
Dynamic Semantics for Agent Communication Languages

Michael Rovatsos
School of Informatics

The University of Edinburgh
Edinburgh EH8 9LE

United Kingdom

mrovatso@inf.ed.ac.uk

ABSTRACT
This paper proposes dynamic semantics for agent commu-
nication languages (ACLs) as a method for tackling some
of the fundamental problems associated with agent commu-
nication in open multiagent systems. Based on the idea
of providing alternative semantic “variants” for speech acts
and transition rules between them that are contingent on
previous agent behaviour, our framework provides an im-
proved notion of grounding semantics in ongoing interaction,
a simple mechanism for distinguishing between compliant
and expected behaviour, and a way to specify sanction and
reward mechanisms as part of the ACL itself. We extend a
common framework for commitment-based ACL semantics
to obtain these properties, discuss desiderata for the design
of concrete dynamic semantics together with examples, and
analyse their properties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

Keywords
Agent communication languages, social reasoning

1. INTRODUCTION
The field of agent communication language (ACL) re-

search has long been plagued by problems of verifiability
and grounding [10, 13, 17]. Early mentalistic semantics
that specify the semantics of speech acts in terms of pre-
and post-conditions contingent on mental states of the par-
ticipants (e.g. [3, 4, 12, 15]) lack verifiability regarding com-
pliance of agents with the intended semantics (as the men-
tal states of agents cannot be observed in open multiagent
systems (MASs)). Unable to safeguard themselves against
abuse by malicious, deceptive or malfunctioning agents,
mentalistic semantics are inherently unreliable and inappro-
priate for use in open MAS in which agents with potentially

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

conflicting objectives might deliberately exploit their adver-
saries’ conceptions of message semantics to provoke a certain
behaviour.

Commitment-based semantics [6, 8, 14], on the other
hand, define the meaning of messages exchanged among
agents in terms of publicly observable commitments,
i.e. pledges to bring about a state of affairs or to perform cer-
tain actions. Such semantics solve the verifiability problem
as they allow for tracing the status of existing commitments
at any point in time given observed messages and actions
so that any observer can, for example, establish whether an
agent has performed a promised action. However, this can
only be done a posteriori, and this creates a grounding prob-
lem as no expectations regarding what will happen in the
future can be formed at the time of uttering or receiving a
message purely on the grounds of the ACL semantics.

Further, this implies that the semantics specification does
not provide an interface to agents’ deliberation and plan-
ning mechanisms and hence it is unclear how rational agents
would be able to decide whether to subscribe to a suggested
ACL semantics when it is deployed.

Finally, none of the existing approaches allows the ACL
to specify how to respond to a violation of its semantics by
individual agents. This has two implications: Firstly, it is
left it up to the individual agent to reason about potential
violations, i.e. to bear the burden of planning its own re-
action to others’ non-compliant behaviour (e.g. in order to
sanction them) and to anticipate others’ reactions to own
misconduct without any guidance from the ACL specifica-
tion. Secondly, existing approaches fail to exploit the possi-
bilities of sanctioning and rewarding certain behaviours in a
communication-inherent way by modifying the future mean-
ing of messages uttered or received by compliant/deviant
agents.

In this paper, we propose dynamic semantics (DSs) for
ACLs as a solution to these problems. Our notion of DS
is based on the very simple idea of defining different alter-
natives for the meaning of individual speech acts (so-called
semantic variants) in an ACL semantics specification, and
transition rules between semantic states (i.e. collections of
variants for different speech acts) that describe the current
meaning of the ACL. These elements taken together result in
a FSM-like view of ACL specifications where each individual
state provides a complete ACL semantics and state transi-
tions are triggered by observed agent behaviour in order to
(1) reflect future expectations based on previous interaction
experience and (2) sanction or reward certain kinds of be-
haviour.

In defining a DS framework for commitment-based ACLs,
this paper makes three contributions:

1. An extension of commitment-based ACL semantics to
provide an improved notion of grounding commitments
in agent interaction and to allow ACL specifications to
be directly used for planning-based rational decision
making.

2. A simple way of distinguishing between compliant and
expected behaviour with respect to an ACL specifica-
tion that enables reasoning about the potential be-
haviour of agents purely from an ACL semantics per-
spective.

3. A mechanism for specifying how meaning evolves
with agent behaviour and how this can be used to
describe communication-inherent sanctioning and re-
warding mechanisms essential to the design of open
MASs.

Furthermore, we discuss desiderata for DS design that can
be derived from our framework, present examples and anal-
yse their properties.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces a formal framework for dynamic ACL se-
mantics. In section 3 we present an analysis and discussion
of this framework and discuss desiderata for the design of
ACLs with dynamic semantics. Section 4 reviews related
approaches, and section 5 concludes.

2. FORMAL FRAMEWORK
Our general framework for describing the kind of MASs

we are interested in is fairly simple. Let Ag = {1, . . . , n}
a finite set of agents, {Aci}i∈Ag a collection of action sets
(where Aci are the actions of agent i), A = ×n

i=1Aci the
joint action space, and Env a set of environment states. A

run is a sequence r = e1
~a1→ . . .

