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Abstract

This paper presents communication systems (CS) as the
first available unified model of socially intelligent systems
defined in terms of communication structures. It combines
the empirical analysis of communication in a social system
with logical processing of social information to provide
a general framework for computational components that
exploit communication processes in multiagent systems. The
two main contributions offered by this paper are as follows:
First, a formal model of CS that is based on an improved
version of expectation networks and their processing is
presented. This formal model is based on a novel approach
to the semantics of agent communication languages which
contrasts with traditional approaches. Second, a number
of CS-based applications are described which illustrate the
enormous potential and impact of a CS-based perspective of
socially intelligent systems.

Keywords: Artificial Agents, Multiagent Systems, Agent
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1. Introduction

The crucial property of artificial agents is their autonomy,
and since communication is the only autonomy-preserving
way for agents to interact, it can be argued [1, 2] that any
kind of social relationship among agents (constituted through
e.g. virtual organizations, interaction protocols, social norms,
common ontologies...) can be described in form of commu-
nication structures. Traditional attempts to model the seman-
tics of agent communication languages (ACLs), which consti-
tute communication structures, are mostly based on describ-
ing mental states of communicating agents [3, 4, 5, 6] or on
publicly available (usually commitment-based) social states
[7, 8, 9]. The theoretical advantages of the former approach
are that it could be able to fully expose the whole mecha-
nism of utterance and utterance understanding (provided that
the agents are equipped with social intelligence). But it has
two obvious shortcomings, which eventually led to the de-
velopment of the latter “objectivist” approach: At least in
open multiagent systems, agents appear more or less as au-
tonomous black boxes, which makes it impossible in general
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to impose and verify a semantics described in terms of cog-
nition. Furthermore, the description of interaction scenarios
in terms of the cognition of individuals tends to become ex-
tremely complicated and intractable for large sets of agents,
even if one could in fact “look inside the agents’ heads”. This
is not so much the case due to the complexity of communica-
tion processes themselves, but due to the subjective, limited
perspective of the involved individual agents, which makes
it hard to conclude a concise picture of supra-individual pro-
cesses. Current mentalistic approaches either lack a concept
for preventing such complexity at all, or they make simpli-
fying but unrealistic assumptions, for example that all inter-
acting agents were benevolent and sincere. The “objectivist”
semantics, in contrast, is fully verifiable, and it achieves a
big deal of complexity reduction by limiting itself to a small
set of normative semantical rules. Therefore, this approach
has been a big step ahead. But it oversimplifies social pro-
cesses neglecting pragmatics in favor of traditional sentence
semantics, and it does not have a sufficient concept of mean-
ing dynamics and generalization, and social rationality like
argumentation and sanctioning [10]. Communication always
has an implicit social semantics prior to any normative defi-
nition, and this semantics needs to be exploited. In general,
we doubt that the predominately normative, static and defi-
nite concepts of most of the current ACL research, borrowed
from the study of programming languages and protocol se-
mantics, are really adequate to cope with concepts like agent
autonomy, agent opaqueness and the emergence and vague-
ness of socially constructed meaning, which communication
is in fact about. Therefore, both these traditional views fail to
recognize that communication semantics evolve during op-
eration of a multiagent system (MAS), and that they always
depend on the view of an observer who is tracking the com-
municative processes of black- or gray-box agents in the sys-
tem [10, 11]. Yet communication dynamics and observer-
dependency are crucial aspects of inter-agent communica-
tion, especially in the context of open systems in which a
pre-determined semantics cannot be assumed, let alone the
compliance of agents’ behavior with it.
In response to these issues, in [1, 12] we have – influenced by
sociological systems-theory [13] – introduced expectations
regarding observable communications as a universal means
for the modelling of emergent sociality in multiagent systems,
and in [11, 10, 14], we have presented – influenced by socio-
cognitive and socio-systems theories [15, 16, 13] – formal
frameworks for the semantics of communicative action that
is empirical, constructivist and consequentialist in nature and
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analyzed the implications of this model on social reasoning
both from an agent (bottom-up) and a systemic (top-down)
perspective.

Thereby, we have suggested that recording observations
of message exchange among agents in a multiagent system
(MAS) empirically is the only feasible way to capture the
meaning of communication, if no a priori assumptions about
this meaning can be made. Being empirical about meaning
naturally implies that the resulting model very much depends
on the observer’s perspective, and that the semantics would
always be the semantics “assigned” to the utterances by that
observer, hence this view is inherently constructivist. Since,
ultimately, no more can be said about the meaning of a mes-
sage than that it lies in the expected consequences that this
message has, we also adopt a consequentialist outlook on
meaning.

In this paper, we present a framework for the formal de-
scription of socially intelligent multiagent systems based on
the universal, systems-theoretical concept of communication
systems (CS). Following sociological systems theory, com-
munication systems (also called social systems) are systems
that consist of interrelated communications which describe
their environment [13]. We use this term to denote computa-
tional models of such systems that process empirical informa-
tion about observed communication which takes place within
a MAS of artificial agents (either with the CS as an MAS-
external MAS-observer or as a component of an agent which
participates in the observed communication himself). Their
distinct features are (i) that they only use data about com-
munication for building models of social processes, the un-
derlying assumption being that all relevant aspects of agent
interaction are eventually revealed through communication,
and (ii) that, if the respective CS is part of an agent, the
results of the observations are suitable to take action in the
MAS to influence its behavior; in other words, there might be
a feedback loop between observation and action, so that an
CS-based agent becomes an autonomous component in the
overall MAS.

CSs might be (part of) socially intelligent software agents.
Note, however, that this is not necessarily the case. Although
their autonomy presumes some agentification in the tradi-
tional sense, their objectives need not be tied to achieving
certain goals in the physical (or virtual simulation) world as is
the case with “ordinary” agents. Thus, CS are best character-
ized in a abstract fashion as components used to (trans)form
expectations (regardless of how these expectations are em-
ployed by agents in their reasoning) and are autonomous with
respect to how they perform this generation of expectations.

Thereby, the “semantics” aspect mentioned above plays a
crucial role, because the meaning of agent communication
lies entirely in the total of communicative expectations in a
system [1], and CS capture precisely these expectations and
how they evolve.

The remaining sections are structured as follows: We start
by introducing expectation networks in section 2, which con-

stitute our formal model for describing communicative ex-
pectations. Then, we formally define communication systems
and their semantics (section 3). Section 4 discusses applica-
tions and extensions of the CS, and section 5 concludes.

