G., Will-
mott S. Towards an argument interchange format. The Knowledge Engineering Review. 2007; 21(4):
293–316.

[4] Robertson D. Multi-agent coordination as distributed logic programming. In ”Logic programming” 20th
International Conference, Proceedings, Lecture Notes in Computer Science. 2004; 3132:416-430.

[5] Maghraby A. Automatic Agent Protocol Generation from Argumentation. 13th European Agent Systems
Summer School, Girona, Catalonia (Spain). 2011.

[6] Maghraby A., Robertson D., Grando A., and Rovatsosr M. Bridging the Speci_cation Protocol Gap in
Argumentation. The Ninth International Workshop on Argumentation in Multi-Agent Systems (Arg-
MAS2012).2012.

[7] Walton D. and Krabbe E. Commitment in Dialogue: Basic concept of interpersonal reasoning. State
University of New York Press, Albany, NY, USA.1995.

[8] Bauer B., Müller J., and Odell J. Agent UML: A Formalism for Specifying Multiagent Interaction.
Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge eds., Springer, Berlin.
2001; 11: 91-103.

[9] Maghraby A. LCC argument patterns. School of Informatics, Edinburgh university. 2011. Available
from: http://homepages.inf.ed.ac.uk/s0961321/index.html

[10] Jensen K., Kristensen L., and Wells L. Coloured Petri Nets and CPN Tools for modelling and validation
of concurrent systems. International Journal on Software Tools for Technology Transfer (STTT). 2007;
9(3):213–254.

A. Maghraby et al. / Automated Deployment of Argumentation Protocols204

http://homepages.inf.ed.ac.uk/s0961321/index.html

