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Abstract.

We present a layered learning architecture for adaptive behaviour in repeated games as
an instance of a generic hierarchical, distributed view of multi-agent learning. This archi-
tecture builds on the hybrid InteRRaP architecture and extends it naturally by adding
learning components to each of the InteRRaP layers. The three learning layers are respon-
sible for managing sub-tasks of learning how local actions can be coordinated effectively
with those of other agents. We identify three essential determinants of interaction which
will be learned by these components and devise appropriate learning algorithms for them.
We claim that such an architecture can be used to achieve cooperation amongst self-
interested, non-benevolent agents in the absence of an external authority without as-
suming that they are able to communicate, that they have any prior knowledge of the
underlying games or any information about the welfare of their opponents.

The adequacy of our approach is tested in the context of a resource-sharing scenario, and
first empirical results prove that the learning architecture enables agents to do “better
than equilibrium” even in large games which represent very hard coordination problems,
while they converge to truly optimal behaviour for smaller problem sizes.
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Chapter 1

Introduction

Preserve me from the enemy that has something to gain;

and from the friend that has something to lose.
— T. S. Eliot, Choruses from "The Rock’

1.1 Motivation

Interaction, the process by which entities induce an effect on each other by their actions,
is ubiquitous. Any natural or artificial agent who is not completely isolated or completely
indifferent toward its environment is inevitably confronted with the need to interact with
that environment in order to attain its goals. This is due to the fact that, at least in
the environments humans reason about, the resources, i.e. the material, informational or
emotional factors on which goal attainment depends, are limited. Furthermore, the access
to these resources usually involves some kind of “goal-driven” effort, which can range from
simple sensory or motoric actions to highly complex cognitive and communicative activ-
ities. In worlds inhabited by multiple agents, these efforts inevitably overlap and cause
interdependencies between the actions of the agents with respect to their effectiveness.
This is to say that the outcome of some agents’ actions is inherently dependent on other
agents’ actions whenever they concern the same limited resource. Moreover, every agent
itself becomes something like a “resource” for others in such worlds: its abilities and its
behaviour (which are both limited as well, unless the agent is omnipotent and utterly al-
truistic at the same time) map to the value and the accessibility of some external resource.

Consider, for example, pollution problems caused by car traffic in an urban area.

Drivers may be tempted to make excessive use of their cars in times of relatively low air
pollution, because the resources they are using (air quality) seem virtually unlimited to
them. However, such behaviour may lead to smog alarms and temporal governmental
restrictions may be imposed regarding the use of the public road system. Ultimately,
even those drivers who urgently need to use their cars might be unable to do so because
of the uncoordinated behaviour of the driver community, and thus every other driver’s
behaviour affects one’s own situation.
If every driver had considered the global resource allocation before deciding when and
how often to drive, pollution highs would have been prevented and she could freely access
all roads at all times. Clearly, rational decisions with this respect always depend on the
expected actions of co-actors and have to be coordinated with these.



So whenever there is no abundance of resources or total absence of others wishing to
access that same resource, interaction is inevitable. Taking into account that almost any
real-world situation involves resource contingencies, one could argue that any cognitive
problem-solving ability developed by agents to improve their standing in a non-solitary
environment is concerned with interaction in that wider sense.

It is therefore not surprising that interaction has been studied for a long time by many,
very distinct areas ranging from psychology, sociology and politics to economics, organi-
sation and management science (cf. Pfeffer and Koller (1997) and the references therein).
For psychology, especially for the sub-field of social psychology, the effects of encounters
with others on the self are of major importance when analysing how personality struc-
tures come about. Also, the behaviour of interacting groups is studied to investigate why
individuals exhibit a certain behaviour in particular interaction situations and how this
influences group dynamics. At a more abstract and global level, such analysis is also
carried out by sociologists in order to find out how societies evolve. To a certain degree,
politics research assumes a similar stance, except that in this field, normative interac-
tion concepts are sought for (rather than descriptive ones), in order to improve political
decision-making in interaction situations (e.g. in conflict resolution or international rela-
tions). Economics and organisation and management science, finally, do indeed nothing
else than to study the interdependence amongst humans and their environment, and to
devise methods that are likely to improve the standing of the homo oeconomicus in a so-
cial context characterised by the scarcity of the resources it provides, and by a multitude
of co-actors that seek to optimise their own profit.

But what is the essence of interaction? How is it possible, for any given collection of

intelligent beings, to coordinate their behaviour with that of others effectively”? Should
they care about how well the community fares, or should they only be concerned with
how they can profit from the situation? How much information is required to be able to
defend oneself against attempts of exploitation made by others? How should one behave
toward others not being sure about what actions they will take in the future? What
are, if any, reliable generic strategies to use for interaction? Under what conditions can
cooperation emerge in a society?
These are only a few unsolved questions in interaction and coordination research, and it is
some of these questions that we confront in this work. More specifically, we ask whether
it is possible to learn optimal interaction behaviour by employing certain reasoning tech-
niques. We suggest a method for layered coordination learning in multi-agent systems,
that allows agents to adapt to a particular interaction situation , and present an applica-
tion example to illustrate its practical relevance. Our main goal is to identify the essential
determinants of interaction settings and to design an agent architecture that is capable of
handling the dependencies and contingencies that agents have to face in repeated abstract
multi-agent interactions without previous knowledge in the absence of a central authority.
We restrict the scope of our analysis to a very specific, well-defined and well-understood
area of repeated games, because it provides us with the necessary abstraction needed to
develop a generic, domain-independent framework for learning interaction.

The novelty of our approach lies in the fact that we attempt to capture all essen-
tial aspects of interaction (in its game-theoretic, abstract form) in a single, integrated
learning architecture. This architecture could, in principle, be “added” to virtually any
multi-agent system to help optimise the coherence of agent interactions, and thus increase



system performance. And while it will, most probably, increase the long-term system per-
formance in purely cooperative or collaborative systems only marginally, it might have a
dramatic impact on the performance of agents in heterogenous, anonymous agent societies
consisting of purely selfish individuals. Such societies become increasingly interesting if
we consider Internet agents and Electronic Commerce applications, in which agents often
have to interact with possibly non-benevolent agents, about which they have little knowl-
edge and with whom they don’t share goals. Hence, we believe that studying how effective
interaction behaviour could be implemented in such systems is an issue that deserves our
attention.

1.2 Learning interaction in multi-agent systems

1.2.1 The case for interaction in Distributed Artificial Intelli-
gence

For Artificial Intelligence (AI), the field that “strives to build intelligent entities as well
as to understand them” (Russell and Norvig, 1995, p. 3), the “interaction perspective” of
cognition becomes interesting whenever those intelligent entities are seen as parts of “agent
societies”. The advent of Distributed Artificial Intelligence (DAI) lead to the development
of a multitude of theoretical frameworks and practical applications that focus around this
view. DAI, “the study and design of collections of interacting systems, or agents, which in
some sense can be called intelligent” (Seel, 1991) is based on the concept of agents, that
can be traced back to Carl Hewitt’s concurrent Actor model (Hewitt, 1977), and in which
Hewitt proposed “the concept of a self-contained, interactive and concurrently-executing
object” (Nwana, 1995).

More than twenty years of DAI research have yielded a splendour of definitions of what
an agent is. We believe the one given by Hewitt above provides a “greatest common
denominator” for most of these definitions (cf. for example Sundermayer (1993) for an
overview), at least at the computational level. At the conceptual level, the attributes
most often ascribed to agents are situated, autonomous, rational, intelligent and social',
and it is the last property of agents that makes interaction a key issue in the study
of distributed intelligent systems: concurrently operating agents will inevitably have to
interact with each other in a common environment.

According to Bouron and Collinot (1992)

“a social agent is characterised by its capabilities to be integrated in a social
context and above all by its capabilities to take an active part in the system
organization.”

There has been much dispute about whether these “capabilities” have to fulfill certain

141

criteria for the agents to deserve being called “social” (such as, e.g., “helpfulness”, “co-
operativeness”, “knowledge of the social context”) or whether agents are per se social by

L This is not an exclusive, exhaustive or undisputed list of possible criteria for “agenthood”. Wooldridge
and Jennings (1995), for example, distinguish between a weak notion of agency (which requires that agents
be autonomous, reactive and pro-active) and a strong notion, in which it is additionally required that
agents have certain mental attitudes such as belief, knowledge, intention, commitment, desire, goal etc.
The distinction between these two notions reflects part of the dispute between research on reactive agents
initiated by the works of Brooks (1991) and Agre and Chapman (1987) (that complies only with the
weak agent notion) and the traditional deliberative school of DAI (in which it is assumed that agents use
symbolic knowledge representation and reasoning).



virtue of their participation in the social context, i.e. by merely co-existing and interact-
ing with other agents (Sundermayer, 1993). The stance one assumes toward this issue is
essential to the design of agent systems: a proponent of the first definition is very likely
to design systems of interacting agents that work together to solve a common problem
(Kalenka and Jennings (1995) call this the reductionist view), whereas someone in sup-
port of the latter definition would devise agents that operate to further their individual
needs and expect the system behaviour to emerge from the microscopic interplay between
agents (in the constructivist view).

We might even argue that it is precisely this distinction that lead to the two sub-fields
of DAI, Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS). DPS is
a discipline concerned with solving difficult tasks by dividing them among cooperative
agents, while research in MAS focuses on “coordinating the behaviour of autonomous
intelligent agents, how they coordinate their knowledge, goals, skills and plans jointly to
take action or solve problems” (Miiller, 1993, p. 10). Thus, while the primary reason
for building DPS systems is to solve a particular problem by decomposing it into easier
sub-tasks, MASs concentrate on the notion of autonomy and self-organization of societies.

It has been broadly acknowledged in both areas that the way in which agents interact
with each other is crucial to system behaviour, and a great deal of work in DAI focuses
on this issue. According to Jennings (1996), coordination, i.e. “the process by which an
agent reasons about its local actions and the (anticipated) actions of others to try and
ensure the community acts in a coherent manner” is perhaps the key problem in DAI, and
Durfee (1991) states that “research in distributed artificial intelligence concentrates on
understanding the knowledge and reasoning techniques needed for intelligent coordination,
and on embodying and evaluating this understanding in computer systems.”

At this point we should maybe introduce what exactly we mean when we talk about
interaction and coordination. A very broad definition (Malone and Crowston, 1991)
states that

“An interaction can be viewed as a formalization of a concept of dependence
between agents, no matter on whom or how they are dependent. Coordination
is a special case of interaction in which agents are aware how they depend on
other agents and attempt to adjust their actions appropriately.”

As Stirling has pointed out, coordination is a neutral concept, and “cooperation, nego-
tiation, competition, and any other form of behavior short of complete indifference and
isolation between agents will involve some form of coordination” (Stirling, 1994, p. 167).
We will adhere to this view throughout this work, and we also adopt Stirling’s definition
of coordinated decision:

“Any decision by an agent that uses information concerning the existence,
decisions, or decision-making strategies of other agents is a coordinated deci-
sion. Information used for coordination is obtainable in many ways. It may be
known a priori, it may be communicated between agents directly, it may be
obtained via sensory input, and it may be learned by the agent as it functions
in its environment.”

This is, in fact, one of the few definitions that stresses the importance of information
for coordinated decision-making and it is precisely the focus on the epistemic aspects of
interaction that constitutes the starting point for our analysis. In particular, we investi-
gate the possibilities of learning the information necessary to achieve effective coordinated
decision-making.



1.2.2 A layered learning approach to interaction

In this work, we try to answer two questions: Firstly, is it possible to endow agents with
social reasoning capabilities that enable them to learn to coordinate their behaviour effec-
tively with that of other agents without explicitly designing desirable interaction patterns
at the system level? And secondly, can we provide generic methods that realise such
“coordinative” capabilities on a domain-independent level?

Of course, these questions are not new to the DAI community. What is new, however, is
the coverage of our approach and the method we employ to prove that the above questions
can be answered in the positive.

As concerns the coverage, it can be claimed that our approach is generic in that it does
not assume that agents have any prior knowledge of the “interaction setting” (we shall
specify more precisely what we mean by that shortly) except that they know who they
are interacting with and what their own action options are. Furthermore, it suffices for
an agent to be given information about (a) what other agents do and (b) how “satisfied”
it should be with the current situation in the course of the interaction. Agents need not
be able to communicate with other agents, they need not care for the “common good”,
and it is not necessary for them to know anything about how successful other agents are.
Finally, agents do not need to rely on perfect information and action, i.e. their ability to
learn efficient coordinated behaviour is (within certain bounds) robust to noise in percep-
tion and action.

These assumptions are substantially distinct from those put forward in most of current
research on coordination mechanism design within DAI: most of the approaches so far
are based on explicit negotiation between agents, on the investigation of settings in which
global system goals have to be balanced with agents’ individual goals, or on the exploita-
tion of domain-specific knowledge to determine efficient coordination strategies (Section
2.2 gives a number of examples).

The novel contribution we make with respect to the method we use is that we suggest
a generalised form of layered learning to explore the possibilities of emergent coordina-
tion. This means that we first decompose the task of “learning to interact effectively”
into a number of simpler learning tasks which concentrate on certain essential aspects of
interaction. We then combine the learning results of these components to devise an agent
architecture that is capable of handling interactions effectively.

Determinants of Interaction Situations

We have identified three concepts that have to be learned in order to conduct effective
coordinative reasoning, the essential determinants of interaction, three components that
suffice to characterise the essence of an “interaction setting”: interdependence modalities,
opponent behaviour and social potential.

By interdependence modalities we mean the way in which the outcomes of agents’
actions depend on each other, or alternatively, the dimensions and entries of the payoff
matrix, in game-theoretic models?.

2Compared to the straightforward mathematical properties of a payoff function, the term “interde-
pendence modalities” may seem a bit blown-up. We use it, however, in an attempt to make clear that
the quality of an interaction setting is essential to understanding it, and even if it can be modelled by
a simple real-valued matrix, there is usually a multitude of individual characteristics of the interaction,
such as power, influence, ability, knowledgeability involved in how “these numbers” come about.



These modalities are given by the action capabilities of agents (the number and proper-
ties of the actions they can perform), the mutual impact of different agents’ actions on
each other when performed synchronously, and the subjective view the agents have of the
outcomes of joint actions (i.e. how high or low they value their outcomes), which of course
depends on the goals agents pursue or the tasks they have to complete.

Seen from a more pragmatic perspective, they simply describe the effects of co-acting in a
common environment in pursuit of maximising individual profits. In a blocks world sce-
nario, for example, in which two robots have to perform two different tasks, determining
these modalities would involve asking some of the questions: What physical actions can
the robots perform? What sensing capabilities do they have? Do they employ some form
of explicit planning? Can robot A threaten the fulfillment of B’s task or vice versa, and
if so, is this inevitable due to A’s/B’s task? Do the agents know anything about (the
existence) of each other? Are there possibilities for the robots to “help” each other? How
would they react if conflict arose?

In other words, knowledge of the factual interdependence modalities is knowledge about
“what would happen to agents p1,po, ..., p, and their environment, if they concurrently
performed actions aq,a-...,a, in situation S”.

Opponent behaviour is a concept complementary to that of interdependence modalities
in that it determines what the concrete interaction will be like for the agent when enacted,
rather than what it could be like. Quite naturally, it is important for an agent not only
to know how its opponents® might affect its own standing in theory, but to be able to
infer in one way or another what choices they will make in the future — knowing that
the agent’s own success depends on the future actions of opponents. And for an outside
observer of the interaction this way in which the interaction process is actually conducted

is indispensable when it comes to describing that process*.

The social potential or cooperation potential of an interaction situation, finally, is the
most complex of the three proposed concepts. Basically, it combines the knowledge of the
interdependencies and opponents’ anticipated behaviour to reason about whether and how
the interaction situation can be exploited to the benefit of all participants, i.e. whether
there are ways to achieve fruitful cooperation. To show that the existence of such a poten-
tial depends on the other two parameters, consider a case in which the interdependencies
that govern the current situation result in a strictly non-cooperative (zero-sum) payoff
structure, i.e. one player always loses what the other wins. Such a situation does not allow
for any cooperation, it can be expected that both actors will selfishly try to make the
other lose. Or, as another situation with zero cooperation potential (caused by opponent
behaviour this time), consider a case in which a fair distribution of payoffs is possible,
but one agent constantly tries to exploit the other — the exploited has no reason not to
“strike back”. If we assume, however, that the exploiter’s strategy is not completely fixed,
cooperation might be possible.

Combining the two previously introduced concepts could lead to the assumption that this
social potential does not add anything to their meanings. However, discovering the social
potential is different from experiencing the interrelation of action outcomes or observing
some opponent’s behaviour, in that it can be used to reason about what the interaction

3We will use the terms opponents, co-actors, partners, peers and adversaries as synonyms henceforth;
from an individually rational, distrustful standpoint it doesn’t really make any difference.

4In game-theoretic models, such behaviour could be formalised as a (pure or mixed) strategy (cf. Sec-
tion 3.1) or as some mathematical decision rule, such as the maximin rule.



should be like. And this is the essence of what is new to our approach on the theoretical
side: we believe that it has been neglected by most authors to develop agents who reason
about the process of interaction itself (some of the works reviewed in Section 2.2 consti-
tute exceptions), rather than agents who just follow utility-maximising rules (which can
lead to deadlocks in undesirable states, leaving possibilities for mutually profitable coop-
eration undiscovered) or act according to some pre-designed interaction patterns (which
can be suboptimal and inflexible). Therefore, learning this social potential is the most
challenging aim of our work.

Layered learning

The techniques we actually employ to learn these concepts are well-known from the field
of machine learning (ML) (Mitchell (1997) provides an excellent introduction) and there is
a growing body of research on multi-agent learning (Weifl and Sen, 1996) that investigates
the possibilities of incorporating ML techniques to agents in MASs and vice versa. We
contribute to this research by proposing a generalised view of hierarchical learning, in
which agent societies (learning communities) consist of several agents with individual
learning capabilities (learners) which, in turn, comprise a number of learning layers®. Tt
is the task of each of these levels of learning units to “delegate” learning sub-tasks to its
sub-components and “integrate” their learning results.

This view seems adequate for breaking down difficult learning tasks, and we present a
simple instantiation of it for the problem of coordination learning. It will be the task
of the learning community to ensure effective interaction at the system level, while the
agents learn to coordinate their behaviour with that of others at the individuallevel, which
is, in turn, achieved by combining the results of learning the three proposed aspects of
interaction at the sub-individual level.