~at−1

→ et where ~ai ∈ A (~ai[j]
denotes the action of agent j in this tuple), and ei ∈ Env .
We define |r| = t, last(r) = et, r[1 : j] is short for the j-long
initial sub-sequence of r, and we write r′ ⊑ r for any run r′

iff ∃j ∈ N.r′ = r[1 : j].
Writing R(Env ,A) for the set of all possible runs, we can

view each agent i as a function gi : R(Env ,A) → Aci de-
scribing the agent’s action choices depending on the his-
tory of previous environment states and joint actions. The
set of all agent functions for i given A and Env is de-
noted by Gi(Env ,A). The (finite, discrete, stationary,
fully accessible, deterministic) environment is defined by a
state transformer function f : Env × A → Env , so that
the system’s operation for an initial state e1 is defined by

ei+1 = f(ei, ~g(e1
~a1→ . . .

~ai−1

→ ei)) for all i ≥ 1 (~g is the joint
vector of functions gi). This definition implies that execu-
tion of actions is synchronised among agents, so that the
system evolves though an execution of “rounds” where all
agents perform their actions simultaneously.

We denote the set of all runs given a particular config-
uration of agent functions ~g by R(Env ,A, ~g). We write
gi ∼ r where gi an agent function and r a run iff ∀1 ≤
j ≤ |r|.gi(r[1 : j]) = ~aj [i] (i.e. gi is compatible with r in
every time step as far as i’s actions are concerned).

We use a (standard) propositional logical language L with
entailment relation e |= ϕ for e ∈ Env and ϕ ∈ L de-

unset pending

cancelled

active

violated

fulfilled

Figure 1: Commitment states and state transitions

in the Fornara and Colombetti model: edges drawn

using solid lines indicate transitions brought about

by agent communication, dashed lines indicate phys-

ical agent action or environmental events that cause

state transitions

fined in the usual way.1 We introduce special propositions
Done(i, a) for each action a ∈ ∪n

i=1Aci in L to denote “it is
true that action a has just been performed”, extending |=
to runs r in the following way:

r |= ϕ if last(r) |= ϕ

r |= Done(i, a) if r = e1
~a1→ . . .

~at−1

→ et ∧ a = ~at−1[i]

i.e. Done(i, a) is exactly true for those actions that made up
part of the joint action vector ~ai−1 in the predecessor state,
and all other formulae that were entailed by the last state of
r are still valid. Our model implies that each agent executes
exactly one action in each time step.

2.1 Commitments
Our notion of commitments is based on a slight variation

of the framework proposed by Fornara and Colombetti [6]:
Commitments come into existence as “unset”, e.g. when a
request for achieving χ if a certain condition ϕ becomes true
is issued from i to j. The commitment becomes “pending” if
the debtor j is required to fulfill it, e.g. after having accepted
it. A pending commitment will become “active” if its condi-
tion ϕ becomes true, and if χ is brought about in that case
it becomes “fulfilled”, otherwise “violated”. Commitments
can become “cancelled” in different situations, e.g. if an un-
set commitment is rejected. Also, environmental events can
lead χ to become true in which case the commitment be-
comes fulfilled without the debtor’s contribution. Figure 1
provides a graphic representation of commitment state tran-
sitions in this framework.

Apart from a slightly different notation used to maintain
a more detailed history of commitments, we will extend
them to also contain a deactivation condition ψ apart from
ϕ (which we call activation condition) which causes any
commitment to be cancelled if it becomes true.

1More precisely L contains atomic propositions P =
{p, q, . . .}, the usual connectives ∨ and ¬ (with abbrevia-
tions ⇒ and ∧). As for semantics, a function interpretation
function I : P ×Env → {⊤,⊥} assigns a truth value to each
proposition in each environmental state, and the entailment
relation e |= ϕ for e ∈ Env and ϕ ∈ L is defined inductively:
e |= ϕ if ϕ ∈ P and I(ϕ, e) = ⊤; e |= ¬ϕ if e 6|= ϕ; e |= ϕ∨ψ
if e |= ϕ or e |= ψ.

D : CS ← CS∪{〈ι, c : χ⊕ ϕ⊖ ψ〉t|〈ι, s : χ⊕ ϕ⊖ ψ〉 ∈ CS , r |= ψ, s ∈ {u, p, a}, 〈ι, c : χ⊕ ϕ⊖ ψ〉 /∈ CS}

A : CS ← CS∪{〈ι,a : χ⊕ ϕ⊖ ψ〉t|〈ι,p : χ⊕ ϕ⊖ ψ〉 ∈ CS , r |= ϕ, 〈ι,a : χ⊕ ϕ⊖ ψ〉 /∈ CS}

S : CS ← CS∪{〈ι, f : χ⊕ ϕ⊖ ψ〉t|〈ι, a : χ⊕ ϕ⊖ ψ〉 ∈ CS , r |= χ, 〈ι, f : χ⊕ ϕ⊖ ψ〉 /∈ CS}

F : CS ← CS∪{〈ι, f : χ⊕ ϕ⊖ ψ〉i→j
t |〈ι,a : χ⊕ ϕ⊖ ψ〉i→j

t−1 ∈ CS , r |= Done(i, a), causes(a,χ)}

V : CS ← CS∪{〈ι,v : χ⊕ ϕ⊖ ψ〉i→j
t |〈ι, a : χ⊕ ϕ⊖ ψ〉i→j

t−1 ∈ CS , r |= Done(i, a),¬causes(a, χ)}

Table 1: Environmental commitment processing rules for current run r with |r| = t

Definition 1. A commitment is a structure

〈ι, s : χ⊕ ϕ⊖ ψ〉i→j
t

where

- ι is a unique commitment identifier,

- s denotes the commitment state (any of unset, pen-
ding, active, violated, fulfilled, or cancelled, abbrevi-
ated by the respective initial),

- i is the debtor, j is the creditor,

- χ ∈ L is the debitum (i.e. the proposition that i com-
mits to making true in front of j),

- ϕ,ψ ∈ L are the activation/deactivation conditions,

- and t is the instant (in a run) at which this commit-
ment entered its current state s.