2. Expectation Networks

It is widely accepted in Distributed Artificial Intelligence
that the most important property of intelligent agents is
their autonomy. The major consequence of the autonomous
behavior of agents is that a certain agent appears to other
agents and observers more or less as a black box which
cannot fully be predicted and controlled. This obscurity and
uncontrollability is particularly salient in the open multiagent
systems we are focussing on. Because only the actions of the
agent in its environment can be observed, while its mental
state keeps obscure, beliefs and demands directed to the
respective agent can basically be stylized as action expec-
tations, which are fulfilled or disappointed in future agent
actions1. To overcome the situation of mutual indeterminism
among black-box agents (the so-called situation of double
contingency [13]), i.e. to determine the respective other
agent and to achieve reasonable coordination (including
“reasonable” conflicts), the agents need to communicate.
A single communication is the whole of a message act as
a certain way of telling (not necessarily via speech, but
also e.g. as a demonstrative gesture or other semiotically
relevant manipulations of the “physical” domain), plus a
communicated information, plus the understanding of the
communication attempt. Communication is observable as a
course of related agent interactions. Because communica-
tions are the only way to overcome the problem of double
contingency (i.e. the isolation of single agents), they are the
basic constituents of sociality, and the relation of subsequent
communications forms the social system for the participating
agents. And if action expectations are related to message acts
as parts of communications (i.e. sociality), social structures
can be modeled as expectation structures [13].
By processing existing expectations, agents determine their
own actions, which, then, influence the existing expectations
in turn. So communication is not only structured by indi-
vidual agent goals and intentions, but also by expectations,
and the necessity to test, learn and adapt expectations
from observed interactions and in order to optimize future
communications.
Expectations regarding agent behavior can be formed not
only by peer agents (as an aspect of their mental state),
but also by observers with a global view of the multiagent
system. Such system-level expectations are called emergent
if they are formed solely from the statistical evaluation of
the observed communications. In contrast, e.g. the system
designer forms expectations not only from her knowledge
about the existing multiagent system “under construction”,

1This view of expectations and sociality follows the Theory of Social
Systems (“systems theory”) of the sociologist Niklas Luhmann [13] and is
described in detail in [1].
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Figure 1.
An expectation network. Nodes are labelled with message templates in typewriter font and the special symbols ., ⊥ and ?;
they are connected by (solid) edges labelled with numerical expectabilities in italic font. Substitution lists/conditions belonging
to edges appear in rounded/edged boxes near the edge. If neighbouring edges share a condition this is indicated by a drawn
angle between these edges. This example network shows a short communication course of three agent roles, A, B and C, which
are instantiated with three agents through substitution lists (A = agent 1, B = agent 2, C = agent 3). The provision of
such substitution lists is optional. The EN starts with a request to do action X (deliver goods) of A directed to B. In case
condition price = 0 is fulfilled, B is expected to always accept this request and to perform the requested action X in case he is
able to do it (condition can(B, X) is true). Otherwise, with probability 0.5 the request will be rejected and the communication
ends (⊥). With probability 0.5, B answers with a proposal Y (where Y = pay price), which is accepted by A with probability
0.5. After rejection, the further course of communication is unknown (?), whereas the acceptance leads to the fulfillment of X
through B (do(B, X)). In the latter case, A in turn does Y (i.e., pays the price for X), or delegates this to C if he is not able
to pay (can(A, Y ) is false).

but also from her design goals (in 4.2 we will present a design
method for multiagent system based on this principle). In
either case, interrelated expectations regarding future agent
behavior are the only modeling means that are universally
suitable for the description of black-box agents’ interaction
behavior from an external observers point of view as our
computational models of communication systems.

Expectation networks (ENs) [1] are the graphical data
structures used in this work for the formal representation of
such social expectations. They capture the regularities in the
flow of communication between agents in a system by in-
terconnecting message templates (nodes) that stand for utter-
ances via links (edges) which are labelled with (i) probabilis-
tic weights called expectabilities, (ii) a logical condition and
(iii) lists of variable substitutions. Roughly speaking, the se-

mantics of such a weighted edge is as follows: If the vari-
ables in the messages have any of the values in the (optional)
substitution lists, and the logical condition is currently satis-
fied, then the weight of this edge reflects the probability with
which a message matching the label of the target node is ex-
pected to follow the utterance of a message matching the label
of the source node of the edge. Before presenting a full def-
inition of ENs, we have to introduce some basic notions and
notation we use, and to make certain auxiliary definitions and
assumptions. The example network in figure 2 will be used
throughout the discussion of ENs to illustrate the purpose of
definitions and assumptions.

2.1 Basics

A central assumption that is made in ENs is that observed
messages may be categorised as continuations of other com-
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munications, or may be considered the start of a new inter-
action that is not related to previous experience. So an edge
leading from message m to message m′ is thought to reflect
the probability of communication being “continued” from
the observer’s point of view. Usually, continuation depends
on temporal and spatial proximity between messages, but it
might also be identified through a connection about “subject”,
or, for example, through the use of the same communication
medium (m′ was shown on TV after m was shown some time
earlier on).

Apart from “ordinary” node labels denoting messages, we
use three distinct symbols “.”, “⊥”, and “?”. “.” is the la-
bel occurring only at the root node of the EN. Whenever a
message is considered a start of a new conversation instead
of continuing previous sequences, it is appended to this “.”-
node. Nodes labelled with “⊥” denote that a course of com-
munications is expected to end with the predecessor of this
node. The label “?”, finally, indicates that there exists no ex-
pectation regarding future messages at this node. Nodes with
such “don’t know” semantics are usually messages that occur
for the first time – the observer knows nothing about what
will happen after them being uttered.

To define the syntactic details of EN, we introduce for-
mal languages L and M used for predicate-logical expres-
sions and for message templates. L is a simple logical
language consisting of propositions Statement potentially
containing (implicitly universally quantified) variables and
of the usual connectives ∨, ∧, ⇒ and ¬, the logical con-
stants “true” and “false”, and braces () for grouping sub-
expressions together (the language is formally given by the
grammar in table 1). Given the set of all possible interpreta-
tions I = {I : Statement → {true, false}} we define the
relation |=⊆ I × L in the usual way by induction over for-
mulae ϕ ∈ L and interpretations I ∈ I:

I |= ϕ iff ϕ ∈ Statement and I(ϕ) = true

I |= ϕ iff ∃ϑ : ϕ′ϑ = ϕ and I |= ϕ′

I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∨ q iff I |= ϕ or I |= q

where ϑ = 〈[v1/t1], . . . , [vk/tk]〉 is a variable substitution.
As usually, ∧ and ⇒ can be defined as abbreviations through
the other operators. Also, we write |= ϕ if ϕ is a tautology
that is satisfied by any I ∈ I. A knowledge base KB ∈ 2L

can be any finite set of formulae from L. For simplicity, we
will often write KB |= ϕ to express |= (

∧

ϕ′∈KB ϕ′ ⇒ ϕ).
As for M, this is a formal language that defines the mes-

sage patterns used for labelling nodes in expectation net-
works. Its syntax is given by the grammar in table 1. Mes-
sages observed in the system (we write Mc for the lan-
guage of these concrete messages) can be either physical
messages of the format do(a, ac) where a is the executing
agent and ac is a symbol used for a physical action, or a

Var → X | Y | Z | . . .

AgentVar → A1 | A2 | . . .

PhysicalActVar → X1 | X2 | . . .

Expect ∈ [0; 1]

Agent → agent 1 | . . . | agent n

Head → it rains | loves | . . .

Performative → accept | propose | reject | inform

| . . .

PhysicalAction → move object | pay price

| deliver goods | . . .