This layered learning methodology borrows from the works of Stone (1998), Stone and
Veloso (1999), in which they have proposed a hierarchical machine learning paradigm
consisting of several learning layers responsible for learning sub-tasks of the global learning
goal. However, they restrict the possible relationships between these learning layers to
three specific types, so that a sub-layer provides either

1. the learning inputs,
2. the training examples or
3. the learning outputs

to its super-layer. In contrast to this intuition, we allow for hierarchical structures in
which layers consist of several learning units, which adds a horizontal dimension to the
distribution of the learning process. As an effect of this, we obtain a wider range of
possibilities in coupling the learning units than that of the three classes just mentioned.
More precisely, we see a learning architecture more like an organism built from both
hierarchical and non-hierarchical structures. In it, the results of particular learning units
may be combined, selected from, forwarded to “higher-order” learners, used for controlling
actions or integrated in any other thinkable way to the end of coping with learning tasks
intractable for “monolithical learning”.

5In the case of distributed representations such as neural nets or genetic algorithms these layers may
again consist of a number of learning cells that encode and handle parts of the concepts to be learned.



Assumptions

In its most general sense, as we have already mentioned, interaction is a very complex
phenomenon, whose characteristics depend, amongst others, on the knowledge and abili-
ties of the agents, on the availability and accessibility of resources, and on the scarcity and
demand for these resources. Furthermore, interaction has temporal and spatial dimensions
so that the duration, frequency and regularity of agent encounters as well as the physical
effect of agents’ actions on their environment and on other agents have an influence on
how coherent global behaviour can be achieved. Of major importance is also the dynamic
aspect of interaction: the concurrent operation of multiple agents effects changes to the
environment, so that the future situation usually depends on past interactions, a fact
which makes it even more difficult to devise appropriate reasoning mechanisms that deal
with interaction effectively.

Therefore, it cannot be our aim to design coordination mechanisms capable of handling
all these issues. Instead, we will concentrate on a very specific sub-class of problems to
prove that we can solve such problems under certain assumptions by using the proposed
methodology.

More specifically, we will concentrate on interaction situations that can be modelled as
repeated games (we introduce the necessary game-theoretic concepts in Section 3.1), i.e. as
stateless repeated interactions, in which the interdependencies among agents are charac-
terised by the same payoff matrix in each round. It is assumed that action choices are
made synchronously in discrete time, and that there is no planning of action sequences®,
since agents are faced with the same action options in each move.

Furthermore, we will assume that agents are individual utility maximisers, whose ultimate
goal will be to maximise the payoff they receive after each round from the environment,
and ask “how high-level, autonomous, independently-motivated agents ought to interact
with each other so as to achieve their goals” (Genesereth, Ginsberg, and Rosenschein,
1986), if the attainment of these goals can be measured by the numerical payoffs periodi-
cally assigned to agents. We claim that if the payoff function captures the behaviour of the
system adequately it is not necessary to incorporate explicit social goals that the agents
pursue to achieve effective coordination amongst them. In the assumed scenario, we do
not endow agents with any a priori knowledge of the payoff matrix or of the behaviour
they should expect from their opponents in order to prove that these can be learned from
observations, and this makes our approach substantially distinct from most previous work
on the subject.

Finally, and maybe most importantly, we choose to restrict ourselves to no-communication
settings. Firstly, this is because we claim that communication is not essential to achieve
effective interaction behaviour. We agree with Genesereth et al. (1986) in that “com-
munication is a powerful instrument for interaction”, that it can help to establish coop-
erative behaviour more easily, but that it is not a prerequisite for rational behaviour in
interactions, as they have proven in their now famous article “Cooperation without Com-
munication”. In fact, the approach presented here resembles their view to some degree,
except that they pre-assume a lot about what agents know about their opponents’ decision
situation and reasoning mechanisms (as pointed out in Miiller (1993)) to alleviate the re-
strictions imposed (on how agents can model each other) by not allowing communication.

6Tt should be remarked that this “statelessness assumption” is probably the most severe restriction
imposed on the scope of our analysis. In Chapter 7 we review this issue, explain why the assumption was
made, and present alternatives.



The stance we adopt here is orthogonal to theirs in that our agents will be capable of
learning something about their opponents’ decision situation and reasoning mechanisms.
A second reason for excluding the possibility of communication is that, in the settings we
examine, the existence of communication would force us to deal with issues such as trust,
deception and fraud, which would clearly exceed the scope of this work. We refer the
interested reader to (Schillo, Funk, and Rovatsos, 1999) as an example of work on these
problems.

As Gmytrasiewicz, Durfee, and Wehe (1991) have pointed out, decisions about perform-
ing communicative acts can be treated just like decisions about any other actions. They
introduce a decision-theoretic pragmatics for communication, which assigns to each com-
municative act some utility that corresponds to the value of the information obtained by
that communication. In short, they argue that communication between agents induces
changes on the models they have of each other. If the rational choice an agent can make
with respect to the model it has of its opponent after the communicative act yields a
higher payoff than that before the communication, performing the communicative act was
a rational decision by itself, for which reason it is adequate to assign some payoff to it.
This can be seen as a third reason for excluding communication from our consideration,
because it means that, ultimately, communication is nothing else but another activity
that has to be coordinated. So if certain communicative acts are included in the action
choices agents have, and if their effects are adequately captured by the payoff function,
learning to communicate can be reduced to learning general action coordination’.

All these assumptions admittedly restrict the scope of our analysis significantly. Yet
they still allow for the modelling of various real-world situations, especially in MAS con-
sisting of non-benevolent, highly autonomous agents. Since we can only model repeated
identical interactions, our approach will be most suitable for the long-term optimization
of distributed systems devoid of centralised control. As an example for such systems,
the next section introduces multiple-access resource-load balancing, a combination of two
problems, one widely studied in distributed systems research and the other motivated by
a recent publication on Web-searching agents. We shall use this problem as a practical
application example throughout the rest of this work to validate the adequacy of our
approach.

1.3 Application example

1.3.1 Two problems in one

As mentioned before, the availability, accessibility and demand for resources determine
the behaviour of a social system to a great degree as soon as there are several individuals
trying to access them and if the amount of available resources is limited.

In many real-life situations, the issue of resource divisibility imposes additional constraints
on how agents have to behave to thrive in their environment. This issue arises because
dividing the resource is often not possible (i.e. if it is accessed by one individual it becomes
unreachable for others), or, at least, causes some cost. This cost represents the efforts

"Having said that, we do not question the achievements of research on communication protocols
(e.g. work on the Contract Net protocol by Davis and Smith (1981)) or on agent communication languages
(such as KQML, cf. Finin, Fritzson, McKay, and McEntire (1994)). But dealing with the issues such
research focuses on is inappropriate in the context of our abstract, game-theoretic treatment.



necessary to divide the resource and to distribute it, an overhead in coordination and
communication costs that is not directly related to the process of accessing the resource
itself.

There are countless examples for this effect: companies engage in cost-intensive admin-
istrative activities to guarantee that resources are correctly allocated within their orga-
nizational structure, nations sustain expensive governments to redistribute the wealth
produced by the national economy, and so on.

Thus, if a resource is divided to make parts of it available to each individual, some cost
is associated with the act of “splitting” the resource: Cutting the cake will always make
you loose some crumbs.

This observation is the starting point for the application scenario we will use to demon-
strate how our approach works in practice: multiple-access resource-load balancing, a
combination of the multiple access problem as introduced in (Bicchieri, Pollack, and Rov-
elli, 1996) and the classical problem of distributed load balancing, to which much work has
been devoted in the fields of distributed computer systems, organization theory, manage-
ment science and DAI (cf. Schaerf, Shoham, and Tennenholtz (1995) and the references
therein).

The multiple-access problem

The multiple-access problem focuses around intelligent network agents on the Internet,
“who are capable of understanding a user’s specification of information goals, and deciding
upon and carrying out the tasks necessary to achieve those goals.” (Bicchieri et al., 1996,
p. 6). The problem as such is given by the following questions:

“If an agent seeking a piece of information knows of several sites that have, or
might have, that information, how many queries should it issue, and when?
Should several queries be issued, rather than in the sequential fashion that is
typical today?”

In the assumed setting, agents issue queries to a fixed number of sites that are capable
of handling only one query at a time, so that the utility of accessing the resource first
is higher than that of accessing it second, accessing it second is better than accessing it
third, and so on, assuming that the utility decreases with the response time of the site
(which, quite naturally, increases with “request load”). This means that a divisibility
limitation as defined above exists, whenever the sum of utilities distributed to accessors
increases sub-linearly, i.e. if the sum of utilities n + 1 agents receive provides a lower
individual reward for each of them than if n accessors were accessing it.

Bicchieri and colleagues examine cases in which the position of an individual in the row
of agents accessing the site is determined by a stochastic process and analyse under what
conditions cooperative behaviour can emerge if agents are tempted to greedily access all
sites at all times (after all, even coming last in the query queue yields some positive
payoff).

Resource-load balancing

The aspect of load balancing (disregarded by the above authors) comes in at the point
where we ask “if a collection of independent, individually rational agents exhibits a cer-
tain behaviour in accessing the available resources, how efficient will the use be that they



make of the resource?” This is important, because at the system level, we are also inter-
ested in how the query load is distributed among the available resources. Agents might,
for example, converge very quickly to an equilibrium in which every agent accesses every
resource, which would lead to a situation in which resources are hopelessly overloaded and
fail to operate efficiently.

An example of work that is concerned with exactly this issue (and which we use as an-
other starting point for constructing an appropriate application scenario) can be found
in (Schaerf et al., 1995). There, a multi-agent multi-resource stochastic system is defined,
which involves a set of agents and a set of (passive) resources with changing resource ca-
pacities. New jobs with probabilistically changing job sizes are probabilistically assigned
to agents over time, and it is the task of agents to select a resource for each new job.
The efficiency with which these jobs are handled depends on the current capacity of the
resource and on the number of other jobs handled by that same resource over that pe-
riod of time. The approach presented to learn appropriate resource-selection rules uses
reinforcement learning based on purely local information, i.e. agents are only imparted
information about how efficiently the submitted job was handled by the chosen resource
(they know nothing about the load of other resources). Although both information and
decision procedure are purely local, this approach aims at “globally optimizing the re-
source usage in the system while ensuring fairness (that is, a system should not be made
efficient at the expense of any particular agent), two common criteria for load balancing”
(Schaerf et al., 1995, p. 475).

What we find particularly interesting about this problem is the combination of decen-
tralised decision-making and the need for a globally coherent system behaviour that makes
optimal use of the available resources, and the variety of real-world situations in which
this connection between individual rationality and global optimality becomes relevant.
Thomas and Sycara (1998, p. 293) underline its importance by stating that

“the growing interest in decentralised systems evinced by the fields of Multi-
agent Systems and Distributed Artificial Intelligence brings along with it a
concern for the stability of such systems. When agents lack explicit coordina-
tion mechanisms, or act on incomplete or delayed knowledge, actions that may
appear locally optimal may create global instability at the system level. This
can be a particular problem in systems where agents allocate resources among
themselves with no central control. Problems with this characteristic include
load balancing over multiple processors, the allocation of Internet traffic on
multiple network routes, and market-like control systems.”

1.3.2 The repeated multiple-access resource-load balancing game

Guided by these preliminary considerations, we present the following application scenario:
A set of agents has a fixed set of resources at their disposal. Each agent may choose to
access an arbitrary subset of these. The utility (the value of the service provided by the
resource) that is distributed to the agents that have accessed the resource depends on
the capacity of the resource and on the number of the agents competing for access to
the resource (we only account for cases in which the efficiency of the resource decreases
with the number of accessors). After each agent has decided which resources to use, the
individual utilities are computed and distributed as payoffs to each agent. Agents neither
receive information about the payoffs their peers receive, nor do they know how their own
payoff computes. However, they are given (more or less accurate) information about their



peers’ action choices. This process is iterated ad infinitum, and the performance measure
applied to evaluate the success of an agent is the sum of payoffs that an agent has received
so far.

The intuition behind this model is that we have a set of resources capable of execut-
ing certain tasks, such as processors in a multi-user machine, WWW search engines, or
application servers in a LAN environment. We assume that agents synchronously and
discreetly access these resources to further their own needs, and that these needs (as op-
posed to the scenario proposed in Schaerf et al. (1995)) remain constant over time, which
means that, in each round, agents need to access the same set of resources (for repeatedly
executing the same tasks).

It is reasonable to assume that even in decentralised systems agents will probably have
some information about which and how many other agents access the same resources like
them. In the search engine example this is of course less probable, but in the multi-
processor and LAN domains it is usually possible to monitor which users run which
processes on the CPUs and servers.

In such systems, information about the agent’s own payoff is indirectly imparted to it
by the response time of servers or by the execution speed of processes. However, it is
unlikely that agents would know something about how well other users fare, since it is,
for example, unlikely that some greedy user who found out that accessing all available
resources pays would reveal this knowledge to her ignorant co-users.

It is also realistic to model the users of such systems as selfish agents concerned only with
their own success in the environment. Firstly, this is because the individuals competing
for resources in distributed computer systems usually form a body of heterogenous, inde-
pendent agents that pursue different goals, anonymous actors (e.g. in the WWW domain)
in an “increasingly distributed world”, who will not cooperate with others unless cooper-
ation is beneficial to them.

Secondly, and much more importantly, we claim that it is not necessary for them to care
for how well their opponents fare. If the available resources can be divided in a fair and op-
timal way®, then truly rational agents, i.e. agents that do not fall into “egoist traps”, who
are not prone to submit to short-sighted selfish behaviour patterns will identify possibili-
ties for profitable cooperation. We will show that, under certain conditions, cooperation
can even be achieved among purely selfish individuals.

We should still have a brief look at the alternative view of things. This alternative
view is best summarised by the notion of socially responsible agents, according to which
“a decision function can be designed which enables agents to exploit interactions for their
own gain, but which means that they are sometimes willing to do things for the greater
good (to improve system coherence)” (Kalenka and Jennings, 1995, p. 2). The principle
underlying such reasoning is the Principle of Social Rationality, as proposed in (Jennings
and Campos, 1997):

“If a member of a responsible society can perform an action whose joint benefit
is greater than its joint loss, then it may select that action.”

The joint benefit is a combination of the individual benefit some agent obtains for execut-
ing some action and the benefit obtained by the society in which that agent is situated,

8Whether this is the case of course depends on the nature of the resources: if, e.g. a resource is
indivisible, there is nothing more rational for an agent to do than to try and get hold of it irrespective of
what others do. It is only fair to point out that in such situations, cooperation cannot evolve.



and a “responsible” society is a society that is concerned with balancing both individual
and system goals. The argument for using a combination of individual and social ratio-
nality is that with it a hybrid form of agent systems can be devised that lies somewhere
between DPS and MAS and combines the advantages of both views (Hogg and Jennings,
1997).

In our view, this view is rather inadequate for the study of open systems (Hewitt, 1991),
for practical reasons given above, but also because we think that it is precisely “the top-
down imposition of fictitious coordination mechanisms” (Tesfatsion, to appear, p. 1) that
has to be avoided if we want to design flexible, autonomous, adaptive agents able to sur-
vive in a multi-agent world.

In Chapter 3 we will provide an abstract formulation of our multiple-access resource-
load balancing game which will be used throughout the remaining work to evaluate our
learning architecture. We will show that it exhibits certain properties that make it ade-
quate for analysing essential problems that arise in coordinated decisions-making. Thus,
apart from representing a class of practically relevant real-world problems, it is suitable
for our purpose of evaluating a learning architecture for adaptive behaviour in games.

1.4 Preview of other sections

The following chapters are organised as follows: In Chapter 2, we briefly explain how our
work can be seen as a combination of three fields of research and review some examples
of research that is concerned with problems similar to the ones we analyse.

Chapter 3 presents the abstract formalisation of the multiple-access resource-load balanc-
ing game, for which we also determine optimal solutions.

The subsequent chapter serves as a detailed introduction to the architecture we propose,
which is an extension of the InteRRaP paradigm for layered learning in repeated games.
Chapter 5 provides an extensive treatment of an instantiation of that architecture, a proof-
of-concept prototype with readily applicable learning algorithms embedded in a concrete
game simulation system. A further chapter is devoted to the empirical evaluation of this
prototype that proves its adequacy and gives insights to the strengths and weaknesses of
our approach.

Finally, Chapter 7 rounds up with central conclusions, a review of achieved goals and
open issues and a critique of the work with respect to its theoretical value and its practi-
cal relevance.






Chapter 2

Related work

The introductory chapter already hinted at various lines of research that our work is
related to. The most prominent of these were machine learning, game theory and load-
balancing research in the field of distributed computing.

In this chapter, we take a closer look to (a) three rather general fields of DAI research
amidst which our work can be placed and (b) some concrete examples of coordination
mechanism design research that are quite similar to our approach.

2.1 Related fields of research

In general terms, our work can be seen as a combination of three strands of DAI research,
multi-agent learning, agent-based computational economics and social simulation, in the
sense that we borrow techniques from these fields, but also some theoretical positions they
assume.

The relation to multi-agent learning! (MAL) is the most obvious of these, because the
focus of our work is on learning to coordinate with other agents for which fact it stands in
contrast to most work in classical game theory. There, agents are assumed to be capable
of analysing the constraints governing the interaction situation by conducting a rigorous
mathematical analysis of the underlying game (we make references to work in DAT that
follows this tradition in Chapter 3). We oppose to this position because we consider a
complete mathematical analysis of the underlying abstract games inadequate for realistic
situations, in which we are inevitably confronted with the issue of bounded rationality
(Simon, 1982).

According to this concept (which is enjoying increasing popularity in the DAI commu-
nity), agents have only limited reasoning abilities, or at least, even if they can in theory
solve many highly-complex problems, in practice they have to “trade off the quality of
a solution versus the cost of invested computation” (Jung, 1998). In the games we will
typically consider, the number of possible action combinations (typically, thousands or
millions) makes the application of exact solution methods on the side of the agents (with-
out the designer’s knowledge of the payoff function, that is) impossible.

Thus, we believe that a learning approach is much more appropriate in which agents
gradually gather information about their opponents and about the interplay between
their actions.

LCf. (WeiB, 1996) for an introduction



It should also be pointed out that our approach shares with MAL intuitions the focus
on designing and evaluating the adaptive capacities of agents rather than on acting itself.
This means that we will not go into any reasoning about how (physical) actions are ac-
tually performed, how sensoric data is processed or how actuators should be controlled.

Work in the field of agent-based computational economics (ACE) is in two ways rele-
vant to ours: firstly, we borrow from it the use of game-theoretic abstraction for modelling
interactions and its underlying assumptions and, secondly, its focus on evolutionary, emer-
gent, aspects of complex system behaviour.

According to Tesfatsion (to appear, p. 1), ACE can be roughly defined as the “compu-
tational study of economies modelled as evolving decentralised systems of autonomous
agents”. He sees as its main purpose “to understand the apparently spontaneous forma-
tion of global regularities in economic processes [...], to explain how these regularities arise
from the bottom up, through the repeated local interactions of autonomous agent, [...],
rather than from the top-down imposition of fictitious coordination mechanisms” (ibid.).
This statement might, in fact, serve as a “statement of purpose” for our work, and ACE
in general describes most suitably our efforts because it stresses the fact that we are
talking about agent-based computer simulations and that the decision-making principles
applied are taken from classical utility theory, which lies at the heart of the economists’
standpoint.