As an example,

〈x,v : received(5 , $500) ⊕ received(3 , toys)⊖

returned(3 , toys)〉3→5
12

denotes that agent 3 violated commitment x towards agent
5 to pay him $500 in timestep 12. He was supposed to make
the payment after receiving the toys unless he sent back the
toys. We introduce deactivation conditions so as to be able
to completely revoke existing commitments: Sending back
the money does not constitute a fulfillment of the original
contract, but instead an annulment thereof. This provides
us with the capability to define “validity conditions” using
ϕ and ψ, which is useful for things like deadlines for unset
commitments (“if I don’t get a response within 3 time-steps
my request will expire”).

For brevity, we sometimes omit indices or content ele-
ments when clear from the context (in particular, we often
write Γ for the content χ⊕ϕ⊖ψ). We write C for the set of
all possible commitments and denote sets of commitments
(so-called commitment stores) by CS ∈ ℘fin(C).

To handle the effects of environmental events and agent
actions on a commitment store CS , table 1 introduces five
commitment transition rules which are executed in each time
step by the system or any observer who intends to clarify
the status of existing commitments in the order shown: the
deactivation rule D is the first to fire and cancels any un-
set, pending or active commitments if ψ becomes true. For
the remaining pending commitments2, the activation rule A
describes how these become active if ϕ becomes true. Note
that when ϕ is true in subsequent states we check whether

2To avoid problems with contradictory commitment spec-
ifications (e.g. when both ϕ and ψ become true), we give
deactivation strict precedence over activation.

this active commitment is contained in CS to avoid dupli-
cates (this is because we keep a full record of the commit-
ment history for reasons which will become clear below).3

Rule S caters for “serendipity” i.e. fulfillment of commit-
ments not brought about by the respective agent, but sim-
ply by environmental changes that made the debitum true.
Finally, the fulfilment/violation rules F/V record whether
the action performed by the debtor in the previous step
(r |= Done(i, a)) has caused the debitum χ of any commit-
ment which became active in the previous timestep to be-
come true. We need only consider those commitments that
became active in the previous step t − 1 since we can ver-
ify their fulfilment status in t. This verification hinges on a
domain-dependent predicate causes(a, χ) which we have not
mentioned so far. It should be true if action a is supposed
to bring about χ, and delineates the existing social notion
of what constitutes a “reasonable attempt” to achieve χ in
the given context (its definition may range from requiring
that χ has actually been achieved to allowing any action a
that does not necessarily result in ¬χ).

2.2 Grounding
In Fornara and Colombetti’s and similar approaches,

the status of commitments is verifiable, but they are not
grounded in expectations about interaction. Such semantics
(similar in style to what he have just defined in terms of
CS update rules) tell us what commitments exist and which
state they are in, but not how this will affect future agent
behaviour.

To provide such grounding, we introduce notions of com-
pliant and expected behaviour. An agent is behaving in com-
pliance with its commitments if it always immediately ful-
fills all active commitments. More precisely, the behaviour
of agent i is said to be compliant with CS at time t iff

∀k ≤ t
“

〈ι,a : Γ〉i→j
k ∈ CS ⇒ 〈ι, f : Γ〉i→j

k ∈ CS
”

Though simple, this definition of compliance is not very use-
ful because it places constraints on CSs but not on actual
agent functions. To achieve this, we can instead use the
contents of the CS to restrict the range of admissible agent
functions to those that are in accordance with it using the
following definition:

Definition 2. For any run r ∈ R(Env ,A), let CS(r) the
set of commitments that has resulted from execution of r
assuming that certain actions (including messages) create
commitments or change their status. The set of compliant
agent functions with respect to a commitment store CS is

3While commitment identifiers adversely affect the readabil-
ity of our notation, they are necessary here to uniquely de-
termine which pending commitment is activated.

defined as

compliant(CS) :=
˘

gi ∈ Gi(Env ,A)
˛

˛

∀r ∼ gi.〈ι,p : χ⊕ ϕ⊖ ψ〉i→j ∈ CS(r) = CS .

∀r′ ⊒ r.〈ι,a : χ⊕ ϕ⊖ ψ〉i→j

|r′| ∈ CS(r′)⇒
`

∃a ∈ Aci.causes(a, χ) ∧ gi(r
′) = a

´ ¯

What this definition captures is the following characterisa-
tion of a compliant agent function gi: “for all runs r that the
agent function gi contributes to: if r has created a pending
commitment regarding χ, then if this commitment becomes
active at the end of some extension r′ of r in the future, gi

will cause the agent to perform an action a that causes χ”.4

Next, to cater for the anticipation of non-compliant be-
haviour we need to introduce a notion of “expected” be-
haviour that overrides compliant behaviour. For this, we
introduce a second type of commitments which we will call
expectations to avoid confusion and distinguish from ordi-
nary (now called normative) commitments by using round

brackets (ι, s : Γ)i→j
t . They are treated exactly like other

commitments in terms of the rules introduced above but ex-
press what the agent is expected to do (in the non-normative
sense of an objective prediction of behaviour) rather than
what it is supposed to do in a normative sense.