Message → Performative(Agent , Agent ,LogicalExpr )

| do(Agent , Agent ,PhysicalAction)

MsgPattern → Performative(AgentTerm, AgentTerm,

LogicalExpr )

| do(AgentTerm, AgentTerm,

PhysicalActTerm)

| . | ⊥ | ?

PhysicalActTerm → PhysicalActVar | PhysicalAction

AgentTerm → AgentVar | Agent

LogicalExpr → (LogicalExpr ⇒ LogicalExpr )

| (LogicalExpr ∨ LogicalExpr )

| (LogicalExpr ∧ LogicalExpr )

| ¬LogicalExpr

| Statement

Statement → Head | Head(TermList) | true

| false

TermList → TermList,Term | Term

Term → Var | AgentTerm | MsgPattern

| Graph

EdgeList → (MsgPattern, Expect ,MsgPattern,

LogicalExpr ,SubstList) EdgeList | ε

Graph → 〈EdgeList〉

SubstList ′ → SubstList ′ Subst | ε

SubstList → 〈SubstList ′〉

Subst → [AgentV ar/Agent]

| [PhysicalActV ar/PhysicalAction]

| [V ar/Term]

Table 1.
A grammar for messages, generating the languages M (the language of mes-
sage patterns, using MsgPattern as starting symbol), Mc (the language of
concrete messages, using Message as starting symbol) and the logical lan-
guage L (using LogicalExpr as starting symbol).
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non-physical message performative(a, b, c) sent from a to
b with content c. (Note that the symbols used in the Agent

and PhysicalAction rules might be domain-dependent sym-
bols the existence of which we take for granted.) The node
labels (type MsgPattern) used in the expectation networks
may also contain variables for agents and physical actions
(though not for performatives). Following the concept of
agent roles introduced in [1, 12], the variables for agents are
called (agent) roles. These variables are useful to general-
ize over different observed messages, and can optionally be
further specified by adding variable substitution lists. The
content c of a non-physical action, finally, is given by type
LogicalExpr . It can either be (i) an atomic proposition, a
(ii) message term or physical action term, (iii) an expectation
network2, or (iv) a logical formula containing these elements
according to table 1. Syntactically, expectation networks are
here represented as lists of edges (m, p, n, c, l) where m and
n are message terms, p is a transition probability (expectabil-
ity) from m to n, c is a logical condition, l is a list of variable
substitutions. We use functions in : V → 2C , out : V → 2C ,
source : C → V and target : C → V which return the in-
going and outgoing edges of a node and the source and target
node of an edge, respectively, in the usual sense. C is the set
of all edges, V the set of all nodes in the EN. cond : C → L
returns the conditions of edges, subst : C → SubstList

(with SubstList as in table 1) returns the edges’ substitution
lists. Edges denote correlations in observed communication
sequences. Each cognitive edge is associated with an ex-
pectability (returned by Expect : C → [0; 1]) which reflects
the probability of target(e) occurring shortly after source(e)
in the same communicative context (i.e. in spatial proximity,
between the same agents, etc.).

The full meaning of these ingredients will be further clari-
fied once the full definition of expectation networks has been
presented. Note that according to table 1 expectation net-
works are allowed to be contained within message terms
of expectation network nodes themselves to allow the mod-
elling of the communication of complex expectation struc-
tures among agents.

2.2 Edge Conditions

As a final ingredient to network edges, we briefly discuss
edge conditions. The idea is that these conditions should fur-
ther define the scope of validity to cases in which a formula
can be shown to hold using the observer’s knowledge base.
So, if ϕ = cond(e), then e is only relevant iff KB |= ϕ.

Because all conditions for outgoing edges of a certain node
should be mutually exclusive to ensure that later the seman-
tics of a certain message trajectory can be calculated unam-
biguously, we want the sum of expectabilities of all out-edges
of a node to be one for a certain knowledge base content3. In

2Such expectation networks within messages are useful to replace perfor-
matives of agent communication languages. We have to refer to [10, 14] for
details of this concept.

3From a probabilistic point of view, it would be sufficient to demand a

other words, the condition

∀v
∑

e∈out(v),KB|=cond(e)

Expect(e) = 1

should hold.
This can be ensured, for example, by guaranteeing that the

following condition holds through appropriate construction
rules for the EN. Assume the outgoing links out(V ) of ev-
ery node v are partitioned into sets O1, O2, . . . Ok where the
links’ expectabilities in each Oi are non-negative and sum up
to one4. Now let all edges in Oi share the same edge condi-
tion, i.e. ∀i∃ϕ∀o ∈ Oi.(cond(o) = ϕ) and define cond(Oi)
as precisely this shared condition ϕ. (The Oi sets are pre-
cisely those sub-sets of out(v) connected by a drawn angle
in figure 2.)

If we make sure that the outgoing links of every node are
partitioned in this way, we can assign mutually exclusive con-
ditions to them, i.e. ensure that

∀i 6= j.cond (Oi) ∧ cond(Oj ) ≡ false

and ∨i cond(Oi) ≡ true

This way, it is not only guaranteed that we can derive un-
ambiguous probabilities directly from the Expect values, but
also that we can do so for any knowledge base contents (cf.
2.4)5.

2.3 Formal Definition

Having discussed all the prerequisites, we can now define
ENs formally:

Definition 1. An expectation network is a structure

EN = (V, C,M,L, H,mesg , cond , subst ,Expect)

where

• V with |V | > 1 is the set of nodes,

• C ⊆ V × V are the cognitive edges (or edges for short)
of EN . (V, C) is a tree called expectation tree.

• M is a message term language6, L is a logical language,
cond : C → L returns the conditions of edges,

• mesg : V → M is the message label function for nodes
such that

sum lower or equal one, but a sum of exactly one (which is practically al-
ways feasibly through insertion of a “dummy” ’?’-edge) formally ensures
the exhaustiveness of the set of outgoing edges.

4Formally, out(v) = ∪1≤i≤kOi and ∀1 ≤ i < j ≤ k.Oi ∩ Oj = ∅,
and ∀i ≤ k.(∀o ∈ Oi.Expect(o) ≥ 0 ∧

�
o∈Oi

Expect(o) = 1).
5This comes at the price of having to insert redundant edges in some

situations. For example, insertion of a new edge e with cond(e) = ϕ if
out(v) = ∅ necessitates insertion of another edge e′ with cond(e) = ¬ϕ.

6All languages as defined in the previous sections.
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- mesg(v) = . exactly for the root node of (V, C),

- ∀v ∈ V.∀e, f ∈ out(v).
¬unify(mesg(target(e)),mesg(target(f)))
(where unify shall be true iff its arguments are
syntactically unifiable, i.e., target node labels of
outgoing links never match),

• H ∈ N is a finite communication horizon,

• Expect : C → [0; 1] returns the edges’ expectabilities,

• subst : C → SubstList (with SubstList as in table 1)
returns the edges’ substitution list.