The main reasons for which we adopt the position of economics are

e its use of game-theoretic models (which provides us with the necessary abstraction
to handle complex interaction situations and to gain insights into the essence of
interaction, and also offers mathematical solution methods to evaluate our own
results) and

e the fact that in economics agents are modelled as individual utility maximisers (this
provides a clear and simple working definition of rationality, makes the performance
of different agents comparable and allows for the construction of heterogenous agent
societies beyond the realm of collaborative MAS).

In his argument for a closer interdisciplinary connection between the fields of AI and
economics, Shoham (1996) names these two aspects of economics research as two princi-
ples from which AI could benefit, and we believe that they are essential to developing an
understanding of how worlds inhabited by autonomous, individually rational intelligent
agents will evolve.

Finally, it should be remarked that ACE can be seen as a sub-branch of the field
of social simulation (also called the artificial societies approach), in which researchers
(predominantly social scientists) make use of computer simulations to study the social
processes that come about through the local interactions of a great number of agents. As
Doran (1998) has pointed out, the novel aspect of such research is that it “enables studies
to be made of the relationship between agent-level and society-level phenomena in a way
not previously possible.”

We stress the importance of this aspect here, because when talking of interaction mod-
elling, it is of twofold relevance. On the one hand, as we have mentioned before, our aim
is to endow agents with simple reasoning mechanisms for interaction, and to “see what
happens” at system level, i.e. to explain complex system behaviour from scratch. It is
precisely this “agent-society leap” that social simulation in its constructivist tradition is



about. On the other hand, we believe that the principles of interaction are crucial to the
understanding of this “leap”, and that the emergence of interaction patterns is of vital
importance for the evolution of the society.

2.2 Coordination mechanism design

In a more specific sense, i.e. as regards the problems that we are concerned with, our
work is closely related to research on coordination mechanism design. “Coordination
mechanism design”? can be used as general term for any efforts to conceive, formalise and
validate adequate coordination techniques for MASs. The design of such mechanisms in
fact constitutes part of almost any MAS realisation, though sometimes (especially in the
realm of reactive agent architectures, cf., e.g., Agre and Chapman (1987), Brooks (1991),
Dagaeff, Chantemargue, and Hirsbrunner (1997), Drogoul and Ferber (1994)) the focus
is more on emergent coordination rather than on explicit social capabilities that agents
should have.

The most common approach to dealing with coordination issues in MAS called Mult:-

Agent Planning (MAP) is the extension of classical Al planning systems to multi-agent
systems (cf., e.g.,von Martial (1993) for an introduction to the field).
However, work from this field can hardly be compared to ours, because it relies on the
use of explicit communication (as von Martial (1993, p. 95) puts it, “MAP = Planning
+ Communication”)3, it contradicts our “no sequential planning”-assumption and, very
often, assumptions concerning benevolence or the existence of some central authority
(Georgeff, 1984; Lansky, 1989) are made.

Yet there also exist (relatively few) approaches which, in the spirit of the already
mentioned work (Genesereth et al., 1986), exclude the possibility of communication and
operate in game-theoretic, “non-planning” settings. Here, we review some examples of
work on learning in games that are quite similar to ours.

In (Claus and Boutilier, 1998), the differences between individual learning (IL) and
joint action learning (JAL) are studied. Individual learners learn values for their own ac-
tions, thereby ignoring the existence of others, whereas JAL learners learn action values
for joint actions, i.e. for action combinations of all players. However, the scope is restricted
to strictly cooperative games (unlike in our work), so that the same payoff is distributed
to all agents for some particular action combination, i.e. no conflict of interests can arise.
The main result is that JAL enables agents to choose the optimal equilibrium (if several
equilibria exist), since they have access to the action values of all joint actions once these
have been learned, and can simply choose that action that yields the maximal action value.

2The term is borrowed from (Fischer, Ruf, and Vierke, 1998), where it is used in a much more specific
and normative sense, as research concerned with identifying interaction rules for the efficient assignment
of goods and tasks to agents, “so that when agents use them [...], desirable social outcomes follow”
(Fischer et al., 1998, pp. 57-58). Employing it here is simply due to the absence of a more generic and
established term.

3Examples for “coordination through communication” include market-oriented approaches based on
negotiation (e.g. the contract net protocol proposed by Davis and Smith (1981)), simulated trading
(Bachem, Hochstéattler, and Malich, 1996) and auction-like mechanisms (cf. Chapter 4 in Fischer et al.
(1998) for an overview), voting mechanisms, the exchange of individual plans and collaborative planning
(Grosz and Snider, 1988).



Freund and colleagues approach our setting and objective pretty closely, in that they
examine “the problem of learning to play optimally against an adversary whose precise
strategy is unknown” (Freund et al., 1995, p. 1). They also hint at an issue that resembles
our considerations about the social potential of a game (cf. Section 1.2.2) by pointing out
that an adversary’s future behaviour, and with it his willingness to cooperate, will depend
on the agent’s past actions.

Therefore, there argument continues (ibid., p. 1),

“[...] it is not enough to simply predict the adversary’s actions in order to play
optimally; we must also discover how to massage the adversary into his most
cooperative state.”

They examine three classes of computationally bounded adversaries (one of these is similar
to the class of adversaries we model in the Strategy Engine, cf. Section 5.3) and present
theoretical results on strategy learning algorithms. Most importantly, the authors prove
that there exist efficient strategy learning algorithms for all three classes of adversaries.
Unfortunately, their approach is limited to 2 x 2-games — games with only two players
and two action options — and this is clearly too restrictive for our purposes.

Modelling opponents as finite automata is the object of research in the paper of Carmel
and Markovitch (1996). There, it is argued that

“When looking for an efficient strategy for interaction, an agent must consider
two main outcomes of its behavior. First, the direct reward for its action
during the current encounter with others. Second, the effect of its behavior
on the expected future behavior of other agents.“

This is an alternative description of the determinants of an interaction situation to the
one we proposed that essentially captures the same aspects of interaction.

To the authors, solving the problem of finding an optimal strategy can be reduced to
learning the opponents’ automata (for which they present a heuristic algorithm). They
account for n-player environments, in which the interactions are carried out between pairs
of agents only, so-called 2-player encounters (this is a setting that is commonly used in
evolutionary game theory cf., e.g., Smith (1982), Weibull (1995)).

Finally, the work of Shoham and Tennenholtz (1997) on social conventions is notably
similar to ours, because its focus is on endowing agents with simple game-learning abilities
in settings where no previous knowledge of the game and of others’ strategies is available,
in order to analyse whether and how social compromise can emerge in the long run and
whether it will be stable.

Starting from a system level perspective, they first define social laws as restrictions of the
action sets available to the players, i.e. a social law, if enforced by some central author-
ity, would prohibit certain actions otherwise available. If such a law restricts the agents’
behaviour to one particular strategy, it is called a social convention. Switching to the
agent level, such conventions would only be accepted by the individuals, if they deemed
them individually rational. Since the focus is on decentralised systems, the authors do
not assume the existence of some central authority and ask how such conventions can
emerge in societies of purely selfish agents. For a specific sub-class of two-player games,
it is shown that, using very simple action-selection rules, a social convention (that is both
individually and collectively desirable) will be reached after some bounded number of



iterations with arbitrarily high probability, and, once reached, it will never be left. This
is an important result, because it proves that cooperation can in principle be learned, and
this result is strengthened by the authors’ extensive empirical results which show that
conventions emerge in reasonable time.

For our approach, the main importance of all these works lies in the fact that they give
examples for systems in which particular aspects of those crucial to interaction dynamics
were learned effectively. This not only shows that it is sensible to look for a more generic
learning methodology for interaction, but also that the task is, at least in principle,
manageable.

2.3 Summary

This chapter provided an overview of the research areas that our work relates to and a
survey of recent publications on similar research. First, three sub-fields of DAI* were
presented and some central aspects were pointed out that make these fields particulary
relevant to our work.

After that, we discussed some contributions that are essentially concerned with solving
the same class of problems, even though the assumptions they make are substantially dis-
tinct from ours. We believe that the combination of a complete lack of prior knowledge,
the absence of communication and the suitability for games with more than two players
form a set of assumptions that have not been previously attacked using a hierarchical
learning architecture, and this is the novelty of our approach.

In the following chapter, we introduce a game-theoretic formalisation of the application
scenario within which our approach will be evaluated, determine optimal solutions and
discuss the central interaction problems that it models.

4We deliberately avoid going into discussions about whether social simulation of computational eco-
nomics are sub-fields of DAI or vice versa here.






Chapter 3

Game-theoretic model of the
application example

If you play a game of chance, know, before you begin,
If you are benevolent you will never win.
— William Blake, On Friends And Foes

In this chapter we introduce some basic concepts of game theory and present a game-
theoretic model of our resource-load balancing scenario. We devote a separate chapter
to these, because they constitute the mathematical framework upon which we formalise
the interaction setting and in which agent’s coordination reasoning capabilities will oper-
ate. Furthermore, the exact solutions for the resource-load game which we can determine
using the tools of game theory serve as a basis for the analysis of the performance of
the proposed system architecture: the solutions for the game underlying the interaction
simulation provide the benchmarks against which the performance of our agents will be
measured.

The chapter is structured as follows: first, only some essential game-theoretic notions
are introduced that will be used throughout the remaining chapters'. The mathematical
model of the application scenario will be provided subsequently, together with a presen-
tation of its optimal solutions. A discussion of the results of this analysis will then point
at the complexity of the underlying games to give a flavour for the nature of the tasks
agents will have to solve.

3.1 Basics of game theory

Modern game theory saw its advent with the publication of the “Theory of Games and
Economic Behaviour” by John von Neumann and Oscar Morgenstern in 1944, in which
economic decision situations were modelled within the mathematical framework of games
for the first time?. The clarity and mathematical rigour with which it enabled the mod-

!The reader unfamiliar to the more elaborate concepts of classical game theory, such as dominance
relations, equilibria, pareto-optimality and the kernel solution concept may find an extensive introduction
to these in Appendix B.

2To be more precise, that was the first time such treatment of games received adequate attention —
the analysis of games of chance that initiated the development of probability theory actually goes back
to as early as the 17th century, and first contributions to the theory of strategic games were made by



elling and analysis of interaction situations and strategic decision-making principles con-
tributed largely to its popularity, not only among mathematicians and economists: it has
also been applied to fields as different as psychology (cf. the work of Luce and Raiffa
(1958)), biology (Smith, 1982), governmental policy and military analysis (e.g. nuclear
disarmament strategies, Aumann and Maschler (1996)) and more.

In computer science, game theory was employed in work on computer security, on network
routing protocols and on discourse understanding to name just a few examples (cf. the
references in Pfeffer and Koller (1997)), while games have been one of the central areas
of interest in (especially early) Al (the Bibliographical Notes to Chapter 5 in Russell and
Norvig (1995) provide a good overview of such work). In the last years, it has become the
predominant interaction modelling tool in DAI (where it was first introduced by Zlotkin
and Rosenschein (1989)).

What is game theory? It is essentially that sub-branch of decision theory that is con-
cerned with describing and analysing decision situations in which the actions taken by a
number of agents have a mutual impact on each other, and to provide solution methods
for these. General decision theory strives to build mathematical formalizations of decision
situations and of notions such as “solution” and “rationality” for such situations. Game
theory inherits these aims, while trying to give adequate answers to these problems for a
particular subclass of decision problems, namely that in which the consequences of actions
depend on several agents’ actions.

In the following, we introduce some notions essential to an understanding of abstract
games, which will be illustrated by two very popular 2-player games, the Prisoners’
Dilemma (PD) and the Coordination Game (CG). These examples provide some very
interesting insights to central game-theoretic problems, and we will show later that these
problems are also relevant in the games we use to model our application scenario.

Then, we will have a look at some points of critique and we will describe how they ex-
plain the stance we have assumed for our research (which is somewhat different from the
game-theoreticians’ standpoint, as has been pointed out before).

3.1.1 Basic definitions — games and strategies

Games are abstract formalisations of the interdependencies between co-acting agents.
Formally, they are given by the set of participating agents, by the sets of actions that
players can perform and by the outcomes of collective action combinations for each player
(expressed as numerical payoffs). In this work, we will restrict ourselves to n-player games
in normal form, i.e. games that consist of a single move of all players and a subsequent
distribution of the respective payoffs to the players. Games which consist of several
intermediate steps and in which the payoffs are only distributed after the last step (so-
called ertensive form games) can be shown to be equivalent to normal form games?, so
that the solution concepts presented in Appendix B also hold in the extensive form case.

We begin by defining games in normal form and repeated games.

Zermelo at the beginning of the 20th century.

3This is done by viewing the extensive form game as a normal form game: every possible combination
of players’ decision sequences (every path in the game tree) defines one joint action combination that
leads to a final state (a leaf node) which has a payoff distribution for all players associated with it. Thus,
a payoff matrix can be defined over these player decision sequences and the respective final outcomes



Definition 3.1 (Normal Form Games, Repeated Games)
An n-player game in normal form I' = (N, S, u) is defined by:

e the set of players N = {1,...,n},

e « finite, non-empty set of strategies S; = {s;1,..., Sim,} for each player i. The
collection {S;}ien of all players’ strategy sets is called the strategy space of the
game, and a conjoint strategy selection of all players s = (s1,...,5,) € S = XienS;
is called a joint strategy”.

e g payoff function u : x;cnS; — R™ which assigns a payoff vector u(s) = (u1, ..., uy)
to each joint strategy s, such that u; is the payoff that player i will receive.

A t-repeated n-player game I' = (s, ... s®)) € St is a finite sequence of t rounds,
i.e. a series of joint strategy choices in a game T' = (N, S, u).

Note that these definitions already make some important assumptions: firstly, the payoff
one player receives does not rely on anything else than the simultaneous actions of its ad-
versaries (in particular, it does not depend on current world states); secondly, this same
dependency holds for every enactment of the game, if several rounds are played. Further-
more, repeated games only allow for carrying out discrete encounters of synchronously
executed actions from finite action pools, which means that they do not provide means
to model continuous or asynchronous interactions. While this may seem inadequate for
modelling realistic interaction situations, it is only these restrictions that make a tractable
analysis of game-theoretic models possible. This also explains why we adopted these as-
sumptions for our architecture in the first place (cf. Sections 1.2.2 and 1.3.2).

Since we will make use of that term later, we should also introduce the notion of mized
strategies.

Definition 3.2 (Mixed Strategy, Expected Payoff)

e A mixed strategy o; of a player i in a n-player game I' = (N, S, u) is a probability
distribution over the (pure) strategies s € S; of player i, i.e.

o;: S; = [0;1], > oi(s) =1

SES;
The set 3; of such mixed strategies is called the mixed strategy space of .

o We write ¥ for the k-th pure strategy of i seen as a mized strategy (that assigns
probability 1 to strategy si and probability 0 to all other pure strategies)®.

4We shall use s; as a short form for player i’s strategy in a strategy tuple s by virtue of its position in
the cross-product S. We will also make use of the common abbreviation s_; = (81,...,8i—1,8i+1;---5n)
for the joint strategy of all players other than ¢ and in writing s = (s;,s—;) we will ignore the proper
ordering of tuples in S for reasons of convenience (sometimes we will use the same method for abbreviating
joint strategies of “remaining players” given some subset of player (M C N) by writing s_js in a similar
fashion).
More generally, we use capital letters A, B, C for sets and their small letters a, b, ¢ for elements of these
sets (function names will be small letters for which respective sets have not been introduced). If a set A
is a n-long cross-product, we will write A; for the i-th set in this cross-product, and Ay for some index
set I C{1...,n}. We use the notation a; (or a[i]) and ar in the same way for some tuple a € A.

>The intuition behind using the letter e is that e¥ can be interpreted geometrically as the unit vector
of the k-th dimension in |S;|-dimensional hyperspace.



e A joint probability distribution o = (01, ...,0,) € X of all players is called a mixed
joint strategy and X = x,;cnY; is the mixed joint strategy space of all players.

e The expected payoff of some mized strategy o; is computed as the sum of the
respective pure joint strategies weighted by the probabilities that these will actually

be played:
ui(o) = Y ui(s)- P(s),
SEXjeNS;
where
s =(s1,...,8,) = P(s) = [li<j<noj(s;)

is the joint probability that all players (including i) will play s.

3.1.2 Two illustrative examples

The two games we present as examples are both two-player games in which both players
may choose from two action alternatives, i.e. |S1| = |S2| = 2, and both are so-called
non-constant sum games, which means that the sums of payoffs received by both players
under two different joint strategies differ, or, more formally,

2 2
Js,s" € 8. ui(s) # D ui(s)
i=1 i=1
holds. In contrast to constant-sum two-player games (where one player inevitably loses
what the other wins), this class of games is not strictly non-cooperative, because there is
no “complete clash of interests” (Fischer et al., 1998, p. 32). This means that utility pairs
can be preferred by both players conjointly from which at least one player will profit,
while the other will not be at a disadvantage.

It is for this reason that cooperative® games offer a much wider spectrum of possible so-
lution concepts and deeper insights into aspects of rational behaviour, especially when
carried out repeatedly.

The Prisoner’s Dilemma (PD) due to Luce and Raiffa (1958) is probably the most famous
such game. In it, each player has the option to cooperate (C) or defect (D), and the key
property of the game lies in the fact that if both cooperate they will receive a lower payoff
than they would have obtained if they had defected while the other cooperated. The ac-
tual “dilemma” comes about, because if both defect (which they will, given the condition
just mentioned) they both receive a lower payoff than if they had both cooperated.

The following table shows a typical PD payoff matrix. In each matrix position, the payoff
for player one (the “row” player) is followed by the payoff for player two (the “column”

player).

player 2 | cooperate | defect
player 1
cooperate (3,3) (0,5)
defect (5,0) (1,1)

6Many authors (see, e.g., Fischer et al. (1998)) require that two further conditions hold for a game to
be called cooperative. Firstly, that players have some means of communication to make obligatory com-
mitments and that there exists some “higher authority” which is capable of enforcing these commitments
(or punishing their violation) in the second place. We will use the term here for any non-constant sum
game, taking as a key property of cooperative games the existence of mutually beneficial possibilities of
coordination rather than the possibility of establishing reliable agreements.



It can be seen that it only pays for a player to cooperate if her adversary cooperates as
well, and therefore in a situation devoid of prior agreement, each player is sure to choose
the defect strategy. This is because — under the worst circumstances — that strategy will
still yield a higher payoff than the option of cooperating.

Using this “worst-case” argument as a basis for action selection is commonly known
as the mazximin principle. Formally, it is the action selection rule by which i chooses to
play

s; = arg max min u;(s;, S—;),
$;€S; S—i

i.e. that action which ensures the highest payoff if all other players act in the most unde-
sirable way (and is hence a very pessimistic rule).