To define the notions we need below, we introduce the
following constructs:

⌈CS⌉ := {〈ι, s : Γ〉 ∈ CS |s ∈ {u,p,a, f ,v}}

⌊CS⌋ := {(ι, s : Γ) ∈ CS |(ι, s : Γ) ∈ CS ,

〈ι, s′ : Γ〉 ∈ CS , s, s′ ∈ {u,p, a, f ,v}}

⌈CS⌉ simply restricts the commitment store to all norma-
tive commitments. Hence, compliant(⌈CS⌉) specifies what
agents are supposed to do. ⌊CS⌋, on the other hand, over-
rides all normative commitment elements in CS for which
an expectation also exists, i.e. expectations are given prece-
dence over the normative commitments. With this, we can
define expected behaviour as

expected (CS) := compliant(⌊CS⌋)

i.e. behaviour that adheres to expectations where such
expectations exist and is compliant otherwise. The
separate, parallel, treatment of compliant and expected
behaviour has two advantages: Firstly, we can respond to
“unexpected” compliant behaviour, i.e. when we expect
that someone will not obey their commitments we can still
respond to it if they do (and, for example, regain trust
in them). Secondly, we can cater for a variety of rules
for translating commitment stores to actual future events
which a reasoning agent can use in its planning process.
For the purposes of this paper, we will assume that agents
base their predictions about others on expected behaviour
if it is different from compliant behaviour, and that they
predict compliant behaviour, else.

4Note the quantification in this definition: the property has
to hold for every run that gave rise to ι and is compatible
with gi. In particular, this must be independent of any
part of the history (e.g. other agents’ actions and previous
environment states) given CS(r). We also quantify over all
extensions r′ of r, i.e. fulfillment of the commitment has to
happen if the appropriate conditions arise regardless of other
factors.

2.3 Static ACL Semantics
Table 2 shows an example for a small fragment of an ACL

semantics defined using our framework, with two alternative
definitions (AC and AC2) for the semantics of the accept
message type. Each of the so-called dialogue operators (sim-
ilar to AI planning action schemata) is defined using the
graphical notation

p
a
q

where p, a, and q are schemata for preconditions, messages
(of a certain type), and post-conditions, respectively. Pre-
conditions determine whether an action schema is applica-
ble in a certain situation or not and contain formulae from
L and/or constraints on the current contents of CS . Post-
Conditions contain changes to the knowledge base and mod-
ifications to CS , i.e. they are interpreted like add/delete-
lists in traditional AI planning. For any such operator
o = 〈p, a, q〉 we define pre(o) = p, action(o) = a and
post(o) = q. All elements of a dialogue operator can con-
tain logical variables in their pre- and post-conditions and
sender/receiver/content variables in the action slot.

In our example fragment, the operator RQ for requests
creates an unset commitment with a fresh identifier ι and
current timestamp (we assume that r |= time(t) ⇔ |r| = t,
and there is a global system time that can be inspected by all
agents), and AC/RJ add a pending/cancelled equivalent of
ι to CS . A fragment consisting of {RQ ,RJ ,AC} is equiva-
lent to the standard semantics of the respective performative
types defined in [6].5 Note that our operators only contain
objectively verifiable pre- and post-conditions, and if agents
want to conform to it they need to comply with these oper-
ators. In the following, we will assume that agents always
adhere to the ACL specification syntactically6.

Using AC2 instead of AC enables us to exploit the
power of our distinction between compliant and expected
behaviour, expressing that we don’t trust i to adhere to the
“normal” semantics of accept: its postcondition specifies
that expected (CS) is not restricted to behaviours that will
fulfill the commitment but suggest that it has actually been
cancelled. At the same time, we maintain the normative
commitment that ι is pending so that i’s behaviour would
be seen to lie within compliant(CS) if i deviates from our
(pessimistic) expectation and does the “right” thing instead.

2.4 Dynamic Semantics

2.4.1 Defining Dynamic Semantics
To define DS for ACLs we now introduce a state tran-

sition system in which each state specifies an “ordinary”
(static) commitment-based semantics and a “range” of
agent pairs for which these semantics are assumed to apply.

5Note that we allow for requesting identical things before re-
ceiving a response and responding several times to the same
request. Simple additional conditions can be introduced to
avoid these effects which we omit here for lack of space. The
same is true of additional constraints to manage control flow
issues in actual dialogues (e.g. turn-taking).
6This means that, for an appropriate variable substitution
ϑ, r |= pre(o)ϑ holds when o is applied at r and that CS(r)
is transformed according to post(o)ϑ after its application.

RQ :

time(t),new(ι)
request(i, j, ι : Γ)

CS ← CS ∪ {〈ι,u : Γ〉i→j
t }

RJ :
〈ι,u : Γ〉j→i

t′
∈ CS , time(t)

reject(i, j, ι : Γ)

CS ← CS ∪ {〈ι, c : Γ〉i→j
t }

AC :
〈ι,u : Γ〉j→i

t′
∈ CS , time(t)

accept(i, j, ι : Γ)

CS ← CS ∪ {〈ι,p : Γ〉i→j
t }

AC2 :
〈ι,u : Γ〉j→i

t′
∈ CS , time(t)

accept(i, j, ι : Γ)