Our full formal framework [17] also defines so-called norma-
tive edges, which have been omitted here for lack of space.
In contrast to cognitve edges, the expectabilities of normative
edges are only seldomly adapted by the communication sys-
tem according to newly observed messages, and under very
specific circumstances. In the tradition of systems theory,
here the term “cognitive” means “adaptable through cogni-
tion about observations”.

The only element of this definition that has not been dis-
cussed so far is the communication horizon H , which denotes
the scope of maximal message sequence length for which the
EN is relevant. It is necessary for defining the semantics of
the EN, and will be discussed in detail in the following sec-
tion.

2.4 Formal Semantics of Message Sequences

The purpose of an EN is to provide a semantics for mes-
sages. For an arbitrary set S, let ∆(S) be the set of all (dis-
crete) probability distributions over S with finite support. We
define the semantics IEN (KB, w) of an observed message
sequence w in a network EN as a mapping from knowl-
edge base states and current message sequence prefixes to the
posterior probability distributions over all possible postfixes
(conclusions) of the communication. Formally,

IEN (KB , w) = fw, fw ∈ ∆(M∗
c) (1)

where

fw(w′) =
gw(w′⊥)

∑

v∈M∗

c

gw(v⊥)
(2)

is defined as the normalized value of gw(w′⊥). gw(w′⊥) rep-
resents the probability that w will be concluded by message
sequence w′, for any w, w′ ∈ M∗. We compute the prob-
ability for w′⊥ to make sure w′ is followed by a node with
label ⊥ in the network, because the probability of w′ is the
probability with which the communication sequence will end
after w′

|w′| (and not that w′ will simply be the prefix of some
longer sequence). Also note that the sum in the denominator
is not, as it may seem, infinite, because fw has finite support

and the length of the considered message sequences is limited
by means of the communication horizon H (see below), and
that the semantics of w depends on KB, because only those
edges which have conditions that are true according to KB
are used for calculating the semantics of w.

Informally, the probability of w′ should be inferred from
multiplying all the expectability weights along the path that
matches w′ (if any). Before presenting the top-level formula
for gw(w′), we need some auxiliary definitions:

Firstly, we need to determine the node in a network EN

that corresponds to a word w, which we denote by mesg−1:

mesg−1(ε) = v :⇔ mesg(v) = .

mesg−1(wm) =































v′ if ∃(v, v′) ∈ C(KB).

∃ϑ ∈ subst((v, v′)).

(mesg(v′) · subst(w)ϑ = m

∧mesg−1(w) = v)

⊥ if no such v′ exists

(3)

if w ∈ M∗
c , m ∈ Mc

7. The first case states that the node cor-
responding to the empty sequence ε is the unique root node
of (V, C) labelled with .. According to the second case, we
obtain the node v′ that corresponds to a sequence wm if we
take v′ to be the successor of v (the node reached after w)
whose label matches m under the following condition:

There has to be a substitution ϑ ∈ subst((v, v′)) which,
when composed with the substitution subst(w) applied so
far to obtain the messages in w1 to w|w| from the respective
nodes in EN , will yield m if applied to mesg(v′). This is
expressed by mesg(v′) · subst(w)ϑ = m. In other words,
there is at least one combined (and non-contradictory) vari-
able substitution that will make the node labels along the
path mesg−1(wm) yield wm if it is applied to them (con-
catenating substitutions is performed in a standard fashion).
Thereby, the following inductive definition can be used to de-
rive the substitution subst(w) for an entire word w:

w = ε : subst(w) = 〈〉

w = w′m : subst(w) =

subst(w′) · unifier(mesg(mesg−1(wm)), m)

where · is a concatenation operator for lists and unifier(·, ·)
returns the most general unifier for two terms (in a standard
fashion). Thus, subst(w) can be obtained by recursively ap-
pending the unifying substitution of the message label of each
node encountered on the path w to the overall substitution.
With all this, we are able to compute gw(w′) as follows:

gw(w′) =















| ∪H
i=1 M

i
c|
−1

if ∃v ∈ out(mesg−1(w)).mesg(v) =?
∏

i

(

∑

e∈pred(ww′,i) S(e)
)

else
(4)

7For convenience, let C (KB) be the set of nodes within the sub-network
of expectation network EN where the edge set is reduced to those edges
whose conditions are satisfied under KB .
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which distinguishes between two cases: if the path to node
mesg−1(w) whose labels match w (and which is unique, be-
cause the labels of sibling nodes in the EN never unify) ends
in a “?” label, the probability of a w′ is simply one over the
size of all words with length up to the communication hori-
zon H (hence its name). This is because the semantics of “?”
nodes is “don’t know”, so that all possible conclusions to w
are uniformly distributed. Note that this case actually only
occurs when new paths are generated and it is not known
where they will lead, and also that if an outgoing link of a
node points to a node with label “?”, then this node will have
no other outgoing links.

In the second case, i.e. if there is no “?” label on the path
p from mesg−1(w) to mesg−1(ww′), then the probability of
w′ is the product of weights S(e) of all edges e on p. Thereby,
S(e) is just a generalized notation for expectability or norma-
tive force depending on the typed edge, i.e. S(e) = Exp(e)
for e ∈ C. The sum of these S-values is computed for all in-
going edges pred(ww′, i) of the node that represents the the
ith element of w′, formally defined as

∀w ∈ M∗
c .pred(w, i) =











in(mesg−1(w1 · · ·wi))

if mesg−1(w1 · · ·wi) 6= ⊥

∅ else
(5)

3. Communication Systems

A communication system can be seen as a description of
the social dynamics of a multiagent system. The two main
purposes of a CS are i) to capture the social expectations (rep-
resented as an EN) in the current state of a multiagent system
under observation, and ii) to capture changes to these expecta-
tion structures. Whereas the EN models the current meaning
of communicative action sequences (i.e., their expected, gen-
eralized continuations in a certain context of previous mes-
sage utterances), the CS models the way the EN is build up,
and, if necessary, adapted according to new statistical obser-
vations. As already mentioned in section 1, in contrast to
agents who reason about expectations (such as InFFrA agents
[18]), a CS need not necessarily be an active agent who takes
action in the MAS itself.

Describing how communication systems work should in-
volve (at least) clarifying:

• which communicative actions to select for inclusion in
an EN,

• where to add them and with which expectability (in par-
ticular, when to consider them as “non-continuations”
that directly follow “.”),

• when to delete existing nodes and edges (e.g. to “forget”
obsolete structures), and how to ensure integrity con-
straints regarding the remaining EN.

A formal framework for specifying the details of the above is
given by the following, very general, definition:

Definition 2. A communication system at time t is a structure
CSt = (L,M, f, $t, κ)

where

• L, M are the formal languages used for logical expres-
sions and messages (according to table 1),

• f : EN (L,M) ×Mc → EN (L,M) is the expectation
structures update function that transforms any expecta-
tion network EN to a new network upon experience of
a message m ∈ Mc,

• $t = m0m1...mt ∈ M∗
c is the list of all messages

observed until time t. The subindexes of the mi impose
a linear order on the messages corresponding to the
times they have been observed8.