The Coordination Game first mentioned by Lewis (given by the matrix below) ad-
dresses an entirely different problem of joint action selection. Here, neither of the players
can be exploited by cooperating while her opponent defects, but both players only profit
from situations in which they simultaneously pick the same strategy. Thus, players may
obtain low payoffs by making the wrong choice, although there is no conflict of interests.

player 2 A B
player 1

A (1,1) | (-1,-1)

B (-1,-1) | (1,1)

These two games, albeit very simple, already hint at some central issues in coordination
mechanism design. The CG may seem to depict a much simpler coordination problem
than the PD, but looking at repeated versions of the two games shows that this is not
really the case: in the Iterated PD (IPD), fairly simple strategy-selection rules such as TIT
FOR TAT" often suffice to force the opponent into a cooperative stance by punishing her
ambitions to exploit; for the CG, simple strategies like “playing what the other played the
round before” may fail hopelessly if coordination is not achieved in the very first round.

3.1.3 Shortcomings

Despite the undisputed value of game theory as a tool for the mathematical modelling of
interaction situations, many points of criticism have been put forward against it. Here,
we will address only those that are significant for our work and some open questions that
our methodology attempts to investigate (pointers to more comprehensive critical works
can be found in Lomborg (1994)). We assume that the reader is familiar with the concept
of the Nash equilibrium and with the kernel solution method for cooperative games (Ap-
pendix B provides an introduction to these and to other simple solution concepts that we
make reference to in the following).

One problem of classical solution concepts for games is that of selecting the stable
state of behaviour that will actually converge. When there exist various equilibria or

"TIT FOR TAT is an action-selection rule that requires the player (i) not to be the first to defect
and (ii) to consistently play whatever the opponent played in the last round. evolution (1984) proved
by conducting a round robin tournament of various strategies that this is a very robust strategy (i.e. a
strategy that is very successful against a great number of other strategies).



the kernel comprises more than one imputation, it is very hard to predict which of these
will actually emerge. Moreover, it is not even clear whether the players’ behaviour will
converge to any of them, or, as stated by Lomborg (1994, p. 2),

“[...] in having more Nash equilibria, one not only loses the possibility of
precise prediction, but the players themselves will no longer know what to
choose, and thus the resulting outcome need not even be a Nash equilibrium.”

This is a particular problem if there is no explicit communication among players and only
reactive or very risky initiatives to form coalitions are possible rather than enforceable
agreements (just remember the CG example). It follows from this observation that most
of the work in classical game theory heavily relies on players being able to communicate,
so that it overlooks a large portion of real-world problems in which this is not possible.

Another issue that has been largely ignored is that of bounded rationality. In real-
istic settings, it is rather unlikely that agents will have the computational resources to
solve games mathematically, especially in games with many players and large strategy
sets. Solution concepts such as the kernel assume that actors can compute solutions of
simultaneous equations in several unknowns, e.g. by using linear optimisation methods.
Apart from the fact that agents might not have the time and reasoning capacities to em-
ploy such methods, is also appears rather counter-intuitive that humans go about solving
interaction problems with the use of these. They are much more likely to assume the
decision-analytic stance, which stands in contrast to the game-theoretic view as Myerson
(1991) pointed out:

“The decision-analytic approach to player ¢’s decision problem is to try to
predict the behaviour of the players other than ¢ first, and then to solve #’s
decision problem last. In contrast, the usual game-theoretic approach is to
analyze and solve the decision problems of all players together, like a system
of simultaneous equations in several unknowns.”

This brings us directly to another shortcoming of classical game theory, namely that it
is too often restricted to a too normative or too descriptive view. The primary goal of
normative decision theory is “to provide instructions for an agent to act in a rational
manner when the premises of the decision are given” (Fischer et al., 1998, p. 13) while
pre-assuming that agents are fundamentally rational. As Fischer et al. point out (ibid.),
“the models used do not consider how to obtain the premises of decisions, how to obtain
the necessary informations or how the decision process is influenced by the environment”,
and are therefore referred to as closed models which contradicts the open systems of sit-
uated and adaptive agents which are the object of research in MAS. Descriptive decision
theory, on the other hand, “starts with the description of real decision behaviour of peo-
ple in decision situations and analyses the consequences of decisions” (ibid., p. 14). But
although the models used in descriptive decision theory are open models, they are equally
inadequate for our purposes, since they fail to provide any concrete guidance for agents
in interaction situations.

Therefore, these authors argue that there is a need for a synthesis of these, a prescriptive
decision theory that will enable agents to solve their own decision problem, and this ob-
servation is in fact a key motivation for developing our own theory.

In the context of such prescriptive models, adaptivity is also an issue that has been
neglected by most game-theoretic approaches. In fact, the possible need for adaptation



has (deliberately) been excluded a priori by defining games as fully static models of in-
teraction, thereby avoiding such questions as “what if the payoff function changes?” or
“what if opponents suddenly change their strategies?” We believe that these questions
play an important role when it comes to devising effective interaction mechanisms and
therefore adaptivity is at the focus of our methodology.

It should be remarked that this last point of criticism is only one facet of what is
probably the most important shortcoming of game theory: the fact that it has largely
overlooked the epistemic aspects of interaction — knowledge, information and uncertainty.
In most of the game-theoretic literature, for example, full knowledge of the payoff matrix
(even of the opponents’ payoff function!) is pre-assumed. Some authors account for games
in which there is uncertainty about which of several possible games is being played (cf.,
e.g., Aumann and Maschler (1996), Pfeffer and Koller (1997)), but there has been no at-
tempt to answer the question “what if players know nothing about the payoff structure of
the game?” Yet knowing the payoff function (which implies knowing what payoffs other
agents obtain during the game, if their actions can be recognised) seems to be a very
strong assumption that does not hold in most real-life situations.

A similar constraint is imposed by the proposed postulate of rationality, which asserts

that agents (have enough information to) behave rationally and that they know that their
opponents are rational, too.
Finally, it should be mentioned that within game-theoretic research, the issue of uncer-
tainty and noise in information has received too little attention. Lomborg (1994, p. 6)
remarks that all of the available literature focuses on noise as misimplementation (i.e. the
failure of players to carry out selected strategies), whereas misperception (the false per-
ception of opponent actions or received payoffs) has been completely neglected. However,
noisy data is ubiquitous in natural (and artificial) environments, so this adds yet another
unrealistic restriction to the ones mentioned before.

All these critical arguments show that “something is utterly amiss” (Lomborg, 1994,
p. 2) in game theory. Recent developments in the already mentioned works on evolutionary
game theory (Smith, 1982) and the experimental approach taken by evolution (1984) but
also some work on bounded rationality in games (Rubenstein, 1985; Freund et al., 1995)
have succeeded in partially alleviating these problems. Our learning architecture can be
seen as another contribution to this line of research, as we question virtually all of the
assumptions of classical game theory that lead to the presented problems.

3.2 Game-theoretic abstraction of the application ex-
ample

In this section we introduce the resource-load game as it has been discussed in Section
1.3.2 formally and provide optimal solutions for it in order to measure the performance
of the agents we will devise. Unless where stated otherwise, using it as an example does
not affect the generic character of our approach.

The payoff function we have constructed is very simple, yet it exhibits some very inter-
esting properties, by which it combines the difficulties of games like the CG, in which
equilibrium selection and action synchronisation play an important role, and those of
games belonging to the class of the PD, where egoist traps tempt the players to act in



an uncoordinated and inefficient way, even though the games as such are cooperative. In
that, the simplicity of our game allows for a mathematically tractable straight-forward
analysis, so that optimal solutions (the benchmarks for agent performance) can be easily
determined.

3.2.1 Formal model

The multiple-access resource-load game (MARLOG) is a repeated n-player game in normal
form, in which the possible strategies of every agent are given by the subset of resources
it accesses. This subset can be determined arbitrarily by the agent in each round by
choosing from a finite pool of abstract resources (representing e.g. Web search engines,
application servers in local area networks (LANs), or CPUs in a multi-user machine).
Each of these resources is assumed to have a particular value for the agent and accessing
it produces some cost (e.g. the computational cost of a HTTP request, of connecting to
a socket in the network, or that of spawning a process to the process queue).

The most important feature of these resources is that the value they distribute to their
accessors decreases with the number of accessors; each resource is associated with some
access time for each agent, which represents the “response delay” induced by communica-
tion links (caused by the Internet routing procedure, packet transport in local networks,
or disk and RAM access times respectively). This access times obviously increases if
other agents access that same resource in the same round; typically, it will increase non-
linearly, i.e. accessing three resources with three users yields less payoff than accessing two
resources with two users each — the effects of the previously discussed resource divisibility
limitations (cf. Section 1.3.1).

We will now define the non-repeated version of this game in a more general form than the
one we will use later on to give an idea of the intuition that stands behind it.

Definition 3.3 (The General Multiple-Access Resource-Load Balancing Game)
A general multiple-access resource-load balancing game RL = (n,k,v,c,T,¢) is
defined by:

e the set of agents P ={1,2,...,n},

e the set of resources R = {1,2,...,k}, the power set 2% of which denotes the
strategy set (a particular strategy is given by the subset of R that represents the
resources accessed by the agent);

e a set of actions A = {0,1,...,2% — 1} can be defined as the strategy set of any
player i accordingly by virtue of the mapping f : 2% — A where

k
VQ C R.F(Q) =Y 2
r=1

We also use B: A — {0;1}* as the k-bit binary encoding function® defined by

k

Z B(a)[r] -2t = a

r=1

88(a) is the binary representation of a € A that is one for all resources r € R that are accessed by
choosing that action, and 0 for all other resources



for each® a; € A.

e A resource value function v : P x R — R™, an access cost function c :
P xR — R" and an access time function 7 : P x R — R*.
For any agent i € P and resource r € R, the non-negative values v(p,r), c(p,r) and
T(p,r) are called the value, access cost and access time of resource r for agent
1, respectively.

e A payoff function v : A — R" (A = X;cpA = A") given by
k

v(i,r) .
ui(a) = 3" Blas)lr] —c(iyr) |,
(52, B(ay)ir) ™ - TG, r)

where € : P — R* is an accessor-resource delay factor.

Let us briefly explain how the rather complex calculation of the payoff vectors comes
about. If ¢ plays a;, then the binary encoding 3(a;) of that action will be 1 in all positions
of that binary vector that correspond to the resources that are in the subset () C R,
i.e. the resources 7 chooses to access, and 0 for all non-accessed resources. Player i as-
signs some positive value to each resource, and specific access costs and access times are
associated with each r € @ for 7. The actual access time that results from the attempt
of several other agents to access that same resource is computed by taking the number
of those accessors (including ¢) to the power of some delay factor (i) (representing the
degree to which the overhead of distributing the resource delays the actual access time
in the concrete environment) and multiplying the access time constant T'(i,7) by it. The
maximal value v(i,7) of the resource is then divided by this product and ¢(7, r) (the basic
cost of accessing the resource) is subtracted from the result.

Finally, quite naturally, the agent only receives a payoff for those resources it has actu-
ally accessed (this is expressed by multiplying the resource payoffs (the quantity in round
braces) by the bit at position 7 in the binary encoding of ;).

This definition allows for the modelling of a great number of resource-sharing applica-
tions, although it is subject to severe restrictions. Most prominently, the fact that in the
repeated form of this game only identical interaction situations can be modelled, and that
these must consist of simultaneous joint agent actions, seems very unrealistic, especially
because it assumes that agents have identical needs for resources in each round, so that
no notion of task-orientation can be incorporated in our analysis. This can be partly alle-
viated by changing the game (from outside) arbitrarily at some point and to see whether
agents will be able to adapt to new circumstances, and we will investigate this issue in
our architecture, but this does not constitute a satisfactory solution to the fundamental
problem.

A second, more subtle problem is that the resource distribution limitations we assume
are completely theoretical and do not relate in any way to real-world distributed systems.
With this respect, we can only remark — in defense of our model — that other authors,
e.g. Thomas and Sycara (1998), have proceeded in a similar fashion guided by the need

9n the same manner as s and o were used to distinguish pure strategies from mixed strategies, we
shall use ay;, ay and «a to denote mixed strategies of individuals, subsets of players and of all players,
respectively. Although A is identical for every player i, we often write e.g. a; € A to stress that we are
talking about the action of player 1.



for a simple mathematical model of resource-load balancing problems.

If we let P = N and Vi.S; = A such that S; = Sy = ..., S, in the definition of normal
form game, then the MARLOG represents a finite n-player game in normal form, and
expanding it to a repeated game can be done in the usual way.

In the following analysis, we will make some simplifying assumptions for the game just

introduced, to make the mathematical arguments more concise and simpler to follow. To
this end we define the notion of the simple MARLOG.

Definition 3.4 (The Simple Multiple-Access Resource-load Balancing Game)
A general multiple-access resource-load game RL = (n,k,v,c,T,¢) is called simple, if
the following conditions hold:

e The value, access cost and access time functions can be reduced to constants v,c,T €
R*, and the access time delay factor is 1 for all players and resources. Then we
can rewrite the payoff function u: A — R"™ as

ui(a) = iﬁ(ai)[r] ' ( o 5(Zj)[r] T C) ’

r=1
and the game is reduced to a structure RL = (n,k,v,c,T).

e the minimal payoff per resource and player is always positive:

v
_— = 0.
0T c>

Apart from the fact that replacing the functions v, ¢ and T by constants yields a much
simpler formulation of the game, all these conditions make the analysis of the game much
easier, and we will assume that they are fulfilled in the arguments to follow.

Before going into the specific properties of the game, let us present an example (of its
simple version) that will give an intuitive feeling for them. The matrix below shows the
payoff function for a two-player variant of the game with £ = 2 where v = 30, ¢ = 2 and
T = 3. To make the computation of the individual payoffs more obvious, the actions 0, 1,
2, and 3 have been replaced by their binary encodings, so that it can be seen from these
which resources are being accessed.

player 2 00 01 10 11
player 1

00 (0,0) | (0,8) | (0,8) | (0,16)

01 (8,0) | (3,3) | (8,8) | (3,11)

10 (8,0) | (8,8) | (3,3) | (3,11)

11 (16,0) | (11,3) | (11,3) | (6,6)

The matrix entries are basically predetermined by two values of the payoff of one resource:
the one that corresponds to one accessor (=8) and the one that is assigned to an agent if
both agents access that resource (=3). From these two values all matrix positions can be
deduced by combining the respective resource payoffs for every joint action combination.
The first observation that can be made is that the 00’ strategy is strictly dominated by
all other pure strategies; ’01’ and ’10’ are strictly dominated by the '11’ strategy while
neither of these dominates the other. This leads to the observation that (’11°,’11’) is the



only (strict) Nash equilibrium, because '11’ is the best reply to any opponent strategy
for both players. However, as in the PD game, this equilibrium is not pareto-optimal:
(’01°,’10%) and (’10°,’01") provide for both players a payoff higher by two units than that
obtained when playing the equilibrium. A further difficulty springs from the fact that
there are two such optima, thus confronting players with the same problem as in the CG.
The example shows that by using a rather simple game definition we have succeeded in
designing an interaction setting in which actors are faced with a problematic decision
situation.

3.2.2 Optimal solutions

It can be shown that the properties of the payoff function just observed for a simple
example hold in general: there always exists a single, strict Nash equilibrium that is
sub-optimal compared to a family of pareto-optimal solutions. This family of collectively
rational behaviours ensures a much higher payoft to every player than the equilibrium.
Here, we will only present the respective theorems for the general case and discuss their
consequences informally. An extensive account of the rather lengthy mathematical proofs
can be found in Appendix C. We have chosen not to include them here, since their tech-
nical details are not of any conceptual relevance for the methods we develop, given that
the optimal solutions will only be used to measure the performance of our agents.

The first two preliminary observations that can be made for any simple MARLOG
concern the existence of a single, strictly dominant strategy for each player and the fact
that accessing no resource is always a “dumb-ass” alternative, since by choosing to do
nothing the agent invariably sacrifices some positive payoff.

Lemma 3.2

For any player 1, .

(1) the strategy all; = e? ! strictly dominates all other strategies and
(2) the strategy none; = €? is strictly dominated by all other strategies.

Proof: cf. Appendix C, Section C.2.

It is straightforward to derive the following corollary by using observation (1) of this
lemma:

Corollary 3.2
The set of Nash equilibria of the simple multiple-access resource-load game RL = {n, k,v, ¢, T)
is given by

O(RL) = {allp} , (3.1)

that is the singleton set containing the joint combination of the '2¥ — 1’-th pure strategy
of all players (the joint strategy in which all players access all resources).

Proof: cf. Appendix C, Section C.2.

u
Now we have shown for the general case what we had already observed in the 2-player
example: that the greedy strategy of all players accessing all resources at the same time is



the only strict Nash equilibrium. This means that, at least when using maximin agents,
we can expect no better system performance than the one which occurs in a situation
in which resources are hopelessly overloaded. To find better solutions, let us present a
theorem that determines kernel payoff vectors, i.e. individually and collectively rational
payoft distributions.

Theorem 3.2
Let the payoff vector u* = (uf...,u%) € R™ be defined as
k (v
Vi € .’!‘:—-<__> 3.2
i € Pu; ~\p e (3.2)

The vector u* is in the kernel of the game C'F(RL) where RL is an arbitrary simple
MARLOG in normal form.

Proof: cf. Appendix C, Section C.3.
Let us look more closely at these payoff vectors. What they imply, is that

1. each resource provides the highest value to the society if it is accessed by one player
(this can be inferred from the fact that k& quantities (% - c) are distributed amongst
players — the denominator 7" shows that each of the resources is accessed by exactly
one player) and that

2. the total payoff the global coalition P earns is distributed evenly among its partic-
ipants (dividing it by n assigns the same amount of payoff to every i), for which
reason we will call this vector the fair payoff distribution.

So in any simple MARLOG there exist pareto-optimal solutions in the global coalition
that are more beneficial to each player than their own selfish strategies'. However, a
major problem arises due to the two basic assumptions made by cooperative game theory.
One of these is that players are able to communicate with each other and thus able to make
agreements and to form coalitions. A second is that the distribution of coalition payoffs
is “decoupled” from the obtainment of the profit, i.e. payoffs can be transferred between
players. These assumptions are necessary, because in the context of cooperative game
theory, “solutions” are seen as payoff distributions rather than as the payoff outcomes of
particular joint actions (that are pre-determined by the payoff function) — sharing profit
reasonably after it is actually obtained by coalition members is considered equivalent to
achieving the same payoff distribution by virtue of the payoff function.

In the communication-less settings we examine, the fact that payoff distribution is not
decoupled from the payoff function implies that if the proposed pareto-optimal u* vectors
are going to be realised, then they will have to be the payoff vectors of joint actions,
because there is no way of transferring utilities between agents and no communication to
make agreements about such transfer.