CS ← CS ∪ {〈ι,p : Γ〉i→j
t } ∪ {(ι, c : Γ)i→j

t }

Table 2: Example commitment-based semantics for a small ACL fragment

〈ι,v : Γ〉i→j ∈ CS : {(i, ∗)} ∪ {(j, i)}

s0

s1

∀〈ι,v : Γ〉i→j
t ∈ CS ∃〈ι, f : Γ′〉i→j′

t′ ∈ CS .t′ > t : {(i, ∗)}

Figure 2: FSM-like state transition diagram describ-

ing the ∆-relation in a DS specification

Definition 3. A dynamic semantics (DS) is a structure
〈O, S, s0,∆〉 where

- O = {o1, o2, . . . , on} a set of dialogue operators,

- S ⊆ ℘(O) is a set of semantic states specified as sub-
sets of dialogue operators which are valid in this state,

- s0 ∈ S is the initial semantic state,

- and the transition relation ∆ ⊆ S × ℘(C) × ℘(Ag ×
Ag) × S defines the transitions over S triggered by
conditions expressed as elements of ℘(C) (C is the set
of all possible commitments).

The meaning of a transition (s, c, {(i1, j1), . . . , (in, jn)}, s′) ∈
∆ is as follows: Assume a mapping act : Ag × Ag → S
which specifies that the semantics of operators in s holds for
messages sent from i to j . Then, if CS ∈ c (i.e. the current
CS matches the constraint c given as a collection of possible
CSs) this will trigger a transition to state s′ for all pairs of
agents in {(i1, j1), . . . , (in, jn)} for which the constraint was
satisfied and will update act accordingly. In other words,
the act mapping tracks which “version” of the semantics is
valid for which pairs of communication partners over time.

2.4.2 Example
To illustrate these concepts, consider the following ex-

ample: Let O = {RQ ,RJ ,AC ,AC2}, S = {s0, s1} where
s0 = {RQ ,RJ ,AC} and s1 = {RQ ,RJ ,AC2}, i.e. there are
two possible states of the semantics which only differ in their
definition of accept (we call alternative versions of a single
dialogue operator like AC and AC2 semantic variants). We
assume that initially act(i, j) = s0 for all agents i, j ∈ Ag .

We describe δ by the transition diagram shown in figure 2.
In this diagram, edges carry labels “c : A” where c is a
constraint on the contents of CS followed by a description
of the set of agent pairs A for which the transition should
be made to the target state. Writing A(s) = act−1(s) for
the so-called range of agent pairs for which s is active, we
use agent variables like i and j and the wildcard symbol ∗
that can be bound to any agent in A(s), and we assume that

this binding carries over to descriptions of A. For example,
the edge with label “〈ι,v : Γ〉i→j ∈ CS : {(i, ∗)} ∪ {(j, i)}”
can be interpreted as follows: “select all pairs (i, j) ∈ A(s0)
for which 〈ι,v : Γ〉i→j ∈ CS applies (i.e. i has violated
some commitment toward j) and make s1 valid for the set
of agents {(i, k)|k ∈ A(s0)} ∪ {(j, i)}”. This means that for
all agents i who have lied, s1 will become active for (i, j′)
where j′ ∈ A(s0) and s1 will also become active for (j, i).

The way the DS of the diagram above works is as fol-
lows: initially the semantics says (for every agent i) that
they will fulfill any commitment truthfully (the use of AC
ensures that expected behaviour is equivalent to compliant
behaviour). If an agent i violates a commitment once then
s1 will become active for i towards all other agents, so that
they won’t expect i to fulfill any future commitments. More-
over, this will also apply to (j, i) so that the culprit i should
not expect the deceived agent j to keep its promises towards
i either in the future. However, this will not affect expec-
tations regarding their interactions with i by agents other
than i (i.e. they still have no right to violate their own com-
mitments). This reflects the idea that (only) agents that
have been fooled are allowed to “trespass” (only) against
those agents who “trespassed” against them. However, if
i ever fulfills any commitment again (after the latest vio-
lation, this is ensured by the complex constraint used as a
label for the transition from s1 to s0), the semantics in s0
will become valid for i again. In this case, though, s1 will
still be valid for the pair (j, i), i.e. agent j will regain trust
in i but cannot be expected to be trustworthy toward i ever
again.

Rather than suggesting that this is a particularly useful
communication-inherent mechanism for sanctioning and re-
warding specific kinds of behaviour, this example serves to
illustrate the expressiveness of our framework and the kind
of distinctions it enables us to make.

2.4.3 Formal Semantics
The semantics of a DS can be defined inductively as fol-

lows: Let CS(r) denote the contents of the commitment
store after run r as before. We use the notation

A(δ,CS) = {(i, j)|CS |i,j ∈ c} ∩A(s) ∩ A

to denote the set of agents that are to be “moved” from
s to s′ due to transition rule δ = (s, c, A, s′) ∈ ∆ given
CS , where CS |i,j is the set of commitments that mention i
and/or j (in their sender/receiver/content slots). In other
words, A(δ,CS) contains those pairs of agents who are (i)
mentioned in the commitments covered by the constraint c,
(ii) contained in the range of s, and (iii) explicitly listed in A
as belonging to those pairs of agents that should be affected
by the transition δ.

Definition 4. The state of a dynamic semantics
〈O, S, s0,∆〉 after run r with immediate predecessor r′

is defined as a mapping actr as follows:

1. r = ε: actε(i, j) = s0 for all i, j ∈ Ag

2. r 6= ε:

actr(i, j) =

8

>

<

>

:

s′ if ∃δ = (s, c, A, s′) ∈ ∆.