• κ : 2L×Mc → 2L is a knowledge base update function
that transforms knowledge base contents after a message
accordingly,

and EN (L,M) is the set of all possible expectation networks
over L and M. The intuition is that a communication system
can be characterized by how it would update a given knowl-
edge base and an existing expectation network upon newly
observed messages m ∈ Mc. The EN within CSt can thus
be computed through the sequential application of the expec-
tation structures update function f for each message within
$, starting with an empty expectation network (i.e., an EN
which contains only the start node). $t−1 is called the con-
text of the message observed at time t, and IEN (KB , $t)
computes the semantics of this message within this context.

This definition of CS is very general, as it does not pre-
scribe how the EN is modified by the CS. However, some
assumptions are reasonable to make, although not obligatory
(see [14] for a concrete EN-/CS-learning algorithm):

• If KB is the current knowledge base, κ(KB , m) |=
KB(m) should hold, so that all facts resulting from
execution of m are consistent with the result of the
κ-function.

• An EN should predict the future of the respective observ-
able communication sequences as accurately as possi-
ble. Although there is no canonical method a CS should
use to construct and update ENs, we propose the fol-
lowing very general heuristic: if any message sequence
w′ has occurred with frequency Pr(ww′) as a contin-
uation of w in the past, and EN ′ is the same as EN ,

8For simplicity, we assume a discrete time scale with t ∈ � , and that no
pair of messages can be uttered at the same time.
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IEN ′(KB , w)(w′) = Pr(ww′) should be the case, i.e.
the expectabilities along a certain path within the expec-
tation tree shall reflect the frequencies with which the
respective message sequences have been occurred.

In addition to these basic assumptions, we propose the fol-
lowing functionality a CS shall provide to be of practical use:

3.1 Message Filtering and Syntax Recognition.

Depending on its goals and the application domain, the
CS as an autonomous observer might not be interested in all
observable messages. Since ENs may not provide for a pri-
ori expectations, the discarding of such “uninteresting” mes-
sages can only take place after the semantics (i.e., the ex-
pected outcome) of the respective messages has already been
derived from previous observation. Because discarding mes-
sages bears the risk that these messages become interesting
afterwards, as a rule of thumb, message filtering should be
reduced to a minimum. More particularly, messages should
only be filtered out in cases of more or less settled expecta-
tions. Paying attention to every message and filtering unin-
teresting or obsolete information later by means of structure
reweighting and filtering (cf. below) is presumably the more
robust approach.

3.2 Structure Expansion and Generalization.

Structure expansion is concerned with the growth of an
EN in case a message sequence is observed which has no se-
mantics defined by this EN yet. In order to do so, we could
start with an empty EN and incrementally add a node for
each newly observed message. But this would be not smart
enough, because it does not take advantage of generalizable
message sequences, i.e. different sequences that have approx-
imately the same meaning. In general, such a generalization
requires a relation which comprises “similar” sequences. The
properties of this relation of course depends on domain- and
observer-specific factors. A quite simple way of generalizing
is to group messages which can be unified syntactically, using
the message patterns introduced in table 1.

In theory, the expansion of the EN would never be neces-
sary if we could a-priori generate a complete EN, i.e. an EN
which contains dedicated paths for all possible message se-
quences. In this case, the CS would just have to keep track of
the perceived messages using $ and to identify this sequence
within the EN to derive its semantics, with no need for f . For
obvious reasons, such a complete EN cannot be constructed
in practice.

3.3 Pruning the EN.

Several further methods of EN processing can be con-
ceived of that aid in keeping the computation of (approx-
imate) EN semantics tractable. This can be achieved by
continuously modifying expectation structures using certain
meta-rules, for example:

1. “fading out” old observations by levelling their edge
weights;

2. replacing large sets of sibling edges with (approxi-
mately) uniformly distributed expectabilities with single
edges leading to “?” nodes;

3. removal of “?”s that are not leafs. Such nodes can occur
as outcome of the previous measure.

4. keeping the EN depth constant through removal of one
old node for each new node to save space and remove
obsolete structures (e.g. using the communication
horizon H as maximum EN depth);

5. removal of edges with very low expectabilities. In case
this results in cut-off branches, these have to be con-
nected with the start node subsequently.

Since these modifications are highly application-dependent,
we don’t provide exact criteria for their practical application
here.

4. Applications and Extensions

The modelling of social structures on the basis of ex-
pectation networks and communication systems allows for
novel approaches to a variety of challenging issues in mul-
tiagent system technology. In the following, we review three
of these issues, namely, (i) identification of ontologies for
inter-agent communication and – closely related – the find-
ing of verifiable and flexible semantics for agent commu-
nication languages; (ii) mirror holons as a new model for
holonic theories of agency and software engineering meth-
ods based on expectation-oriented modelling and analysis of
multiagent systems; (iii) the agent-level social reasoning ar-
chitecture InFFra.

4.1 Social Ontologies

In Distributed Artificial Intelligence (DAI), an ontology is
a set of definitions as a means to provide a common ground
in the conceptual description of a domain for communica-
tion purposes. Ontologies are usually represented as graph-
ical hierarchies or networks of concepts, topics or classes,
and either top-down imposed on the agents or set up bottom-
up by means of ontology negotiation. In a similar way, ex-
pectation networks are descriptions of the social world in
which the agents exist. But ENs do not only describe so-
cial (i.e. communication) structures, but indirectly also the
communication-externalenvironment the message content in-
forms about. Thus, communication systems can be used,
in principle, for an incremental collection of ontological de-
scriptions from different autonomous sources, resulting in
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stochastically weighted, possibly conflicting, competitive and
revisable propositions about environmental objects [21]. The
crucial difference to traditional mechanisms is that such a so-
cial ontology (also called Open Ontology [21, 20, 19]) in-
cludes probabilistic expectations about how a certain domain
object or event is described, constructed and used socially by
multiple autonomous knowledge sources (which do not nec-
essarily have consistent views and which are not necessar-
ily cooperative, reliable or trustable), i.e. in the course of
communication processes using communicative means like
approval, contradiction, conflict, argumentation or specifica-
tion. This opposes somewhat the traditional understanding of
ontologies, where an ontology provides an a priori grounding
for communication only instead of taking into consideration
that ontologies are evolving, possibly inconsistent results of
communication also, and it makes this social approach appear
particularly suitable for the Semantic Web, open multiagent
systems, Peer2Peer systems and communities of practice with
a highly dynamic environment, where a commonly agreed,
homogenous domain perception of distributed, autonomous
knowledge sources cannot be assumed. Also, it is appropri-
ate whenever distributed domain descriptions are influenced
by individual preferences such that a consensus cannot be
achieved (think, e.g., about “politically” biased resource de-
scriptions in the context of Peer2Peer systems or the Semantic
Web [22]). In the following, we’ll sketch two approaches for
extracting social ontologies from expectation networks (for
more information about the underlying approach called So-
cial Reification see [21, 20, 19]).