10These are not the only solutions in the kernel of the game — in fact, there exist many payoff vectors
that distribute a total sum of v
v(P)=k- (T—c)

to the society and are still individually and collectively rational. However, the solutions presented in
Theorem 3.2 alone have the property that each agent receives the same payoff. Since all agents are equal
in “power” in our setting, it is unlikely to assume that they would participate in coalitions by which they
would obtain lower payoffs than some of their opponents.



So the question that remains to be answered is whether there exist such joint strategies.
If we consider pure strategies only, then — in the non-repeated version of the game — this
is only possible if the resource set can be distributed among the agents in a fair way, i.e. if

dkg € ]N—E =k
n

In that case, every agent can access ko resources, such that each resource in R has load
one, and thus the sum of all agents’ payoffs will equal > ;cp u;. If the resources cannot
be divided amongst agents (especially if £ < n), then obviously some agent will receive
less payoff than its adversaries, and since the “access all” strategy is dominant, it is very
unlikely that this agent will obey the agreement.

Allowing additionally for mixed strategies, the picture changes. In that case, even if the
number of resources is not divisible by the number of agents, it can be left to every agent
to access (solely) all resources in every n-th round and to access none in all other rounds
(this is just one way of achieving the maximal coalition profit in every round), so that
such joint strategies always exist.

In both cases, however, there will be a multitude of possible action combinations that
have the above properties. In the pure strategies case with divisible resource sets for

example, there are
k k — ko ko
ko ko ko

possibilities to achieve the pareto-optimal resource allocation (even for the small example
of k =12 and n = 3, this yields 34650 combinations!). It is therefore a highly non-trivial
problem for agents to settle on one of them, especially if they are unable to communicate.

3.3 Summary

This chapter provided a mathematical model of the application scenario which we use
to validate the systems we will design. A brief introduction to some of the necessary
game-theoretic definitions was given together with a discussion of certain drawbacks of
classical game theory that justifies why we aim at devising a learning architecture to
achieve effective behaviour in repeated games. Most importantly, we attempt to tackle
the problems inflicted by the strong assumptions made by game theory concerning knowl-
edge, information and rationality.

The formal definition of the multiple-access resource-load balancing game was presented
subsequently that serves as a stylised mathematical model for resource-sharing environ-
ments. We believe that — given the properties we provided rigorous proofs for — it captures
many essential problems that can occur in game-theoretic decision-making, especially the
existence of multiple optimal solutions that are non-equilibrium states. In addition to
these mathematical properties, the absence of communication makes the emergence of ef-
fectively coordinated behaviour seem even more unlikely, and it will be a major challenge
to overcome these difficulties with the methodology we propose.

In the following chapter, we lay out the foundations for this methodology. Learning
tasks are determined whose attainment will lead to effective behaviour in games and they
are brought in relation with each other by means of a generic layered learning theory.
Then, starting from the InteRRaP architecture, we propose learning extensions for these
tasks and integrate these in an adaptive hierarchical agent architecture.






Chapter 4

A layered learning architecture for
adaptive behaviour in games

The ability to learn is usually considered one of the key characteristics of intelligent be-
ings. People learn from their observations and from knowledge that is communicated
to them by others; they learn from mistakes, by “trial-and-error”, by imitating others,
from practice and by habit. They generalise over past observations, evaluate their past
decisions and draw previously undiscovered conclusions from their knowledge. And these
adaptive capacities have certainly contributed largely to the “success” of the species.

Of course, the manifold ways in which humans learn, ranging from “the trivial memoriza-
tion of experience [...] to the creation of entire scientific theories” (Russell and Norvig,
1995, p. 525) do not directly translate to a single computational concept, but defining
learning by the effects it should typically have on the learner allows for a simple working
definition for machine learning as put forward by Mitchell (1997, p. 2):

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

One of the foremost aims of DAI research is to build situated agents capable of oper-
ating without external guidance. Faced with the contingencies of dynamic environments,
such agents will need to adapt to changes, to reason on incomplete knowledge and they
should degrade gracefully when they encounter difficulties in carrying out their tasks.

In this chapter, a general model of hierarchical learning is introduced that builds upon

the mechanisms provided by multi-agent learning and layered learning. The aim of this
model is to enable the decomposition of the complex learning problems that occur in MAS
in a very flexible way so that learning hard problems can (a) be reduced to learning a
number of simpler problems and (b) distributed among several learners to improve accu-
racy or to achieve a speed-up of the learning process.
The presentation of this abstract distributed learning paradigm has to be thought of
as an attempt to describe the intuition that stands behind the actual layered learning
architecture for interaction learning. The specific instantiation of the layered learning
methodology we present is an extension of the hybrid InteRRaP agent design paradigm
for learning adaptive behaviour in games and constitutes the main subject of this chapter,
as it will be used throughout the rest of this work.



4.1 Layered learning agents

Weif} (1996) distinguishes between three classes of multi-agent learning mechanisms: mul-
tiplication, division and interaction. These provide three basic categories for how dis-
tributed learning can be organised horizontally in a multi-agent system: learners either
manage the same learning task in parallel independently, they are responsible each for a
different sub-problem or interact to influence each other’s learning process or to find a
common learning strategy.

Layered learning as proposed by Stone (1998), on the other hand, extends monolithical
learning in a wvertical dimension, such that super-layers receive either the training exam-
ples, the learning inputs or the learning outputs by their sub-components. As pointed out
in Section 1.2.2, we consider these three very specific patterns of interaction between layers
as too restrictive and we hence prefer to view the relationship between layers of learning
units in terms of control, i.e. that super-layers delegate tasks to their sub-components,
integrate the results of these components, select from their results or use their training
data, inputs or outputs (thus this definition encompasses the three specific cases just
mentioned), and the term “layered learning” as used in the following will always refer to
this definition.

The learning methodology we propose here is the combination of these two dimensions.
Assume a learning component L has to be devised whose (global) learning goal is G. In
our framework, L will typically consist of some set of learning units L4,..., L,, and for
any two L;, L; one of the following relationships holds:

o L; is a sub-component of L;: L; may use the internal data of L; (including its
stored training data, input and output representations, hypotheses and performance
measures); in more extreme cases of “inclusion”, L; may control L; (it sets it learning
parameters, controls its training process (training iterations, available training time)
or delegates learning problems to it).

e L; is a co-learner of L;: in that case, neither of the two is a sub-component of the
other, but there is some connection between them via a third component or because
they interact (by negotiation or simply by exchanging data).

If L; and L; are connected to a common super-component L, they either compete
for selection of their learning results (if they have the same learning goal, i.e. if
G; = G;) or contribute different sub-results to the learning process of L (if they
have different learning goals).

If they have a common sub-component [, then they either both control this sub-
component (or compete for its control) or both receive data from it.

e [; is independent of L;: they neither share super- nor sub-components and don’t
communicate in any way (the trivial case).

These three relations provide a set of construction methods for hierarchical learners: the
hierarchy is a result of the “sub-component of”-relation, so that the units of one layer are
the building blocks of a learning unit at the higher layer. The super-layer may simply
bring together the results of the sub-learners. Alternatively, it can act as a meta-layer
by deciding which of the sub-layer results to choose or by directly controlling the sub-
processes.

The framework also allows for simple multi-plied learning by allowing for the co-existence
of learners that are not sub-components of each other, so that their learning processes



NOTATION:

L
Division: the results of the subcomponents are Control: component M controls the learning algorithm
integrated by the super-component. of component L.
[P
L
Lo Ly

Selection: the super-component chooses the . ‘ " Interaction: components L and M influence each other

results of one of its subcomponents. by negotiation or by exchanging data.

Figure 4.1: Sketch of a layered learning model for a “route selection” learning component L.
Each learning unit is a node in the learning graph. The layers resulting from the hierarchical
structure are shown by the dotted lines.

are independent!. This parallelism in learning adds the mentioned horizontal view to the
framework.

Note that it is not necessary for one component to be a super-component of the other in
order to control it (in fact, control is just a special, extreme case of the interaction mecha-
nisms). Similarly, sub-components can be part of a super-learner without being controlled
by it, e.g. when they are autonomous agents which simply forward their learning results.

To illustrate the possible relationships between learners in such an adaptive system,
consider, as an example, the design of an adaptive driver-less vehicle control robot, whose
learning goal is to find a mapping from any given traffic situation to an optimal action.
Apart from learning components that are responsible for the vehicle’s vision system, its
motoric steering and driving capabilities etc., this robot will certainly have to learn how
to choose appropriate routes when driving, and to make things simpler, we concentrate on
this last learning task for our example. Figure 4.1 shows a graphical model of the learning
architecture that we propose for this example and which we will now briefly explain.

It is assumed that the “route selection learning algorithm” is responsible of learning the
sub-tasks of (a) how to avoid obstacles, (b) whether and how to overtake, (c) to select
appropriate lanes and (d) to select a global route from the current position to the des-

!In that sense, the “sub-component of”-relation formalises a concept of much stronger dependence,
because the super-unit actually consists of the lower layer components.



tination. The respective four components L, Lo, L3 and L, share the super-component
L, the route selection learning algorithm, and since their learning goals are different from
each other, L’s learning task is divided among L;, Ly, L3 and L.

Now L; would probably be a sub-component of Lo, because avoiding obstacles is essential
to learning how to overtake, so Ly might want to use the results of L;. L; may in turn
divide its learning task into two sub-components Lq; and L5, one responsible for avoiding
moving objects and one for driving around stationary obstacles. The learning tasks of L,
and Lo have some common elements, e.g. deciding when to change direction, and there
might be general rules that govern this issue, so it is possible for these two learning units
to interact in order to find a learning strategy that will yield good results for both.
Assume further that L, uses two sub-learners: one of these, a case-based reasoning al-
gorithm (L) tries to construct optimal routes by consulting similar routes experienced
before, while the other, e.g. a genetic algorithm (L,5) encodes routes as genes and tries to
minimise their length (L, might employ such a multiplication strategy to ensure better
results). Thus L4 and Lyo have the same learning goal and compete for selection.
Another interesting connection is the one between L3 and L4. It might be useful to hand
the control of L3 over to Ly, for example, if the problem of selecting lanes (in the actual
setting) has not yet occurred due to the routes selected by L, and L3 is not needed, so
that no computational effort should be wasted on its learning algorithm.

This is a very simple example of a learning architecture in a concrete application, but it
gives a feel for the multitude of design decisions that have to be made when constructing
such “societies of learners”.

We now present an instantiation of this general methodology for learning coordinated
behaviour in games which will be based on the InteRRaP architecture. We first define
the concrete learning problem that has to be solved to develop intelligent interaction
behaviour. Then, InteRRaP is briefly introduced, and the remainder of this chapter gives
a detailed treatment of the concrete adaptive agent architecture we use.

4.2 The learning problem

In the introductory chapter the concept of the three determinants of interaction was
presented informally. It was claimed that learning them is the key to achieving optimal
behaviour in games. To prove this claim, we have to build learning algorithms which learn
these concepts, and it has to be shown that agent societies, in which a learning component
that integrates these algorithms is employed, achieve a more efficient interactive behaviour
than those devoid of such learning capacities.

4.2.1 A well-posed formulation of the “Coordination Problem”

The problem of “how to interact effectively” has only been described very vaguely in the
previous chapters, so we still lack the precise formulation of a well-posed learning problem,
the definition of a class T of tasks that our agents should be able to solve with increasing
performance according to some performance measure P using experience E.

Since we have restricted the scope of analysed interaction situations to repeated abstract
n-player games, the task T is defined by “achieving optimal behaviour in playing games”.
However, as has been explained in the chapter on game-theoretic solution concepts, the
term “optimal behaviour” is somewhat ambiguous, because it depends on the assumed



point of view: from some single agent’s standpoint, only individual utility maximising
behaviour can be considered optimal, but from a system designer’s point of view this is
only true of behaviour that ensures high payoffs to the whole agent society.

It turns out that assuming agents to be selfish and not necessarily benevolent, which
has been the stance we adopted until now, forces us to adhere to the first definition to
start with. Yet it is clear that (as the examples in Chapter 3 have shown) individual
rationality does not always ensure that some agent makes the best of its situation, so
soctally coherent global behaviour is what we actually have to look for, i.e. behaviour that
is both individually rational and collectively rational. Such behaviour would typically be
characterised by joint strategy selections in which agents only sacrifice potential payoffs
which they would not be able to gain anyway, given the effects of mutual greed. This
means that the “sacrifice” is ultimately to their own good, so that they can still be seen
as individual utility maximisers, with the difference that they don’t “indulge in their own
egoism”.

These considerations motivate the following informal definition of the task T:

T: The task of an agent society (a group of recognizable individuals) to achieve
soctally coherent, i.e. individually and collectively rational global behaviour in
a repeated n-player game I' whose players are the individuals of the society.

There is a subtlety in this definition that deserves some attention, namely that we have
required optimal collective behaviour to be collectively rational for the task to be consid-
ered “solved”. While this appears to stand in contrast with our previous remarks, note
that if the behaviour is not collectively rational, then some agent is faring well at the
expense of some other agent, so that this other agent has failed in defending itself against
exploitation. This would mean that the agent cannot be acting individually rational itself,
so that collective and individual rationality actually coincide at the system level.

It should be remarked, for the sake of completeness, that such a task is only well-defined if
the optimal global behaviour(s) are known in advance, so that the learners’ performance
can be compared to them, which is not necessarily the case because the games might not
be solvable or too complex to be analysed mathematically?.

The definition of T directly provides the performance measure for the society: if
reaching behaviours that are individually and collectively rational is the learners’ goal,
then the payoffs the agents receive will reflect the degree to which the socially coherent
interaction pattern has been achieved. Hence, the performance of the society increases as
the (geometric) distance of the current payoff vector @ to the optimal payoff i, vector
decreases.

P: The inverse of the distance between the current vector of payoffs received
per round U and the payoffs of a socially coherent action Uy

P = |ﬁopt - ﬁ|71

Note that this performance measure will only yield high values if all agents approach
pareto-optimal payoffs, so that neither exploitation nor sacrifice are considered successful
behaviours, and if one of them occurs, than at least one agent is not coordinating its
behaviour optimally with that of its opponents.

2Fortunately, we have been able to provide those solutions for the class of games we will examine in
the previous chapter.



This leaves us with the task of defining the experience E from which the society
should learn the optimal behaviour. This is a somewhat difficult undertaking, because
we imposed the constraint that agents’ percepts should consist only of the currently
performed joint action combination and their own received payoffs. This means that we
enforce the decomposition of the “society-level learner” L into non-interacting® “agent
learners” Lq,..., L, that are not given any information about the payoffs other agents
receive. Hence the following, somewhat awkward, definition.

E: The experience from which the society is supposed to learn is given by a
sequence of previous interactions, i.e. pairs of performed joint strategies and
the respective payoff vectors such that

E= <(3(1), u(sM)), ..., (s¥, u(s(t)))>

It is additionally required that the society consists of n independent learners
(as defined in Section 4.1) L; (1 <i < n) who learn only with experience

Ei = {(sM, ui(sM)), ..., (59, u(s™)))

and that no further learning other than that conducted by L1,..., L, takes
place.

This constraint of private payoff notification prevents us from adopting a centralised view
of the learning problem. It is, in fact, this very aspect — together with the premise of
having selfish agents — that makes a multi-agent learning approach to solving interaction
problems reasonable.

This completes the presentation of the learning problem as such, but it also constitutes
a first decomposition step (from society-level learning to agent-level learning), and this
implicitly suggests that if the individual learners Ly, ..., L, solve their learning problems,
then the society as a whole will have solved its initial problem.
Because we have assumed that there are collectively and individually rational joint strate-
gies in the games we examine this proposition holds, and the task and performance mea-
sure for the agent-level learning algorithms can be derived from those of the society.
We now turn to the agent-level view of the problem and analyse how it can be further
decomposed into simpler sub-problems for which standard machine learning algorithms
can be devised.

4.2.2 Agent-level problem and further decomposition

Seen from the perspective of one of the individual learners L;, the problem of learning
how to interact optimally with its peers in a common environment has three aspects that
are best summarised as the answers to the following questions:

1. “In which way do the outcomes of my actions depend on those of my opponents?”
2. “How can I act in a way that will prevent me from being exploited?”

3. “How can I, by my own action choices, influence the action choices of my co-actors
in a way that is most beneficial to me?”

3In the sense that the learning algorithms are not interconnected (or independent, in terms of the
relations defined for the layered learning model), not the agents themselves.



Behaviours that implement the answers to these questions aim at the maximal welfare of
the agent and disregard the common good, but the third question already implies that
the agents will be willing to compromise, if they can profit from it.

It is evident that these issues map directly to the “determinants” put forward in Section
1.2.2: 1. is nothing but the quest for the interdependence modalities as reflected by the
payoff function, the answer to 2. is given by determining the future opponent behaviour
and choosing those actions which will ensure (in a maximin fashion) the greatest minimal
payoff. The third question, finally, asks how the agent can exploit further mutually
beneficial potentials for cooperation, how it can participate in and initiate the formation
of implicit coalitions which make “better-than-maximin” behaviours possible.

But how can these determinants be turned into computational concepts, such that learning
algorithms for them can be designed? The task of learning a payoff function can be
formulated in mathematical terms in a straightforward manner: under the assumption
that the strategy sets of all agents are known in advance, it simply consists of constructing
an approximation 7; : X;enS; — R of the actual (unknown) payoff function u;, and the
performance of such an approximation can be measured in the mean error it produces
on the entire set of possible joint strategies. More precisely, the learning problem of an
interdependence modality learning component L can be defined as follows:

Definition 4.1 (Interdependence Modalities Learning Problem)
The learning problem G(LIM) = (T,E,P) of an interdependence modality learner L™
belonging to an agent learner L; is defined by:

o T': For any joint action s € S predict the value of player i’s payoff function by using
a (self-constructed) approzimation function m;, such that

Vs € S.mi(s) = ui(s)

e E: A sequence of past joint action/payoff pairs
E;, = <(5(1)’ ui(s(l)))’ e (s(t), ui(s(t)))>

e P: The inverse of the mean error at predicting the payoff of joint actions in the
combined strateqy set S:

1

Plm) = (\S\

The task of learning to predict opponent behaviours is somewhat harder to formalise,
because the problem arises of whether functions that predict whole sequences of joint
opponent actions should be learned, or whether it suffices for the learned functions to
predict the next opponent action only.

From a perfect rationality standpoint, only actions should be chosen that ensure a high
payoff for all of the remaining game rounds, which — given the assumption we have made
about agents not knowing the duration of the game — would mean that an asymptotic
analysis of the expected future payoff should be conducted, and that therefore arbitrarily
long opponent action sequences should be predicted (we explain why this is the case in
our discussion of Markov Decision Processes in Section 5.3.1).