(i, j) ∈ A(δ,CS(r))

actr′(i, j) else

This maintains the property act−1

r′ (s) = act−1
r (s) −

A(δ,CS(r′)), which specifies that the agent pairs to be
“moved” from s to s′ are removed from the range of s and
added to the range of s′.

What is not ensured by this definition is consistency of the
state transition system, i.e. making sure that the semantic
successor state is uniquely identified for any state of the
commitment store and previous state so that every agent
pair is only assigned one active state in each step, i.e. actr

is actually a function for any r.7

2.4.4 Integration
Once the DS itself has been specified, we need to inte-

grate the different components of our framework to monitor
the dynamics of our ACL semantics and its implications for
expected agent behaviour.

Starting with an initially empty commitment store CS
and initial semantic state s0 such that actε(i, j) = s0 for any
two agents i and j, the agent (or external observer) observes
(a partial subset of) everything that is communicated in the
system in each step. By applying the commitment transition
rules (D, A, S, F and V) we can update CS accordingly,
ignoring any observed message sent from i to j that does
not syntactically match the dialogue operator set defined
in actr(i, j) for a current run r. After this update has been
performed for all observed messages and actions in this cycle,
which should not depend on the ordering of messages8 , we
can compute for any message sent from i to j the new value
of actr′(i, j) depending on the semantic transition rules of
the DS if r′ is the successor run of r. With this, we can
then determine what the compliant and expected behaviour
of agents will be under these new conditions.

Thus, an agent can use information about expected be-
haviour in its own planning processes by assuming that all
agents involved will exhibit their expected (rather than just
compliant) behaviours. This prediction will not always be
more accurate than under normal (static) ACL semantics,
but since it is common knowledge that agents assume ex-
pected behaviour to occur (and, by virtue of the DS-ACL
specification, have the “right” to do that) most reasonable
dynamic ACL specifications will make provisions to ensure
that it is “safer” to assume expected rather than fully com-
pliant behaviour if they want to promote their use by agents.
7One way of ensuring this is to require that ∀s ∈
S. (∩{c|(s, c, A, s′) ∈ ∆(s)} = ∅) so that no two constraints
pertaining to outgoing edges of s can be fulfilled by CS at
a time. In some cases this may be too coarse-grained – it
would be sufficient for constraints to be mutually exclusive
for the same pair of agents at any point in time – but this
would have to be verified for an individual DS on a case-by-
case basis.
8This is the case for our operators, because their pre- and
post-conditions never concern or affect any commitments
other than those that involve both i and j – avoiding any
connection to third parties helps us keep the CS-update in-
dependent of the order in which observations are processed.

2.4.5 Complexity Issues
The main disadvantage of our approach is the space com-

plexity of the dynamic ACL specification: If d is the number
of dialogue operators in a language and b is the maximum
number of semantic variants of a single dialogue operator
within this language, the DS specification would have to
specify O(db) states. In many cases, however, most of the
speech acts will not have different variants (like RQ and
RJ in our example) and this may significantly reduce the
number of DS states that need to be specified.

As for the run-time behaviour of our semantics process-
ing mechanism, we can assume that n messages/actions are
sent/performed in each processing step in a system with n
agents. Every commitment processing rule (D, S, etc.) has
to perform a pass over the contents of CS . In the worst case
every originally created commitment (of which there may be
nt after t steps) may have immediately become pending, ac-
tive and violated (which doesn’t require any further physical
actions, so that every agent can create a new commitment
in each step).Thus, if any agent creates a new commitment
in each step without ever fulfilling it, this will result in the
total size of CS being in O(nt).9

Regarding semantic state transitions, as many as n differ-
ent pairs of agents could be affected in a single iteration by n
messages. Assuming that the verification of CS-constraints
for these transitions would take O(nt), this yields a total up-
date time of O(n2t) for tracking DS evolution. This bound
can be reduced to O(n2) if a “quasi-stationarity” assump-
tion is made by limiting the “window” of earlier commit-
ments that are being considered when verifying transition
constraints to a constant size (and thus obtaining a finite
set of possible commitment stores).10

3. ANALYSIS AND DISCUSSION
The main strength of our framework is that it allows us

to exploit the three main elements of reciprocity:

• Reputation-based adaptation: The DS adapts the ex-
pectations toward agent i according to i’s previous be-
haviour by modifying the semantic state to better re-
flect this behaviour (based on the assumption that it
will repeat itself in the future).

• Mutuality of expectations: The DS adapts the expec-
tations toward j’s behaviour according to i’s previous
behaviour toward j to better reflect j’s response to i’s
observed behaviour (in particular, allowing j to behave
toward i as i behaved toward j earlier).

• Recovery mechanisms: The DS allows i to revert to an
earlier semantic state after having undone a change in
expectations by a further, later change of behaviour
(e.g. by means of “redemption”).

In open systems in which we cannot enforce certain be-
haviours, these are effectively the only available means for
indirect sanctions and rewards.

9This is actually only a lower bound on the complexity for
commitment processing which could become even worse if
dominated by the complexity of verifying entailment |=;
however, this would also hold for a “static” ACL semantics.

10For example, this could be useful if we want to discard
commitments whose status was last modified more than k
time steps ago (this is problematic, as it might force us to
discard certain unset/pending commitments before they be-
come pending/active).

There are two further dimensions that affect DS-based
sanctioning and reward mechanisms and are orthogonal to
the above: One concerns the character of the semantic state
changes (i.e. whether it is a reward or punishment), the other
the degree of adaptation (reputation-based mechanisms, for
example, need not realistically reflect the behaviour of the
culprit, but may instead utilise immediate (exaggerated)
“stigmatisation” of agents as a deterrent).