4.1.1 Extraction of Speech Act Types

The current version of FIPA-ACL [23] provides an exten-
sible set of speech-act performative types with semantics de-
fined in a mentalistic fashion. In our approach, we can imag-
ine a special CS variant as a MAS component (e.g., a so-
called multiagent system mirror [2, 1], cf. 4.2) that provides
the agents with a set of performatives without any predefined
semantics and wait for the semantics of such “blank” perfor-
matives to emerge. To become predictable, it is rational for
an agent to stick to the meaning (i.e., the consequences) of
performatives, at least to a certain extent. This meaning has
been previously (more or less arbitrarily) “suggested” for a
certain performative by some agent performing demonstra-
tive actions after uttering it.

Of course, a single agent is usually not able to define a
precise and stable public meaning for these performatives,
but at least the intentional attitude associated with the re-
spective performative needs to become common ground for
communication to facilitate a non-nonsensical, non-entropic
discourse [11, 22, 14]. A particular performative usually ap-
pears at multiple nodes within the EN, with different conse-
quences at each position, depending on context (especially on
the preceding path), message content and involved sender and
receiver. To build up an ontology consisting of performative
types, we have to continually identify and combine the oc-

currences of a certain performative within the current EN to
obtain a general meaning for this performative (i.e., a “type”
meaning). Afterwards, we can communicate this meaning to
all agents using some technical facility within the multiagent
system, like a MAS mirror or an “ACL semantics server”. Of
course, such a facility cannot impose meaning in a normative
way as the agents are still free to use or ignore public mean-
ing as they like, but it can help to spread language data like
a dictionary or a grammar does for natural languages. The
criteria for the identification and extraction of performative
meaning from ENs are basically the same as the criteria we
proposed in 3 for the generalization over message sequences.

4.1.2 Extraction of Domain Descriptions

While a set of emergent speech act types constitutes a so-
cial ontology for communication events, classical ontologies
provide a description of an application domain. To obtain a
social version of this sort of ontology from an EN, two differ-
ent approaches appear to be reasonable: (1) Inclusion of envi-
ronment events within the EN and (2) probabilistic weighting
of assertions. The former approach, which is introduced in
[22, 14], treats “physical” events basically as utterances. Sim-
ilar to the communicative reflection of agent actions by means
of do, a special performativehappen(event) would allow EN
nodes that reflect events occurring in the environment. These
events will be put in the EN either by a special CS which is
able to perceive the agents’ common environment, or by the
agents themselves as a communicative reflection of their own
perceptions. A subset of event is assumed to denote events
with consensual semantics (think of physical laws), i.e., the
agents are not free to perform an arbitrary course of action
after such an event has occurred, whereas the remainder of
event consists of event tags with open semantics that has to
be derived empirically from communications observation just
as for “normal” utterances. If such an event appears for the
first time, the CS does not know its meaning in terms of its
consequences. Its meaning has thus to be derived a-posteriori
from the communicational reflection of how the agents react
to its occurrence.

In contrast, approach (2), which we proposed for the
agent-based competitive rating of web resources [22], ex-
ploits the propositional attitude of utterances. The idea is
to interpret certain terms within LogicalExpr as domain de-
scriptions and to weight these descriptions according to the
amount of consent/dissent (using predefined performatives
like Assert and Deny). The weighted propositions are col-
lected within a knowledge base (e.g., KB as defined before)
and are communicated to the agents in the same way as the
emergent speech act types before. Unlike approach (1), on-
tologies are constructed “by description” not “by doing” in
this way. The advantage of approach (1) lies in its seamless
integration of “physical” events into the EN, whereas (2) is
probably more easy to apply in practice.
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4.2 The Mirror Concept

In [1, 12], we have introduced the social system mirror
architecture for open MAS. The main component of this
architecture is a so-called social system mirror (or “mirror”
for short), an intelligent system component containing a CS
which continually observes communications, empirically
derives emergent expectation structures (represented as
an ENs, which might also contain normative structures,
which are given by the designer instead of being learned
from statistical observations) from these observations, and
“reflects” these structures back to the agents. In addition to
the recording of empirical expectation structures described
in this work, the mirror is a goal-directed agent within the
MAS. Its goals are to influence agent behavior by means
of system-wide propagation of social structures and norms
to achieve quicker structure evolution (catalysis) and higher
coherence of social structures without restricting agent
autonomy, and the provision of a representation of a dynamic
communication system for the MAS designer.

Technically, a mirror can be thought of as a knowledge
base which derives system-level expectation structures from
communications and makes them available as information for
both the participating agents and the designer of the multia-
gent system. It can be implemented as an actual software
component (e.g. a middle agent), but it might as well be
used without a physical implementation as a purely theoreti-
cal concept. The mirror has three major purposes:

1. monitoring agent communication processes,

2. deriving emergent system-level expectation structures
from these observations, and calculating the deviation
of actual agent behaviour from normative expectations,

3. making expectation structures visible for the agents and
the designer (the so-called reflection effect of the mir-
ror).

The published structures are not necessarily the emergent
structures derived from the system observation - the mir-
ror can be pre-structured, i.e. used to “reflect” manually de-
signed (“manipulated”), non-emergent expectation structures
as well. In both cases, the agents can query the mirror very
much like a database and actively use the otherwise latent so-
cial structures which are made explicit to them through the
mirror as a guide for their decision making and their interac-
tion behaviour.
For example, agents can instantiate themselves in social pro-
grams which seem to be useful to them, or refrain from a
certain behaviour if the mirror tells them that it would violate
a norm. If the agents make (further) use of reflected struc-
tures, the structures become stronger, otherwise weaker (the
degree of these changes depending on the respective norma-
tivity). Thus, the mirror reflects a model of a social system to

the agents and by means of this influences the agents – very
much like mass media do in human society. Conversely, it
continualy observes the actual multiagent system and adopts
the expectation structures in its database in accordance with
the agent interactions. In doing so, the mirror never restricts
the autonomy of the agents. Its influence is solely by means
of information, not through the exertion of control.

4.2.1 Expectation-Oriented Software Development

As it has been recognized that due to new requirements
arising from the complex and distributed nature of modern
software systems the modularity and flexibility provided by
object orientation is often inadequate and that there is a need
for encapsulation of robust functionality at the level of soft-
ware components, agent-oriented approaches are expected to
offer interesting prospectives in this respect, because they in-
troduce interaction and autonomy as the primary abstractions
the developer deals with.