Although we strongly support the realisation of boundedly rational reasoning capabilities in
agent design and hence the opponent behaviour prediction (OBP) abilities of the agents

5 fu(s) — m(S)\>_1

SES



we design will be far from being perfectly rational, we define the behaviour prediction
learning problem here in its rigorous version to explain what the task would be “in theory”,
if it could be achieved in realistic situations. As concerns the performance measure, a
measure for how closely a predicted opponent action matches the actually occurring action
combination will certainly depend on more specific properties of the game being played*,
and therefore we will provide only very general conditions for it.

Definition 4.2 (Opponent Behaviour Prediction (OBP) Learning Problem)
The learning problem G(LYBY) = (T, E,P) of an opponent behaviour prediction learner

LOBP pelonging to an agent learner L; is defined by:

e T': For any number ty of future rounds, predict the sequence of joint opponent moves
that will occur in the next to moves, given a ti-long sequence of past joint actions
and a ty-long sequence of action choices of 1. This means that the learner’s goal
is to construct a prediction function f : S x S — S™ that meets the following

condition:
FsW, L st gt i)y gl )y
[ivtts _ (S0, 0, () ) () sy

if T2 s the game that is actually being played (including the following ty rounds).
o E: A sequence of past joint action/payoff pairs as before (cf. Definition 4.1).

e P: The performance P(f) is proportional to some similarity function sim : S™; x
S¥. — [0;1] defined on pairs of the future opponent action sequence, such that the
following conditions hold:

1. Vst = (sW, .. s®)) € §U) gim(st2, st2) = 1
2. V.s'? £t € S™ sim(s™, %) < 1

(apart from the condition of optimal similarity being reached only by equal action
sequences it is left to the system designer to define the desired similarity function).

This leaves us with the problem of defining a learning problem for the component of
L; that is supposed to learn the cooperation potential of the game. Such a component
should, for any current game situation, suggest a sequence of actions that will make the
opponents converge to a behaviour which, together with the agent’s own coordinated
action selection, will result in the formation of the optimal coalitions within a minimal
number of additional sub-optimally played rounds. A formal definition of this concept is
given by the following:

Definition 4.3 (Cooperation Potential Learning Problem)
The learning problem G(LEY) = (T, E, P) of a cooperation potential learner LEY belonging
to an agent learner L; is defined by:

4Such a measure for action similarity would typically be proportional to the payoff difference between
the two actions who are being compared, so that errors in predicting the opponent action would be
punished proportionally to the error in predicting the respective payoff that results from mis-predicting
the opponent action.



o T: Construct an action selection rule h; : S" — S that suggests for any past
joint action sequence S" the shortest sequence of future actions for player ¢ which
will result in the convergence of the society to strategy combinations in the set of
individually and collectively rational (cf. Appendiz B for definitions of these terms)
joint strategies® OPT, so that

hi(sM, ..., st)) = (s,(tlH), c S§t1+t2)) > Vj >t +ty.3opt € OPT.sY) = opt_,;

holds. (If the n following actions of i can ensure that the opponents will “play their
part” in the optimal coalition (Vj > t1+te.0pt_; = s(_],)) forever after to more rounds,
then agent i can choose the appropriate action opt; to participate in that coalition.)

o E: A sequence of past joint action/payoff pairs as before (cf. Definition 4.1).

e P: Since the agent has no access to the global payoff vector error |y, — |, it is
only fair to judge its performance by the difference between its own mean payoff per
round after the n actions suggested by function h; and the payoff-per-round it would
receive under OPT':

1 & _ . !
P(h;) = <‘ S| 3 Ju (st Henathhits) 40 ui(opt)|>
1

(The infinite sum (actually a limit in the upper bound) measures the total error
between the actually recewved payoffs and the optimal payoff for an infinite duration
(after the ty = length(h;(s")) initial rounds computed for a past action sequence s™
that are necessary to reach the optimum according to h;). This error is computed for
the whole set S, and the inverse of the average error is taken to be the performance

These definitions provide us with well-posed learning problems that the agent should
solve. Yet, it is quite unrealistic that they can be solved in the way they have been
presented and are hence of rather theoretical value. This is due to the fact that

1. L'™ will need to be trained on the whole joint strategy space S in the worst case,
which would require an exponential game duration (|S| = [Ten |Si]),

2. predicting the precise future opponent behaviour implies that LOB¥ has a complete
understanding of all opponents’ reasoning mechanisms and action selection rules
and, in the case of mixed opponent strategies, can even act as an oracle and

3. LCF cannot (even if it is using the results of LYBF) construct a perfect hypothesis

unless it knows the precise payoff structure of all other peers (which is rather im-
probable, given that it is not imparted any explicit information about the payoffs
its adversaries receive).

Therefore, adequate approximative solutions for these problems will have to be sought
for in practice, and the experimental prototype presented in Chapter 5 is an attempt to
design simple components which implement such approximate learning.

SFor reasons of notational convenience, we assume that (as in the resource-load game) collectively and
individually rational pure strategy combinations exist which form the set OPT. The definitions can be
extended in a straightforward way for mixed strategies by replacing v with the expected payoff (because
the learning problem requires that an equilibrium situation arises that is not left ever after, the mean
payoff per round will be the same under an mixed optimal strategy as it is for a pure optimal strategy).



4.2.3 Learning and acting

If we were to provide a solution for the discussed learning problems, it would normally
suffice to find a machine learning algorithm that can be trained with hypothetical action
sequences, and which would ideally be provably able to improve its predictive capacities
over time.

Unfortunately, this is not possible, because in the game simulations that would be needed
to provide the training samples, decision processes and learning processes are interleaved:
the input data for the learning algorithms is given by previous agent actions and the
action selection rules will be based on what the agent learned before (otherwise there is
no reason to conduct any learning in the first place).

This observation brings with it the need for an active learning architecture which
builds its world model by observing the activities of the society and acts according to its
current state of belief. We have found the InteRRaP® architecture to be a good starting
point for building such an agent architecture, since it provides three layers of decision
and knowledge modules which can be easily extended by learning components, such that
each layer is responsible for one of the above learning tasks. Furthermore, the learning
problem that is assigned to each layer is in concordance with the abstraction levels that
the layers are supposed to represent in InteRRaP.

Before going into the details of the final layered learning framework we will employ,
we first outline the foundations of InteRRaP to explain how and why our theory builds
upon it.

4.3 The InteRRaP architecture

The dispute between the reactive and deliberative school of DAI has partly found its rec-
onciliation in research on hybrid architectures which try to combine the strengths of both
philosophies. The key hypothesis of such approaches is the belief that “the benefits ac-
crued from having a combination of philosophies within a singular agent is greater than
the gains obtained from the same agent based entirely on a singular philosophy” (Nwana,
1995, p. 33). Clearly, the main advantages of reactive agent design are robustness, faster
response times and adaptability, while deliberative approaches are better suited for han-
dling long-term goal-oriented issues and using symbolic knowledge and reasoning.

The InteRRaP agent architecture due to Miiller (1996) is a typical example for such
hybrid agent design. Essentially, it is based on the idea that each agent consists of three
layers, the lowest of which implements low-level situation-action patterns of behaviour
and also manages the agent’s sensing and action, while the intermediate layer encapsu-
lates the agent’s long-term planning capabilities and individual goals. The topmost layer
is concerned with negotiation, communication and coordination, i.e. any social activities
of the agent.

The motivation for this layering is obvious: it allows for a combination of the reactive
stimulus-response behaviour (necessary to cope with time-critical decision situations and
to degrade gracefully under critical conditions) with deliberative reasoning mechanisms
(so that a long-term rational behaviour can be implemented through explicit planning

6Integration of Reactive Behaviour and Rational Planning
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Figure 4.2: The InteRRaP architecture.

and inference). Moreover, it incorporates the more computationally expensive and elabo-
rate capabilities required to communicate effectively, so that inter-agent conflicts can be
resolved and the community can act in a socially coherent fashion.

Since these activities can be conducted concurrently and also because they are interleaved
due to certain interactions between them, the architecture offers high flexibility, resource-
adaptability and also an elegant way of bringing together different levels of (sub-)cognitive
capabilities and knowledge abstraction.

Figure 4.27 provides an overview of the layers and their internal structure. Each layer
consists of two modules, the Situation Recognition and Goal Activation Module (SG) and
the Decision Making and Ezecution Module (DE). The SG spawns new goals out of the
maintenance of belief by combining the information obtained from percepts with its knowl-
edge base, while the DE decides how to meet these goals, builds plans that implement
these decisions and spawns their execution.

The Behaviour-Based Layer (BBL) is located at the lowest level of the architecture. It
serves as an interface to the agent’s environment as it encapsulates the agent’s sensing
and acting capabilities and implements patterns of behaviour, procedural routines that
describe the agent’s immediate reaction to certain percepts. Such patterns need not
necessarily be simple (they can in fact be very complex), but they can be seen as the
primitives of the overall behaviour because they cannot be further decomposed, i.e. they
represent black-boxr action sequences. Since this layer is the only component that main-
tains a connection to the “outside world”, it will have to communicate the information it
has about the performed actions and their effects to the other layers.

On top of the BBL, the Local Planning Layer (LPL) reasons about long-term goals that
lie beyond the scope of simple reactivity, goals that require the explicit planning of future
activities. The SG builds a knowledge base by abstracting from the concrete information
imparted to it by the BBL to extract more general properties of the current situation, to

"Tlustration taken from Jung (1998), used by kind permission of C. G. Jung.



identify world states and operators that can be used to solve its planning problem. Once
goals have been determined (very often these will be sub-goals in the sense of hierarchical
planning), the DE decides on how they can be attained. The resulting new patterns of
behaviour are then spawned to the BBL and affect the situation context of the BBL’s SG,
thus influencing the concrete action choices made by the DE.

However, the individual (local) plans of the LPL may not suffice to successfully (or op-
timally) complete the agent’s task in a societal context. Conflicts between the agent’s
own actions and those of others can arise, and cooperation potentials between agents may
remain undiscovered, so that the overall system behaviour is incoherent or inefficient. To
accommodate the needs of inter-agent coordination, the Social Planning Layer is added
to the framework as the topmost component that is concerned with social reasoning and
decision-making.

In it, the SG employs further abstraction on the local information obtained from the LPL
in order to produce social goals, and once these goals are turned into decisions, their
execution affects the functioning of the lower layers (the LPL might have to modify its
plans to fit the goals of the SBL, and the BBL will have to carry out the communicative
acts that are necessary to enact negotiation).

As Jung (1998, p. 4) points out, this layering “models the smooth transition from
sub-symbolic reactivity to symbolic deliberation and even social capabilities”. The fact
that the internal control flow represented by the SG and DE inside each layer is identical
for all of them adds to the simplicity of the theory, and the hierarchical view of cognitive
processes makes them particularly appealing as a concept for modelling intelligence.

We have already hinted at some of the interactions that take place between the layers,
but we have not presented the general concept behind them. In the original definition
of InteRRaP (Miiller, 1996), layers interact via upward activation and downward com-
mitment (as shown in Figure 4.2), i.e. the sub-layer calls its super-layer as a subroutine
whenever this is necessary and the super-layer alters the behaviour of its sub-component
by the intentions it spawns. Thus, layers represent optional “paths of computation” and
thus their decisions have the same status and are arbitrated in between.

In the extended specification (Jung and Fischer, 1997), the interaction between layers
is seen more like a meta-object relationship between components that realise the whole
functionality of an agent. The BBL, LPL and SBL are individual control processes that
manage their own sub-components (sub-processes), and lower layers are supported by their
super-layers (rather than subsumed by them) in that they are being monitored, reconfig-
ured and reasoned about by the higher-level components. So the inter-layer relationship
is rather one of cooperation than one of control.

To keep things simple (and especially to reduce computational complexity), we have
adopted the first view for the learning architecture we propose. The more elaborate ver-
sion certainly offers an interesting extension, though.

The structure of InteRRaP allows for a very intuitive mapping of the three layers to
the three learning problems which constitute the task of interaction learning. The next
subsection explains how InteRRaP can be extended in a very natural way by learning
modules to accommodate the needs of interaction learners and also introduces the simu-
lation environment that will be used to conduct experiments to evaluate the adequacy of
our approach.



4.4 LAYLA — an extension of InteRRaP for game-
learning agents

Reconsidering the agent-level learning problems discussed in Section 4.2.2, a striking sim-
ilarity between them and the InteRRaP layers can be observed.

Firstly, both consist of three parts, a fact which would not deserve further attention if
it were not the case that there is a hierarchic dependence between those layers in both
cases. This is because, although this has not been mentioned so far, the learning results
of L' will have to be made available to LOYB and L¢P will need to access the results of
both L' and LOF®Z when it comes to making decisions, choices concerning future actions
(we give reasons for this in the detailed overview of the components below). In an active
learning system decision making is indispensable, and as we will see, the dependencies
between the learning problems will require a control flow between the respective decision
processes that is very reminiscent of the interactions between the InteRRaP layers.
Secondly, there is a close connection between the abstraction levels of knowledge, situa-
tion recognition, goal activation and decision making at each of the InteRRaP layers and
the learning problems of the three proposed learning modules: L' learns the immediate
effects of the agent’s actions and the way in which its own obtained payoffs depend on
peer actions, or alternatively, it learns the nature of certain patterns of behaviour. And
since carrying out action primitives is the task of the BBL, it only seems natural to locate
a component that learns something about these at the very same layer. Quite similarly,
the learning conducted by LYB? is focused around predicting future opponent actions so
that optimal strategies can be picked accordingly, and such strategies are nothing but
individual plans that help realise the ultimate (and sole) goal of utility maximisation.
This implies that such learning should be associated with the LPLE.

Learning to exploit cooperation potentials, finally, is just a positive rephrasement of “re-
solving conflicts” between local strategies (plans) and — in the context of repeated games
— socially coherent joint strategies are the equivalent of feasible multi-agent plans. There-
fore, incorporating the L¢Y in the SPL seems a reasonable choice.

All this provides a justification for our choice of InteRRaP as a framework within
which we construct our learning architecture. At the same time it suggests a possible
way of extending InteRRaP as a generic architecture (beyond the game-theoretic context,
that is) by learning modules, such that the learning layers learn to act, to plan and to
coordinate just like the InteRRaP layers act, plan and coordinate.

The following paragraphs provide detailed descriptions for the system components and
present the resulting integrated LAYered Learning Agent architecture, the extension of
InteRRaP to an game-learning layered architecture.

4.4.1 Overview

An exhaustive presentation of multi-agent simulation systems has to specify the properties
of three major system components: the agents, in particular their sensing, acting and
reasoning capabilities, the environment within which they evolve and from which they

8Tt could be argued that choosing actions according to predictions of peer behaviour already imple-
ments some kind of coordination and should therefore be considered a social activity. However, opponent
behaviour prediction views other players much more as mechanical system variables that exhibit a certain
behaviour than as rational agents. The advantages of this perspective are given in more detail in Section
5.3.



receive their percepts, and the simulation algorithm that describes the environment-agent
and agent-agent control flow.

For systems that simulate repeated multi-player games with layered-learning InteRRaP
agents as we design them, these components translate to the following:

e Agents, consisting of three layers, each of which comprises a Learning Module, a
Knowledge Base and a Decision Module. The learning modules are responsible for
the three sub-problems as discussed. The knowledge bases are equivalent to the
SG modules introduced before, but we prefer to view them as simple data storage
facilities because both situation recognition and goal activation can be reduced to
trivial concepts in this abstract simulation®. Decision Modules, the layers’ DEs
are responsible for making action choices. Given that the agent is only playing an
abstract game, the execution of these actions can actually be reduced to symbolic
messages to the environment, i.e. it is detached from the agents. In a similar way
percepts are reduced to notifications about opponent actions and about the agent’s
own received payoff by the environment.

The layers that result from extending the BBL, SPL and LPL by learning mod-
ules are called the Utility Engine, Strategy Engine and Social Behaviour Engine
respectively.

o A Simulation Engine that represents the environment in which the agents are situ-

ated. It receives their action choices, computes the respective payoffs and notifies
them of all other agents’ actions. If the agents are realised as concurrent processes,
it has the additional task of synchronizing the effectuation of their actions, i.e. the
payoff computation has to be suspended until all agents have decided what to play
in the next round (this puts the “discrete and synchronous execution”-assumption
of game theory into practice).
To simulate the action and perception failures that occur in more concrete environ-
ments, we equip the Simulation Engine with three sub-components: the Ezecution
Engine, which simulates the transition from decisions to actually effected actions,
the Payoff Generator that computes the agents’ payoff on the basis of the actu-
ally executed actions and the Perception Generator that turns the results of payoff
computation and the executed joint actions into the actual percepts the environ-
ment provides. Noise generators between these sub-components can manipulate the
data exchanged between these three components, so that misimplementation and
misperception (cf. Section 3.1.3) can be simulated adequately.

e The (rather trivial) Game Algorithm: After each round, the agents output some
action choice from their Utility Engine Decision Module to the Execution Engine in
the Simulation Engine. The Utility Generator computes some payoff for each agent
and communicates it together with information about all agents’ actions via the
Perception Generator back to the agents’ Utility Engine Learning Modules. Using
this information, the agents employ their Learning Modules to update their world
models and modify their Knowledge Bases accordingly. Then, the Decision Modules
consult the updated knowledge to compute some action choice for the next round

9The “situations” are given by past joint action choices and obtained payoffs and spawning goals is a
trivial matter, since there is only one fixed goal, namely to maximise future payoffs (finding out how this
goal can be met certainly requires that the layers interact, but this is the task of the DE, not the SG).
Therefore the SG only needs to be capable of storing action/payoff sequences and the current learning
hypotheses.



Entity | Components Subcomponents

Agent | Learning Module | Utility Learning Module
Strategy Learning Module
Social Learning Module
Knowledge Base | Utility Model

Strategy Model

Social Model

Decision Module | Action Generator

Strategy Generator

Social Behaviour Generator

Table 4.1: Agent components and subcomponents (vertical view).

(by applying methods yet to be specified). This process is repeated for a finite
number of rounds (that is unknown to the agents).

The detailed system architecture is presented in Figure 4.3. A discussion of each of the
components is given in the following sections.

4.4.2 Agent architecture

LAYLA agents consist of the three layers and their subcomponents, as presented in Ta-
ble 4.1. In the following, we discuss the precise functionality of each of these, but this
treatment does not include the learning algorithms that will actually be used to solve the
particular learning tasks (this will be left to Chapter 5). Instead, we present the interac-
tions between them as results from the interleaved nature of the learning problems at a
more abstract level by describing the data and control flow between the modules as well
as their internal data structures.

Behaviour-based Layer: The Utility Engine

At the reactive level, agents control the data flow to and from the Simulation Engine,
thereby realising a simple action-perception structure. Furthermore, the Utility Engine
learns and stores a payoff function estimate and maintains the necessary links to the other
layers to exchange information with them. Finally, it controls the exploration/exploitation
“attitude” of the agent by deciding to gain more information about particular actions
(while neglecting payoff maximisation) if this is necessary or, if the payoff function has
been adequately modelled, leaving action decision to higher layers.