Albeit simple, our example DS described above makes use
of all these aspects, and apart from consistency and com-
pleteness, it also satisfies some other useful properties:

1. Non-redundancy: No two dialogue operators in O
should have identical pre- and post-conditions, and
any two semantic variants of an operator must differ
in terms of pre- and/or post-conditions:

∀o, o′ ∈ O .(pre(o) = pre(o′)∧post(o) = post(o′) ⇒ o = o′)

∀o, o′ ∈ O .(action(o) = action(o′) ⇒

pre(o) 6= pre(o′) ∨ post(o) 6= post(o))

2. Reachability of all semantic states: Any constraint
causing a transition must be satisfiable in principle
when using the dialogue operators and physical actions
that are provided:

∀(s, c, A, s′) ∈ ∆ ∃r ∈ R(Env ,A).CS (r) ∩ c 6= ∅

3. Distinction between expected and compliant be-
haviour: The content of expectations must differ from
that of normative commitments at least for some se-
mantic variants (giving rise to non-compliant expecta-
tions for some runs):

∃r ∈ R(Env ,A) .expected (CS(r)) 6= compliant(CS(r))

4. Compliance/deviance realisability: It must be possi-
ble for agents in principle to comply with normative
commitments or deviate from them in principle:

∃r ∈ R(Env ,A) .expected (CS(r)) 6= ∅∧

compliant(CS(r)) 6= ∅

While not absolutely essential, these constitute desiderata
for the design of DS-ACLs as they add to the simplicity
and clarity of a given semantics specification. Our frame-
work raises interesting questions regarding further potential
properties of DS such as:

1. Respect for commitment autonomy: The semantics
must not allow an agent to create a pending commit-
ment for another agent or to violate a commitment on
behalf of another agent. While in some cases some
agents should be able to enforce commitments upon
others, this should generally be avoided to ensure agent
autonomy.

2. Avoiding commitment inconsistency: The ACL must
either disallow commitment to contradictory actions
or beliefs, or at least provide operators for rectifying
such contradictory claims. Under contradictory com-
mitments, no possible behaviour can be compliant –
it is up to the designer to decide to which extent this
should be permitted.

3. Unprejudiced judgement: Expected behaviour predic-
tion must not deviate from compliant behaviour pre-
diction if deviant behaviour has not been observed so
far (in particular this must hold for the initial semantic
state). This might not always be desirable as “initial
distrust” is necessary in some systems, but it increases
the chances that agents will agree to participate in
communication.

4. Convergence: The semantic state of each of the dia-
logue operators will remain stable after a finite num-
ber of transitions, regardless of any further agent be-
haviour11. If this property holds, this would imply that
agents can stop tracking semantic state transitions af-
ter some amount of initial interaction. The advantage
of this is reduced complexity, which of course comes at
the price of giving up adaptiveness.

5. Forgiveness: After initial deviance, further compliant
behaviour of an agent should lead to a semantic state
that predicts compliant behaviour for that agent again.
Here, we have to trade off cautiousness against the pro-
vision of incentives to resume cooperative behaviour.
Trusting an agent makes others vulnerable to exploita-
tion – “blacklisting” an agent forever, though, might
lead that agent to keep up its unpredictable and po-
tentially malicious behaviour.

6. Equality: Unless this is required by domain-specific
constraints, the same dynamics of semantics should
apply to all parties involved.

Our simple example semantics satisfies all these proper-
ties apart from convergence. Many of the above proper-
ties are debatable, as we have to trade off cautiousness
against the provision of incentives for cooperative behaviour.
While we cannot make any general statements here regard-
ing “optimal” DS-ACL design, our framework provides the
tools to test and evaluate the performance of different such
communication-inherent sanctioning and rewarding mech-
anisms (i.e. social rules that do not presuppose ability to
direct punishment or reward through physical actions) in
real-world applications.

4. RELATED WORK
Expectation-based reasoning about interaction was first

proposed in [2], considering the evolution of expectations
described as probabilistic expectations of communication
and action sequences. The same authors suggested a more
general framework for expectation-based communication se-
mantics [9], and argue for a “consequentialist” view of se-
mantics that is based on defining the meaning of utterances
in terms of their expected consequences and updating these
expectations with new observations [11]. However, their
approach does not use an explicit notion of commitments
which in our framework mediates between communication
and behaviour-based grounding, and provides a clear dis-
tinction between a normative notion of compliance and a
more empirical notion of expectation.

Grounding for (mentalistic) ACL semantics has been in-
vestigated in [7] where grounded information is viewed as
“information that is publicly expressed and accepted as be-
ing true by all the agents participating in a conversation”.
Like [1] (which bases the notion of “publicly expressed” on
roles rather than internal states of agents) these authors’
main concern is to provide a verifiable basis for determining
the semantics of expressed mental states and commitments.
Though our framework is only concerned with commitment
to the achievement of states of affairs rather than exchanged
information, in a sense, DS provides an alternative view by
specifying what will happen if the assumptions on which
“what is publicly accepted” is based are violated.

11In a non-trivial sense, i.e. when some initial transitions are
possible in principle

Our framework is also related to deontic methods for the
specification of obligations, norms and sanctions. In this
area, [16] is the only framework that we are aware of which
considers dynamic obligations, norms and sanctions. How-
ever, as we have described above we solely utilise semantic
evolution as a sanctioning and rewarding mechanism, i.e. un-
like this work we do not assume that agents can be directly
punished or rewarded.