However, although interaction among autonomous agents
offers great flexibility, it also brings with it contingencies in
behavior. In the most general case, neither peer agents nor the
MAS designer can “read the mind” of an autonomous agent,
let alone change it. While the usual strategy to cope with this
problem is to restrict oneself to closed systems, this means
loosing the power of autonomous decentralized control in
favour of a top-down imposition of social regulation to ensure
predictable behavior. The EXPAND method (Expectation-
oriented Analysis and Design) [12] follows a different ap-
proach. EXPAND is based on expectation networks as a pri-
mary modelling abstraction which both system designer and
agents use to manage the social level of their activities. This
novel abstraction level is made available to them through a
special version of the social system mirror (4.2), i.e., a spe-
cial CS, very similar to a CASE tool. For the designer, this
mirror acts as an interface he uses to propagate his desired
expectations regarding agent interaction to the agents and as
a means for monitoring runtime agent activity and deviance
from expected behavior. For agents, this mirror represents
a valuable “system resource” they can use to reduce contin-
gency about each other’s behavior. EXPAND also describes
an evolutionary process for MAS development which con-
sists of multiples cycles: the modelling of the system level,
the derivation of appropriate expectation structures, the mon-
itoring of expectation structure evolution and the refinement
of expectation structures given the observations made in the
system.
Within the EXPAND process, a social system mirror is used
in a cyclic process of two alternating mirror operations which
are the core of our design process:

1. It makes the system-level expectations the software
designer has derived from her design goals explicit and
known to the agents (i.e. it makes them the “expecta-
tions of expectation” described in the previous section).
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2. It monitors the system-level expectation structures
which emerge from the communications of the running
multiagent system.

Together, both operations allow the designer to control and
influence if and how her design specifications are realized
and adopted by the agents. This approach borrows its un-
derlying concept from the “evolutionary software engineer-
ing method”, and will now be sketched from the designers’
point of view.

- Phase I: Modelling the system level

In the first phase of the process, the software designer
models the system level of the multiagent system according
to her design goals in the form of design specifications which
focus on “social behaviour” (i.e. desired courses of agent in-
teraction) and “social functionality” (i.e. functionality which
is achieved as a “product” of agent interaction, such as coop-
erative problem solving) in the widest sense (we don’t take
into account “second-order” design goals like high execution
speed or low memory consumption). For this task, the usual
specification methods and formalisms can be used, e.g. the
specification of desired environment states, constraints, social
plans etc. In addition or as a replacement, the specification
can be done in terms of system-level expectation structures,
like social programs.

- Phase II: Deriving appropriate expectation structures

In the second phase, the designer models and derives
system-level expectation structures from the design specifi-
cations and stores them in the social system mirror. If the
design specifications from phase I are not already expecta-
tion structures (e.g. they might be given as rules of the form
“Agent X must never do Y”), they have to be transformed ap-
propriately. While social behaviour specifications are expec-
tation structures per se, social functionalities (for instance:
“Agents in the system must work out a solution for problem
X together”) possibly need to be transformed, most likely into
social programs. Sometimes a full equivalent transformation
will not be feasible. In this case, the designer models expec-
tation structures which cover as much design requirements as
possible.

System-level specifications can be modelled as adaptable
or normative expectations. The former can be used for the
establishing of hints for the agents which are able to adapt
during the structure evolution, the latter for the transforma-
tion of constraints and other “hard” design requirements into
expectations9.

9It should be kept in mind that a norm derived from a constraint does
not force the agents to behave conforming to the rule, since it is “only” an
expectation. In some cases, where expectations seem too “soft” a modelling
tool, direct programming of agent goals and behaviour might be necessary.
This is certainly the case for agents that are built by the same designer (which
is not the default case in open systems), and that would be underspecified if
their reasoning capabilities are not defined more rigidly.
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Figure 2. System-level specification
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Figure 3. Evolution of expectation structures

Figure 2 shows the spectrum of system-level specifications
and expectation structures that result from this phase of the
analysis and design process.

- Phase III: Monitoring structure evolution

After the designer has finished the expectation modelling,
she makes them visible for the agents via the social system
mirror and puts the multiagent system into operation (if it is
not already running). In the third phase of the design and
analysis process, it is up to the designer to observe and anal-
yse the evolution of expectation structures which becomes
visible to her through the mirror (Figure 3). In particular,
she has to pay attention to the relationship of the continu-
ously adapted system-level expectation structures and her de-
sign specifications from phase I, which means that she anal-
yses the expectation structures with regard to the fulfilment
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of norms established by the designer and the achievement of
the desired social functionality. Because the mirror is only in-
tended to show expectation structures, it could be necessary to
support the mirror with a software for the (semi-)automatical
“re-translation” of expectation structures into more abstract
design specifications like social goals.
As long as the expectations structures develop in a positive
way (i.e. they match the design goals) or no emergent struc-
tures can be identified that deserve being made explicit to im-
prove system performance, the designer does not intervene.
Otherwise she proceeds with phase IV.

- Phase IV: Refinement of expectation structures

In the last phase, the designer uses her knowledge about
the positive or negative emergent properties of the multia-
gent system to improve the system-level expectation struc-
tures. Usually, this is achieved by removing “bad” expecta-
tion structures from the mirror database, and, if necessary,
the introduction of new expectation structures as described
at phases I and II. In addition, expectation structures which
have proved to be useful can be actively supported by e.g. in-
creasing their expectation strength and/or their normativity.
The process proceeds with phase III until all design goals are
achieved or no further improvement seems probable.

For lack of space, we have to refer the interested reader to
[12] for further details.

4.2.2 Mirror Holons: Multi-Stage Observation, Reflec-
tion and Enactment of Communication Structures

While a social system mirror only models a single com-
munication system, and, except for the propagation of expec-
tations, does not take action itself, the successor architecture
HoloMAS [2] is able to model multiple communication sys-
tems at the same time through multiple mirror holons in order
to model large, heterogenous systems. In addition, a mirror
holon can take action himself by means of the execution of so-
cial programs which are generated from emergent expectation
structures. “Ordinary agents” (and other mirror holons) can
optionally be involved in this execution process as effectors,
which realize holon commands within their physical or vir-
tual application domain (unless they deny the respective com-
mand). In any case they can influence the social programs
within a mirror holon through the irritation of expectation
structures by means of communication. A mirror holon thus
represents and (at least to some extent) replaces the function-
ality of the ordinary agents that contribute to the emergence
of the respective expectation structures, but it does not disre-
gard the autonomy of his adjoint actors. Another difference
between mirror holons and traditional agent holons is that a
mirror holon does not represent or contain groups of agents,
but instead a certain functionality which is identified in form
of regularities in the observed communications. This func-
tionality is extracted and continually adopted from dynamic
expectation structures regarding criteria like consistency, co-

herence and stability, corresponding to the criteria sociolog-
ical systems theory ascribes to social programs [13]. Mirror
holons pave the way for applications in which agent auton-
omy should not (or cannot) be restricted on the one hand,
while reliable, time-critical system behavior is desired. They
can also be used as representatives for entire communication
systems (e.g., virtual organizations) that behave smoothly to-
wards third parties whenever the communication system itself
lacks coherence due to, for example, inner conflicts.

4.3 Social reasoning with InFFrA

The Interaction Frame and Framing Architecture InFFrA
[18] is a social reasoning architecture in which so-called
interaction frames are used to represent patterns of social
interaction and strategically employed by socially intelli-
gent agents to guide their interaction and communication be-
haviour. This is achieved by agents deriving models of frames
from observation of encounters and applying the most appro-
priate patterns in future interactions (this process is called
framing). The concepts of frame and framing are based
on Erving Goffman’s micro-social analyses of everyday life
[16].