The Learning Module, Knowledge Base and Decision Module of the Utility Engine (UE)
are the Utility Learning Module, the Utility Model and the Action Generator.
Controlling the interface to the Simulation Engine is handled by the Action Generator,
which dispatches the actual action choice to it after each round and by the Utility Learning
Module which receives payoff and action information from it and propagates it to the
learning modules of the super-layers. Those super-layers can then use it to update their
strategy or social model.

The Utility Learning Model also updates an approximation of the payoff function with the
information received after each round, and the current payoff function estimate is stored
in the Utility Model. It can be consulted by the Action Generator (to determine whether
further exploration is necessary or if the action choice can be left to the other two layers)
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Utility Learning Module ‘

Inputs perceived joint action and payoff (from Perception Generator)
current payoff estimate (from Utility Model)

Subcomponent

Internal Parameters | update algorithm for payoff estimate

Functions update payoff estimate with current joint action and payoff
Outputs new payoff estimate (to Utility Model)
perceived joint action and payoff (to Strategy Learning Module)
‘ Subcomponent ‘ Utility Model ‘
Inputs payoff estimate update (from Utility Learning Module)

last chosen action (from Action Generator)

Internal Parameters | current payoff function estimate
current exploration parameters

Outputs current payoff function estimate (to Utility Learning Module)
‘ Subcomponent ‘ Action Generator ‘
Inputs mixed strategy to be played (from Strategy Generator)

exploration parameters for actions (from Utility Model)
Internal Parameters | exploration bias function

Functions bias action choice by exploration factors

update exploration parameters

choose action according to strategy and exploration bias
Outputs action choice (to Execution Engine and Utility Model)

Table 4.2: Utility Engine subcomponents and their functions.

as well as by the super-layer components, if their learning and reasoning process depend
on the current payoff estimate.
The Action Generator, as suggested, either executes the (exploitative) decisions of the
Strategy Engine (which can in turn be influenced by the Social Behaviour Engine) in a
downward commitment fashion or conducts further exploration based on its own state of
beliefs. In the latter case, there is no reason to engage in any higher-level reasoning, so
the super-layers are not used (upward activation).

A detailed description of the inputs, outputs and functions of the Utility Engine sub-
components is given in Table 4.2.

Local Planning Layer: The Strategy Engine

The local planning layer is concerned with devising a personal agenda for how the agent
should act. The need to integrate decision and learning in such a layer springs from the
fact that regardless of how inaccurate the agent’s model of payoffs or of others’ future
behaviour might be, the agent nevertheless has to act.

Thus, the Strategy Engine (SE) has to combine the OBP model with knowledge about
the payoffs that can be obtained under the expected opponent behaviours and to output
a strategy that promises the highest possible payoff under the predicted future circum-
stances.

In practice this means that the agent maintains a model of the future behaviour of adver-
saries (in the knowledge base of the Strategy Model) and that it updates this model with
incoming knowledge about opponent actions (via the Strategy Learning Module). Then,
using the payoff estimate of the UE, the Strategy Generator reckons which of the agent’s



Subcomponent | Strategy Learning Module

Inputs agent percepts (from Utility Learning Module)

current OBP models (from Strategy Model)

Internal Parameters | update algorithm for behaviour prediction

Functions update OBP models

Outputs prediction updates (to Strategy Model)

current joint action and payoffs (to Social Learning Module)

Strategy Model ‘

Inputs updated OBP models (from Strategy Learning Module)
action-value function (from Strategy Generator)

Subcomponent

Internal Parameters | OBP models

current action values

Outputs current OBP models (to Strategy Learning Module)
action values (to Social Behaviour Generator )

Subcomponent | Strategy Generator ‘

Inputs social value function (from Social Behaviour Generator)
current OBP models (from Strategy Model)
Internal Parameters | action-value determining function

Functions choose strategy according to action-value function and social
value function
Outputs (mixed) strategy to be played (to Action Generator)

Table 4.3: Strategy Engine subcomponents and their functions.

own actions will yield the highest expected payoff given the predictions of the Strategy
Model and generates the corresponding decision as a pure or mixed strategy.

More specifically, the Strategy Learning Module receives payoff and action information
from the Utility Learning Module (and propagates this information to the Social Learn-
ing Module). It updates current behaviour prediction models obtained from the Strategy
Model with the new information and returns updated models to the Strategy Model,
which are then forwarded to the Strategy Generator.

The Strategy Generator constructs an action-value function by comparing the expected
payoffs of each of the agent’s action options under the predicted opponent behaviour. To
this end, it uses the Utility Model and the updated Strategy Model. (This action-value
function is also stored in the Strategy Model so that it can be consulted by the Social
Behaviour Model.) Unless overruled by the decisions of the Social Behaviour Engine, the
action-value function is transformed into a mixed strategy and propagated to the Action
Generator. Otherwise, a soctal value function is applied to the action-value function and
the resulting modified strategy is output.

As before, we summarise the details in Table 4.3. Quite differently from the UE, the
SE conducts real strategic reasoning. It reasons about the value of particular strategies
and makes rational decisions based on those values (hence the name of the layer). In
contrast to that, the UE’s “payoff-blind” decision-making is solely guided by the wish to
explore the effects of unseen joint action combinations.



Subcomponent | Social Learning Module ‘

Inputs perceived joint action/payoffs (from Strategy Learning Module)
opponent models for all opponents (from Social Model)

Internal Parameters | update algorithm for opponent models

Functions update opponent models
Outputs updated opponent models (to Social Model)

| Subcomponent | Social Model |
Inputs updated opponent models (from Social Learning Module)

Internal Parameters | opponent models
Outputs current social value function
current opponent models

Social Behaviour Generator

Subcomponent

Inputs current agent models (from Social Model)
action-value function (from Strategy Model)

Internal Parameters | social bias function

Functions compute social value function
Outputs social value function (to Strategy Generator)

Table 4.4: Social Behaviour Engine subcomponents and their functions.

Social Planning Layer: The Social Behaviour Engine

So far our agents take the existence of their opponents into account only very implicitly
by reasoning about how they will behave in the future and by acting according to these
expectations. A complete understanding of interaction dynamics, however, requires that
the social contexrt be analysed, that potentials for future cooperation are discovered and
that actions are taken to achieve such cooperation. To facilitate the accomplishment of
these goals, the Social Behaviour Engine (SBE) is installed on top of the BBL and LPL,
which, just like the “lower” layers, consists of a Social Learning Module, the Social Model
and the Social Behaviour Generator. Those three subcomponents interact in order to pro-
vide a soctal value function that is incorporated in the agent’s strategies and that reflects
expectations concerning future compromise and how it can be reached.

The Social Model maintains opponent models that approximate the adversaries’ reasoning
mechanisms, so that the future reasoning of other agents can be simulated beyond simple
behaviour prediction. Acquiring such knowledge is necessary to find how peers can be
“massaged” into the state that is most desirable for the agent.

The Social Learning Module receives payoff and action information from the Strategy
Learning Module and the current agent models from the Social Model. It updates the
agent models accordingly and returns them to the Social Model.

It is the primary task of the Social Behaviour Generator to construct the social action-
value function and to propagate it to the Strategy Generator. Such a function will typi-
cally alter the values of the individual strategies provided by the Strategy Generator (by
applying a social bias function to them), if deviating from the individually most rational
strategy (as reflected in the Strategy Generator action-value function) seems promising
to achieve a collectively rational stance on the opponents’ side. To this end, it will need
to access the current action-value function of the Strategy Model, because a trade-off
between “greedy” exploitation and the risky initiation of vague implicit agreements will
be necessary if an overtly compromiseful stance of the agent is to be prevented.



Table 4.4 summarises the functions, inputs and outputs of the Social Planning Layer.
Having completed the presentation of the individual agent components we are left with
the task of presenting a simple functional model that specifies how LAYLA agents will
actually behave in game simulations.

Integration

At any stage of the game, the training data available to agent i is the history of the game
so far, i.e. a sequence H! of past joint actions and associated payoffs for i filtered through
the components of the Simulation Engine. Let m; be the current payoff approximation of
the Utility Learning Module and e; : (4 — R) x [0;1]4 — [0; 1]* be the exploration bias
function of the Action Generator, that outputs for each current payoff estimate 7; and
mixed strategy m; returned by the Strategy Generator some m/, (that is only different from
m;, if “exploration needs” require the agent to deviate from utility-maximising decisions).
Further, let m; be the Strategy Generator decision function which takes 7; and the OBP
function f; (cf. Definition 4.2 in Section 4.2.2) as inputs and computes a mixed strategy
out of the resulting action values.

We also define the social bias computing function of the Social Behaviour Generator I; as
a function that transforms the individually rational strategies of the Strategy Generator
into socially feasible strategies (strategies that are in concordance with the social values of
the Social Learning Module). Then the mixed strategy that will be played by 7 in round
t+ 1 can be defined as

oY = e (m, by (mi(mi, £), i) (4.1)
where h; is the current hypothesis of L¢" as in Definition 4.3, which, as has been stated
before, is used together with the action-value function m; to compute the social value
function ;.

It should be remarked that =m;, f; and h;, the hypotheses of the three learning modules
depend on the agent’s past percept history H}, while the decision functions are static
throughout the game (we do not account for cases in which the decision functions them-
selves are learned, that is).

Another detail that has been left out in the above equation it that the Action Generator
is required to draw some (pure) strategy out of the given strategy probabilities, i.e. some
function d : [0; 1] — A needs to be applied to oty (t+1)

: to obtain the pure strategy a,
that will be played in the next round, i.e.

agtH) = d(agtﬂ)) ) (4.2)

Including the agent’s history of percepts from which the agent builds its learning hypothe-
ses explicitly, we introduce the transition function §; that computes the next action choice
of 7 on the basis of the current states of m;, f; and h;:

0i(HY) = al"™ = d (e; (mi(H}), L (mi (mi(H), fi(HY)) , ha(HD)))) (4.3)

By dropping the i-indices and taking the cross-products of the learning and decision func-
tions of all agents, the above constructions allow for extending the functional definition
of agt“) into a formula that predicts the next joint action a**! by applying the global
transition function ¢ to the previous joint action.



It now remains to specify how the action and perception histories H} come about
given a sequence of joint action decisions, how agent decisions are turned into actions,
how the payoffs are computed and how percepts are generated from these that constitute
the agent’s learning input. These are the tasks of the Simulation Engine which will be
described next.

4.4.3 The Simulation Engine

As mentioned before, the purpose of the Simulation Engine is to simulate action and per-
ception in the system, so that they are conceptually detached from the agents themselves.
By virtue of this externalisation, agents can neglect the details of handling sensors and
actuators and concentrate on reasoning processes.

Moreover, it embodies the interdependencies between the actions of the individuals (re-
source limitations, etc.) and plays an important part in the learning process: it is the
only system component that has full knowledge of the payoff function, the only source of
training data in the form of action and payoff information (it also provides noise for the
samples) and the only reliable critic of the agents’ performance.

Its three main tasks (action execution, utility computation and information distribution)
are handled by its three components: The Ezecution Engine brings together the action
choices received from all agents’ Action Generators and applies the action execution noise
functions to them in order to simulate misimplementation (execution failure) on the side
of the agents. The resulting (actually performed) actions are propagated to the Utility
Generator and to the Perception Generator.

The Utility Generator receives the executed action tuples from the Execution Engine and
computes the resulting payoffs for all agents using the payoff function u. Before the payoff
values are passed on to the Perception Generator, they are filtered through a payoff per-
ception noise generator which belongs to the Utility Generator as well and which models
the misperception of payoffs.

The Perception Generator, finally, distributes the action and payoff information received
from the Utility Generator and the Execution Engine to all agents’ Utility Learning Mod-
ules after applying the action perception noise functions to them, a noise function that
simulates the erroneous perception of action choices due to sensory failure.

Table 4.5 captures the functionality of the Simulation Engine in detail. This approach
to designing an “environment simulator” in the proposed way is quite advantageous: it
encapsulates all the uncertainty factors in the “simulation side”, thus allowing for a neat
separation of agent and environment, such that agents are reduced to the cognitive pro-
cesses they embody, while all system properties are part of the environment.

Another important feature is that one uncertainty component is associated with each Sim-
ulation Engine component. Thus, we ensure that every possible point where uncertainty
might come in has been considered.

Furthermore, the Utility Generator is the sole component of the whole system that has
an explicit representation of the exact payoff function. This ensures that agents have
no other possibility whatsoever to reason about the interaction than to learn with the
information that is revealed to them by the system.

4.4.4 Simulation algorithm

Before presenting a pseudo-code version of the rather simple top-level algorithm that
controls the game simulations, we need to make some additional formal constructions



‘ Component: Execution Engine

Inputs: agents’ action choices (from Action Generator)
Internal Parameters: | action execution noise

Functions: compute actually executed actions

Outputs: executed agent actions (to Utility Generator)

executed agent actions (to Perception Generator)

| Component: Utility Generator

Inputs: executed actions (from Execution Engine)
Internal Parameters: | actual payoff function
payoff noise function

Functions: compute agents’ payoffs
Outputs: payoff values (to Perception Generator)
‘ Component: ‘ Perception Generator

Inputs: agent payoff values (from Utility Generator)

executed agent actions (from Execution Engine)
Internal Parameters: | action perception noise function

Functions: compute agents’ percepts

Outputs: agents’ percepts (to all agents’ Utility Learning Modules)

Table 4.5: Simulation Engine components and their functions.

concerning the way the Simulation Engine provides the input for the agents and receives
their output, i.e. a formal model of how the history of the game evolves.

For this purpose, let §; be the action transition function as defined in Equation 4.3.
We define the following probabilistic noise functions for the Simulation Engine: a family
{n&};cp of action execution noise functions, such that n% : A — A maps each action of
i to another (or the same) action with some fixed probability; a second family {n?"};cp
of payoff perception noise functions, such that nf? : R — R alters the payoff 7 perceives
from the payoff it actually obtained. Similarly, action perception noise functions {n;* };cp
are provided which affect the perception of joint actions for ¢ (n;” : A — A).

Then the game history on which §; operates after round ¢ is given by the previous history
H!' and percepts and actions of round ¢:

HY = (H, (08 (ng*(a”)), n? (ui(ng*(a))))) (4.4)

Thus, the history at round ¢ is given by concatenating the agent’s experience before
the last round H!™' with the joint action/individual payoff pair, where the perceived
joint action is the (noisy) executed joint action as filtered through the action perception
generator, and the payoff noise is additionally applied to the actually performed joint
action to supply the payoff that is actually perceived by 7. Using the joint transition
function ¢ of all agents, we can reformulate Equation 4.4 as

HE = (HI, (nf? (nge (8 (HE))), nf? (wa(n(0(HI))))) ) (4.5)

which provides us with a recursive formula, the reverse of which (a sequence starting with
some initial joint action a(?)) can be used to construct a simple iterative algorithm as
presented in Table 4.6.



GAME-SIMULATION (duration, P, A, u, §, n®, nPP n)
/*P,A, and u determine the game being played, duration is the number of rounds,
0 is a family of initial action transition functions and n®, nPP, n
are the families of currently applied noise functions */
FOR t =1 TO duration DO
IF t =1 THEN
pick a randomly from A
ELSE
FORALL i € P DO
/* update the transition function agent according to the new percepts */
END:
/* the agents pick the next action according to the updated transition function */
a <+ 6(HY)
/* the new payoff/action information is added to the game history */
H'™ « cat(H', (n*(n"(a)), n? (u(n**(a)))))
END:
END

Table 4.6: The Game Simulation algorithm for finite iterations of an m-player normal form
game I' = (P, A, u).

4.5 Summary

This completes the presentation of the layered interaction-learning architecture, and it
also ends the rather theoretical conceptual part of the work, in which we have presented
a discussion of the game-theoretic background of the analysed interactions (particularly
as concerns the resource-load balancing scenario), and an intuitive outlook on the general
learning methodology we employ. Furthermore, we have provided a rigorous treatment
of the learning problems we confront, and starting from these we introduced the LAYLA
architecture, the alleged answer to the research questions stated in Chapter 1.

What we would like to have, however, is a concrete system that proves the validity of
our line of argumentation, and this is the subject of the remaining chapters: building an
experimental prototype whose design follows the proposed principles and evaluating its
adaptive capabilities in the repeated multiple-access resource-load balancing game.






Chapter 5

An experimental prototype

Presenting a prototypical system that realises the methodology laid out in the previous
chapter involves a detailed depiction of sample instances for the learning algorithms and
decision rules that can be used to build operational LAYLA agents, so that ultimately a
full functional description of the agents’ behaviour can be provided (bearing in mind the
top-level architecture as it has been discussed in the previous chapter).

The system we devise has to be thought of as a proof-of-concept implementation that
claims by no means to optimally exploit all the possibilities of complex hierarchical learn-
ing. Instead, it will be considered sufficient to build an adaptive agent system that
demonstrates how coordinated behaviour can evolve with very little a priori knowledge.
Such a demonstrator should typically be characterised by the fact that system perfor-
mance provably increases over time and that its performance is better than that of a
comparable non-adaptive system. We will not assume that agents can perfectly learn the
concepts necessary to behave optimally in an interactive environment, so we will refer to
optimal performance (as achieved by enacting the optimal solutions for the underlying
games provided in Chapter 3) only as a measure for the successful completion of our task,
not as the task itself.

The upcoming sections are organised as follows: we first provide a concise overview
of the system that summarises the employed learning algorithms. Then we present, one
after another, the detailed design of the Utility Engine, the Strategy Engine and the Social
Behaviour Engine. For each of these, we reconsider their learning tasks, discuss adequate
learning algorithms for them and justify our own design decisions. The presentation of
the respective algorithm, which constitutes the central part of each of these expositions, is
followed by examples and preliminary empirical results that explain how the components
can be fine-tuned and why they work in practice (a thorough empirical validation of the
entire system will be carried out in Chapter 6).

5.1 Overview

In designing learning systems, various choices have to be made that pre-determine to a
great degree the adequacy, performance and transparency of the final design.

Mitchell (1997, p. 13) provides a simple pattern for the main choice points in the ML
design process consisting of four major steps. The first step is to determine the type of
training experience that will be made available to the learner, the data that will be used
to update the algorithm’s current hypothesis.



In the second step, the target function has to be defined that specifies exactly what type
of knowledge will be learned and how it will be used by the performance system.

This is followed by choosing an appropriate representation for this target function. The
representation defines the inputs and outputs of the function, and it determines the hy-
pothesis space that will be searched by the learning algorithm. Ultimately, the learning
algorithm itself has to be determined, the component that updates the learner’s current
hypothesis on incoming training data.

As concerns our own learning architecture, the first two steps have already been com-
pleted in the previous chapter, where we explained that the training experience can only
consist of past action/payoff percepts and defined target functions 7;, f; and h; formally
for the learning layers.

Thus, we can basically concentrate on presenting the function representations and the
employed learning algorithms, even though the layered character of our learning system
will additionally require us to explain how the decision-making modules of the layers in-
teract, i.e. we will have to define the concrete instances of e;, m; and [; that we employ.