Finally, the FSM-like structure of the DS transition sys-
tems in combination with agent communication is reminis-
cent of work on electronic institutions [5], but there the focus
is on providing different means of communication in different
“scenes” of the interaction process (e.g. different protocols
for different phases of market-based interaction) whereas we
focus on different semantic variants that are to be used in
the same interaction context.

5. CONCLUSION
This paper introduces dynamic semantics for ACLs as

a method for dealing with some fundamental problems of
agent communication in open systems, the simple underly-
ing idea being that different courses of agent behaviour can
give rise to different interpretations of meaning of the mes-
sages exchanged among agents. Based on a common frame-
work of commitment-based semantics, we presented a notion
of grounding for commitments based on notions of compliant
and expected behaviour. We then defined dynamic seman-
tics as state transition systems over different semantic states
that can be viewed as different “versions” of ACL seman-
tics in the traditional sense, and can be easily associated
with a planning-based view of reasoning about communica-
tion. Thereby, our focus was on simplicity and on providing
mechanisms for tracking semantic evolution in a “down-to-
earth”, algorithmic fashion to ensure applicability to many
different agent designs.

We discussed the properties of our framework showing
how it can be used as a powerful communication-inherent
mechanism for rewarding and sanctioning agent behaviour
in open systems without compromising agent autonomy, dis-
cussed its integration with agents’ planning processes, com-
plexity issues, and presented a list of desiderata for the de-
sign of ACLs with such semantics.

Currently, we are working on fully-fledged specifications
of dynamic semantics for more complex languages and on
extending our approach to mentalistic semantics where we
view statements about mental states as commitments re-
garding the rational implications of these mental states (a
simple example for this is that an agent commits itself to
dropping an ostensible intention that it is claiming to main-
tain if that intention turns out to be unachievable). In this
context, we are particularly interested in appropriate mech-
anisms to detect and respond to lying by “interrogating”
suspicious agents and forcing them to commit themselves
to (sets of) mental states publicly while sanctioning them
when these are inconsistent with their actions.

6. REFERENCES
[1] G. Boella, R. Damiano, J. Hulstijn, and L. van der

Torre. ACL Semantics between Social Commitments
and Mental Attitudes. In Proceedings of the Inter-
national Workshop on Agent Communication , 2006.

[2] W. Brauer, M. Nickles, M. Rovatsos, G. Weiß, and
K. F. Lorentzen. Expectation-Oriented Analysis and

Design. In Proceedings of the 2nd Workshop on
Agent-Oriented Software Engineering , LNCS 2222,
2001. Springer-Verlag, Berlin.

[3] P. R. Cohen and H. J. Levesque. Communicative
actions for artificial agents. In Proceedings of the First
International Conference on Multi-Agent Systems,
pages 65–72, 1995.

[4] P. R. Cohen and C. R. Perrault. Elements of a
Plan-Based Theory of Speech Acts. Cognitive Science,
3:177–212, 1979.

[5] M. Esteva, J. Rodriguez, J. Arcos, C. Sierra, and
P. Garcia. Formalising Agent Mediated Electronic
Institutions. In Catalan Congres on AI, pages 29–38,
2000.

[6] N. Fornara and M. Colombetti. Operational speci-
fication of a commitment-based agent communication
language. In Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 536–542, Bologna, Italy,
2002. ACM Press.

[7] B. Gaudou, A. Herzig, D. Longin, and M. Nickles. A
New Semantics for the FIPA Agent Communication
Language based on Social Attitudes. In Proceedings of
the 17th European Conference on Artificial
Intelligence, Riva del Garda, Italy, 2006. IOS Press.

[8] F. Guerin and J. Pitt. Denotational Semantics for
Agent Communication Languages. In Proceedings of
the Fifth International Conference on Autonomous
Agents, pages 497–504. ACM Press, 2001.

[9] M. Nickles, M. Rovatsos, and G. Weiss. Empirical-
Rational Semantics of Agent Communication. In
Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, New York, NY, 2004.

[10] J. Pitt and A. Mamdani. Some Remarks on the
Semantics of FIPA’s Agent Communication Language.
Autonomous Agents and Multi-Agent Systems,
2:333–356, 1999.

[11] M. Rovatsos, M. Nickles, and G. Weiß. Interaction is
Meaning: A New Model for Communication in Open
Systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, Melbourne, Australia, 2003.

[12] M. D. Sadek. Dialogue acts are rational plans. In
Proceedings of the ESCA/ETRW Workshop on the
Structure of Multimodal Dialogue, pages 1–29, 1991.

[13] M. Singh. Agent communication languages:
Rethinking the principles. IEEE Computer,
31(12):55–61, 1998.

[14] M. Singh. A social semantics for agent communication
languages. In Proceedings of the IJCAI Workshop on
Agent Communication Languages, 2000.

[15] M. P. Singh. A semantics for speech acts. Annals of
Mathematics and Artificial Intelligence, 8(1–2):47–71,
1993.

[16] G. Weiß, M. Nickles, M. Rovatsos, and F. Fischer.
Specifying the Intertwining of Cooperation and
Autonomy in Agent-based Systems. Journal of
Networks and Computer Applications, 29, 2007.

[17] M. J. Wooldridge. Verifiable semantics for agent
communication languages. In Proceedings of the Third
International Conference on Multi-Agent Systems,
pages 349–356, Paris, France, 1998.