In the conceptual (abstract) architecture, a frame is a data
structure that contains information about

• the possible courses of interaction (so-called trajecto-
ries) characteristic for a particular frame,

• roles and relationships between the parties involved in
an interaction of this class,

• contexts within which the interaction may take place,
and

• beliefs, i.e. epistemic states of the interacting parties.

In computational terms, the trajectory model is usually a rep-
resentation of a set of admissible message and action se-
quences, while the latter three elements can be collapsed into
a single set of logical constraints which then have to be veri-
fied using the agent’s internal belief state (usually represented
by the contents of a knowledge base).

InFFrA uses the following data structures for reasoning
with frames:

• the active frame, the unique frame currently activated to
describe the expected course of events,

• the perceived frame, an interpretation of the currently
observed state of affairs,

• the difference model that contains the differences bet-
ween perceived frame and active frame,

• the trial frame, used when alternatives to the current
frame are sought for,

• and the frame repository, in which the agent locally
stores its frame knowledge.
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Figure 4. Overview of the framing process

Using these data structures, the InFFrA framing cycle (as
shown in a simplified fashion in figure 4) consists of the
folowing reasoning steps:

1. Interpretation & Matching: Update the perceived frame
and compare it with the active frame.

2. Assessment: Assess the usability of the active frame in
terms of

(i) adequacy (compliance with the conditions of the
active frame),

(ii) validity (the degree to which the active frame’s tra-
jectory matches the perceived encounter) and

(iii) desirability (depending on whether the implica-
tions of the frame correspond to the agent’s private
goals).

3. Framing decision: If the active frame seems appropriate,
continue with 5. Else, proceed with 4 to find suitable
alternatives.

4. Adjustment/Re-framing: Search the frame repository for
better frames. “Mock-activate” them as trial frames iter-
atively and go back to 1; if no suitable frame is found,
end the encounter.

5. Enactment: Derive action decisions by applying the ac-
tive frame.

From a CS perspective, InFFrA is nothing but an agent-
centric interpretation of our concepts. Instead of defining
a general observer of communication, InFFrA exclusively
deals with agent observers, and rather than observing general
communication processes, InFFrA agents only observe “face-
to-face” interaction processes (mostly those they are person-
ally involved in).

In other words, interaction frames in InFFrA are micro-
models of communicative expectations that encode knowl-
edge about communication processes from the standpoint of
an agent observer. They contain information about the surface
structure of conversations together with logical conditions in
the same way as general ENs but as a collection of “manage-
able chunks” of dialogue traces rather than a huge network of

global correlations. This allows for handling expectations in
a computationally tractable fashion and with this the concept
of frames makes the CS approach accessible for the design of
social reasoning methods.

What makes InFFrA an interesting extension of the gen-
eral CS framework is the fact that agents actually have to
strategically decide which utterances to generate in accor-
dance with their current model of the CS to achieve their
goals. In [11] we have suggested entropy-based methods
for reconciling the utility-based preferences of InFFrA agents
with long-term considerations about the effect of their deci-
sions on the overall CS in decision-theoretic terms. There, the
interesting question was how agents can achieve a trade-off
between their current pursuit for high utility and the modifi-
cations to the CS that will result from their current decision.

In [17], we have shown how InFFrA frames can be for-
mally converted to general expectation networks. Of course,
some problems occur when attempting to transform general
expectation networks to interaction frames, since the full ex-
pressiveness of expectation networks is not available in the
formal model of InFFrA for reasons of practicability.

Based on the empirical semantics approach, a formal
model of InFFrA has been developed for a particular, concrete
instance of the abstract architecture [24]. This model called
m2InFFrA is based on viewing frames as policy abstractions in
the sense of Markov Decision Processes (MDPs) [25].

More specifically, in m2InFFrA, a frame describes a set of
two-party, discrete, turn-taking interaction encounters which
can be thought of as conversations between two agents. The
trajectory is given in the form of a sequence of message pat-
terns that defines the surface structure of the encounters de-
scribed by the frame, while a list of substitutions captures
the values of variables in the trajectory in previously expe-
rienced interactions. Each substitution also corresponds to a
set of logical conditions that were required for and/or pre-
cipitated by execution of the trajectory in the respective en-
counter. Finally, trajectory occurrence and substitution oc-
currence counters record the frequency with which the frame
has occurred in the past.

In terms of MDP theory, frames can be seen as “macro”-
actions can be invoked as MDP decisions and then executed
until certain conditions apply (typically, until they are consid-
ered undesirable according to some heuristics, until their con-
text conditions are no more fulfilled, or until the other agent
has uttered a message that does not match the trajectory of
the frame).

This allows us to combine the principles of InFFrA with the
options framework [26] for hierarchical reinforcement learn-
ing (RL; for an introduction, see e.g. [27]). This framework
is based on augmenting the sets of admissible “primitive” ac-
tions by sets of so-called “options”, where an option is a triple
consisting of an input set of states, a policy (that is admissi-
ble once a state in the input set is entered), and a termination
condition that determines when an option will be exited and
a new one has to be selected.
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Figure 5. Frame-based hierarchical view of
communication MDPs.

Combining the options framework with m2InFFrA, we ob-
tain a two-level ocial reasoning and learning view as shown in
figure 5. According to this view, what we obtain is a two-level
MDP:

• At the frame level, the agent chooses a frame as a com-
munication policy that may be used over an extended
period of time, depending on whether it can be success-
fully completed. We employ Q-learning [28] to learn a
long-term “framing” utility function that enables us to
derive optimal strategies for frame selection from ex-
perience. The states of this “upper” MDP are abstract
representations of the goal of a conversation.

• At the action level, we have to determine which con-
crete instance of a frame to select so as to optimise the
outcome of a conversation. Remembering that frames
contain message patterns that may allow for additional
choices (e.g. regarding which argument to use in an
argumentation dialogue), we use adversarial search to
maximise expected utility considering the other’s poten-
tial reactions.

This not only allows for combining the theory of empirical
communication semantics and communication systems with
the decision-theoretic principles of MDP theory, it also nicely
illustrates that we can apply hierarchical methods to cope
with the complexity of the usually huge spectrum of possible
communicative behaviour. Finally, and maybe most impor-
tantly, it allows for the construction of agents that are able
to adapt to a particular communication system and to use it
according to their own needs.

In future work, we are going to investigate how CS that
have been observed by global entities can be used by agents

in the system to improve their interaction behaviour.

5. Conclusion

This paper presented communication systems as a unified
model for socially intelligent systems based on recording and
transforming communicative expectations. We presented for-
malisms for describing expectations in terms of expectation
networks, the formal semantics of these networks, and a gen-
eral framework for transforming them with incoming obser-
vation. Then, a number of important applications of CS were
discussed, some of which have already been addressed by our
past research, while others are currently being worked on.

While a lot of work still lies ahead, we strongly believe
that, by virtue of their general character, CS have the
potential of becoming a unified model for speaking about
methods and applications relevant to the improvement of
multiagent systems using sociological theories [29]. Also,
we hope that they can contribute to bringing key insights of
this new research direction to the attention of the mainstream
DAI audience, as they put emphasis on certain aspects of
MAS that are often neglected in traditional approaches.
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