Our basic design choices regarding the learning algorithms can be summarised as fol-
lows: to approximate the payoff function we use multi-layer neural networks with standard
back-propagation and binary input representation. This is is the simplest of the the em-
ployed algorithms, and the section on the Utility Learning Module will mainly consist of
a description of how to fine-tune the nets to suit our purposes.

Learning OBP models requires somewhat more elaborate concepts. We have settled on a
combination of genetic algorithms and instance-based learning, which uses individuals in
a population of “opponent behaviour predictors” to anticipate the next opponent action.
Again, standard machine learning algorithms are employed, but a new possibility of com-
bining them is shown.

The suggestion of optimal-coalition-yielding actions is certainly the most challenging prob-
lem of the three, so the design of the Social Learning Module requires several steps of
abstraction from the learning task to get where we want to. Our approach is based on
techniques that stem from the field of user modelling, especially on nested models of pref-
erence structures (so-called recursive belief models). Agents will use these to construct
hypotheses about their opponent payoff functions based on the knowledge of opponents’
past actions. We have designed new formalisms to represent the payoff dependencies be-
tween agents (gain models and probabilistic ordering models), update algorithms for these
and, also, a method to simulate the opponents’ reasoning process with the current knowl-
edge. Finally, a “cooperative” action selection rule is devised that aims at suggesting
those future actions that will make the opponent act in the most desirable way. This is
the most experimental part of our architecture, and it therefore deserves being treated
with more detail than the other two.

Unlike the learning algorithms which require a considerable amount of sophistica-
tion, the decision-making functions that integrate their results will be rather simple.
Their design mostly relies on certain error margins of learners which are used to “switch
super-layers” off and on and on the existence of socially feasible actions which implement
compromiseful behaviours whenever this is possible. If such actions don’t exist, greedy
Strategy Engine choices are turned into action. Admittedly, this is a rather naive way
of connecting the three layers, but since it affects their decision rules only (the learning
algorithms themselves will be updated even while their results are not being used for
decision-making purposes) we think of it as a means to keep things reasonably simple.



We first describe the Behaviour-Based Layer of our agents, the Utility Engine.

5.2 Learning the payoff function: the Utility Engine

The learning module of the Utility Engine approximates the agent’s own payoff function
by training an artificial neural network (ANN) with the pairs of joint action and associated
payoff received from the Simulation Engine after each round of the game. The purpose of
this payoff approximation is to provide the Strategy Engine (more precisely, the Strategy
Generator) with a means to reason about future payoffs so that it can choose utility-
maximising actions.

5.2.1 Designing a payoff learning component

There are probably countless ways an agent could go about constructing an approxima-
tion! m; : A — R of the actual (unknown) payoff function u; given a number of joint
action/local payoff pairs?

(@, ui(a))

The most naive approach would be to simply store these pairs as entries of a payoff
matrix so that simple table-lookup can be used to predict the payoffs of particular action
combinations. Constructing such a payoff matrix is unfortunately highly infeasible in
n-player game due to the “combinatorial explosion” in the number of possible action
combinations that agents are faced with in non-trivial applications. If we take the action
sets to be equal for every player (as in the resource-load game), then A = A" if n players
are involved, so that [A| = |A|", a number exponential in the number of players. Even in
the rather small example of ten players and five resources, this yields

510 ~1.13.10%

2" =2
as the total number of possible joint actions, and it is clear that an agent cannot be
expected to wait more than 10*® rounds® to model its payoff function accurately.

Thus, a learning algorithm is required that can generalise from a relatively small number
of samples to predict the payoff values of unseen combinations.

As Mitchell (1997, p. 81) points out, neural network learning methods “provide a
robust approach to approximating real-valued, discrete-valued and vector-valued target
functions”, and for many tasks they have proved to be one of the most effective currently
available learning methods, especially for tasks that require learning to interpret complex,
noisy sensor data.

1We shall use the notation introduced for the resource-load balancing game in Section 3.2 throughout
the following chapters to underline the fact that many of the particular design decisions use certain
properties of the class of games we examine. In particular, we will use A/ A instead of S;/S as the set
of (joint) actions and we will make frequent use of the resource set R and binary representations §(a) of
actions.

2Actually, these pairs should include the Simulation Engine noise functions, i.e. they should read
(ni?(nge(a)),nt” (ui(ng¢(a)))), but for reasons of notational convenience we take a and u;(a) to be the
perceived joint action and payoff.

3Note also that this is actually a very optimistic lower bound for the minimum number of rounds
required to fill the matrix, because it can only be guaranteed that some actions don’t occur repeatedly if
exploration is perfectly coordinated among agents: only if they agree on a way to “enumerate” all joint
actions can the set A be completely explored in |.4| rounds.



Neural networks are densely interconnected sets of simple units that apply some simple
function to their inputs (which are possibly the outputs of other units) to compute a local
output (which, again, possibly provides the input for other units). Two fixed subsets of
the set of units, so-called input nodes and output nodes are used to feed the input values
(according to the chosen representation) of the training samples into the net and to deter-
mine the output predicted by the net for the (possibly unseen) sample. The computation
of outputs is done by propagating the inputs from unit to unit while computing the results
of the unit functions and weighing them with weights associated with the links between
units.

Updating the current hypothesis of the net (which is reflected by the current values of
all links” weights) is achieved by computing the output of the training sample input ac-
cording to the current net, determining the error between this predicted output and the
real output (as given by the sample) and updating the weights according to the computed
error, so that the predicted output matches more closely the true output with respect to
the new sample.

There are several reasons that suggest the use of ANNs for payoff approximation.
Firstly, the training sample inputs, joint action tuples of the form (as,...,a,), consist of
integer vectors and the sample outputs are real-valued payoffs. This rules out the pos-
sibility of using symbolic sample representations since it requires the approximation of a
real-valued function.

Secondly, neural computation is considered a sub-symbolic learning method for which fact
it perfectly suits the intuition behind the Behaviour-Based Layer that is supposed not to
decompose the representations of actions and percepts further and to implement rather
sub-cognitive reasoning and learning capabilities.

A third reason is the expressiveness of neural networks. Theoretical results have shown
that if an appropriate network structure is used, any boolean function (Russell and Norvig,
1995, p. 583) and any continuous function (Cybenko, 1988) can be represented by such
networks. This means that, even though we choose the specific network structure accord-
ing to the properties of the resource-load game here, the method as such is suitable for a
very wide range of possible payoff functions.

Another reason is that the most prominent drawback of neural networks, namely their
lack of transparency can be completely ignored in our learning architecture. Instead of
using explicit representations to formulate a learning hypothesis, neural networks encode
their hypothesis in many real-valued weights of network links which makes the analysis of
the learned concept in an explanatory fashion impossible. As Russell and Norvig (1995,
p. 584) put it, “even if the network does a good job of predicting new cases, many users
will still be dissatisfied because they will have no idea why a given output value is rea-
sonable”.

However, this disadvantage bears no effect on our agent learners, since they won’t reason
about the results of the neural network but use it only as a utility-predicting device. It is
therefore of no relevance to them how the interdependence of utility values comes about
as they are only interested in the effects of these on their own welfare.

In devising the concrete networks that will be used in our system, choices have to be
made regarding input and output representations of the training examples, the network
structure, the propagation functions of the network units and the weight-updating rule.
Furthermore, the internal parameters of the networks, such as the learning rate and the
initial weights have to be fine-tuned to yield optimal results. Another important issue is



the training strategy, the way in which the available examples will actually be used to
train the net. These issues are the subject of the next section.

5.2.2 Constructing payoff-learning neural networks
Network type

Multi-layer feed-forward networks with sigmoidal units are a commonly used form of
ANNs. Such networks have an acyclic structure, i.e. there is no path from any unit to
itself. The input layer and output layer are thus clearly separated from each other, and a
fixed number of intermediate, so-called hidden layers each of which consists of a number
of hidden units connects the input layer to the output layer. We adopt this class of
networks because their representational power is much greater than that of feed-forward
networks without hidden layers (so-called perceptrons) and also because a simple and well-
understood training algorithm called the BACKPROPAGATION algorithm can be applied
to them. This algorithm aims at minimizing the mean squared error between the true
and the predicted output of some sample input, i.e. the quantity

Z > (tka — 0ka)”

dED k€outputs

where D is a set of training examples, outputs are the output nodes of the network, tz4
is the kth component of the true output of the training example and o4 is the output of
the kth output node in the network (the kth component of the predicted sample output).
This mean squared error is a function of the network weights  since they determine how
the predicted outputs are computed.

We will not explain in full detail the algorithm as such and refer the interested reader to
Chapter 4.5 in (Mitchell, 1997) for an extensive discussion. Here, we will concentrate on
the decisions we have to make in constructing networks for our application: input and
output representation, the structure of hidden layers, the range of values from which we
choose the initial weights, the learning rate and termination criteria that will apply for
the training procedure.

Input representation

For our purposes using binary input representations has been found to be much more
effective than decimal inputs, i.e. we prefer to use

(6(ar), - -, Blan))

as the input representation of training examples rather than

(a1, ..., an)

This has been proven through extensive testing (Section 5.2.3 provides the details), but
it is also intuitively clear that u; can be much more precisely expressed in terms of the
resource access that is realised by all agents’ actions rather than by the decimal “black-
box” equivalents of these actions.

Unfortunately, this result forces us to pre-assume that the agents have some additional a
priori knowledge of system properties in that they know that payoffs depend on the way
resources are accessed by the society (a similar assumption will be made by the Strat-
egy Engine learning algorithm). A fact that partly alleviates the restriction imposed by



this assumption is that decimal-input neural networks are also able of approximating the
function, albeit their performance being worse.

Using binary input representations implies that the network has n - k£ input nodes, one for
each player and resource. Compared to decimal nets which only need n input nodes,
this results in additional space requirements and computation time needed for back-
propagation.

Output representation

As far as output representation is concerned, there are essentially two alternatives: a
single, real-valued output unit could be used or several units whose outputs are combined
to compute u;(a).

One possibility of using vector outputs would be to derive the output complexity from the
number of agents and resources. One of the results of the resource-load balancing game
definition is that there is only a finite number of utility values that an agent can obtain
for one resource depending on the opponent load that the resource has to manage. These
payoffs form the set U defined as

(G0 G ()

The total payoff u;(a) can then be represented by a boolean function b(a) : RxU — {0;1}
which yields one if the payoff received for resource » € R is u € U under the joint action
a. If the set U is known, the sum of all resources whose b-values are 1 can be taken to
compute u;(a).

This example for a vector-valued output representation illustrates why we choose to equip
the networks with a single output node: firstly, knowledge of the set U would require far
more in-depth knowledge of the payoff function than what was assumed in the previous
paragraph — it would involve (a) knowing that resource utilities decrease with increasing
opponent load and (b) knowing that the total payoff is the sum of the individual resource
payoffs. In fact, any output representation that is based on decomposing the computa-
tion of payoffs* involves further knowledge of system properties and this would force us
to further depart from the initial motivation as presented in Chapter 1.

Secondly, we believe that such decomposition may very well be implicitly learned, in that
hidden layers may, for example, effectively split the payoff computation into several re-
source payoffs that are summed, only that this property of the target function is learned
rather than pre-assumed. We therefore leave these intermediate steps to the hidden lay-
ers and use a single output unit that brings together the results of possibly distributed
internal representations.

When using a single real-valued output unit, an additional issue arises due to the
sigmoid nature of the network units. The function by which they compute their outputs
always yields some value between 0 and 1, i.e. it maps the whole range of real numbers
to a very small interval (it is therefore also called the “squashing function”).

If n is a sigmoid unit that output values between [0; 1], we have to find some mapping to
this range from the range [0; umqz| of actually obtained payoffs. In order to avoid implicit
knowledge of the maximal payoff, we use the heuristic of agents dividing the obtained

4Vector representations that don’t follow this “decomposition” intuition, such as the possibility of
having several integer output units to represent the digits of the payoff value, have not been examined.



payoff by the currently known maximal utility. The estimate for w,,,, Will be constructed
by simply keeping track of the maximal perceived utility value, i.e. if the current percept
history of agent i is H} (the action/payoff pairs from the game history H* that consist of
the performed joint action and the payoff for i for each round) we define

Umaz = max u;(a)
(a,ui(a))er

and use as an output representation of training samples {a, u;(a)) the single-entry vector

u
)
Umaz

a value that is obviously always smaller than one.

Approximating the maximal payoff value implies that the agent will inevitably make
mistakes in training the net at the beginning of the game, but it also means that it always
trains the network with respect to the currently relevant range of outputs, which can be
advantageous if certain action combinations never occur.

Hidden layer structure

As regards the issue of choosing an appropriate hidden layer structure, it can only be
stated that determining a reasonable hidden layer structure is solely based on the ex-
perience we have gained by testing hidden layers of various sizes (Section 5.2.3 gives an
account of these tests), where it was found most effective to use two hidden layers of
size 2n each. It is not surprising that the optimal hidden layer structure depends on the
number of players n, so we will obey this rule for all test sets in the following.

Training strategy

Defining a termination criterion is a subtle issue in active learning architectures as the
one we propose: while in passive learning environments some margin can be defined so
that training terminates as soon as the prediction accuracy of the network lies above that
margin, active learners have to trade off accuracy against action. If, for example, after
each sample the agents trained the net until it reached an accuracy of, say, 99%, then
the required computation time would not only lead to a delay in the agent’s response but
this would also mean that the agent will have to wait very long until it obtains the next
sample, so that it would effectively make a big effort to “learn a lot with very little expe-
rience”. Considering that generalizing from a large number of samples is one of the key
aims of learning algorithms, this would certainly not be a very effective learning strategy.
There is a huge variety of possible training strategies, ranging from very lazy to highly
eager learning. For payoff learning networks, an extremely lazy way of learning would
be to feed only the new action/payoff pair into the network and to perform one back-
propagation iteration. At the other end of the spectrum we can find extremely eager
strategies, e.g. a strategy that not only re-feeds all past samples into the nets but repeats
the back-propagation for every example until the mean prediction over all known samples
falls below 10% of the previous mean error.

We choose a compromise solution between these two extremes that respects the issue
of bounded rationality while making most out of the current experience at the same time,
a strategy we will call the constrained size feed-all-once strategy. It consists of feeding
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Figure 5.1: Network for a two-player two-resource game with two hidden sigmoid unit layers of size
2 -n. The four binary components of a; and as are fed into the input layer units (8(a;)[j] = 4i;) and
propagated through the hidden layer units h;; to the output unit u. The black circles represent the
threshold units that provide some input-independent basic activation to each sigmoid unit (the weights
of the links between these and their target units are also updated during back-propagation).

all known samples into the net in each round, but conducting only one back-propagation
update step for each samples. Also, it uses “constrained” training sets, i.e. it starts re-
placing the most obsolete samples in a first-in first-out manner as soon as the mazimum
training set size (some positive integer constant) is reached.

This strategy has two major advantages: Firstly, it realises oblivious learners, who are
not perfectly rational and concentrate on currently relevant experience gained within a
reasonably recent interaction history. Secondly, and much more importantly with respect
to evaluating the architecture, it makes the learning progress directly measurable in terms
of game duration. The idea behind this (which also serves as a principle for the learning
strategies of the other algorithms that will be introduced) is that, if we know that one
learning iteration is performed with every round of the game, then the number of rounds
required to achieve the learning results necessary to behave in a coordinated fashion will
provide a measure for how difficult the overall learning task is.

Figure 5.1 shows an example for the final network design in a two-player game with two
resources.

In the next section, first empirical results with the nets for various problem sizes
are reported as well as the resulting fine-tuning decisions concerning initial weights and
learning rate.

5.2.3 Preliminary results

Testing and fine-tuning the neural networks is different from testing the learning algo-
rithms we suggest for the Strategy Engine and the Social Behaviour Engine: The most
distinguishing property of payoff approximation is that we have perfect knowledge of the
concept to be learned, given that the payoff function u is part of the definition of the



resource-load game. This implies that, at any stage of the learning process, training
samples can be generated and the exact prediction error of the networks to them can be
determined. This is not possible for the OBP problem and cooperation potential learn-
ing, because the opponents’ reasoning processes that are supposed to be learned are not
pre-determined since they depend on their own learning results. Our network evaluation
strategy will therefore consist of generating a set V' of validation samples (a,u(a)) by
using the real payoff function every ¢ rounds, and we will measure for each network the
mean difference between network output and actual payoff, i.e. the mean prediction error
E(V) of p;’s network with respect to V:

EV)= > |m(a) = uia)|

(a,u(a))eV

For small problem sizes (if |[V/| > 2%"), this mean error is actually identical to the per-
formance measure P(7;) defined for the L™ problem in Section 4.2.2, while for larger
problem sizes it is certainly a reasonable approximation of P.

Secondly, the parameter space is much larger than for the other two learning problems. In
order to completely evaluate all possible design decisions, we would have to consider every
possible hidden layer structure, the whole range of possible initial link weight distribu-
tions and learning rates and to compare binary input networks to decimal input networks.
Clearly, we cannot explore this parameter space exhaustively, so we need to constrain it to
a local search by fine-tuning one parameter after the other in a best-first manner. This is
to say that we first compare binary to decimal nets, then different hidden layer structures
for the binary nets (which we choose after the first step) and finally optimise the choice
of initial weights and of the learning rate.

In that, it is of course impossible to conduct these experiments for any problem size and
therefore we restrict our analysis to two specific test sets: a game G with two players and
two resources and a game Gy in which ten players compete for access to five resources®.
It is our aspiration that experiments with these will hint at parameter choices that are in
some way a function of the problem size (n,k,v,T,c). If this is the case, this mapping
can be used for any other MARLOG to provide more general guidelines for decent, if not
optimal, network design.

We start our analysis by comparing networks that use a binary input representation
to decimal-input networks. Figure 5.2 shows plots of the mean error of both types of
networks in Gy computed over 500 validation samples every ten rounds (V was separately
randomly generated for each evaluation step). As in all of the following simulations,
agents’ individual action choices were made at random, so that exploration was maximal.
The training sets were not constrained in size, so that agents always stored all past samples
and fed them once into the net together with the newly obtained sample in each round.

We have chosen to conduct all experiments with full a priori knowledge of the maximal
payoff value because we intend to measure the minimum number of rounds after which a
reasonable prediction accuracy has been reached by the network as such, i.e. not affected
by the initial errors due to mis-estimating the maximal payoff (in the system-level exper-
iments of Chapter 6 we will lift this assumption again).

5We often will only present plots of the learner’s performance for one of these games; in that case the
results have always been validated for the other game.
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Figure 5.2: Mean error of a binary and decimal input representation employing networks in Gy. The
superiority of the binary input networks carries over to the larger test set Gy and is independent of
hidden layer structure, learning rates and initial weight distributions.

It can be seen that the learning accuracy of the binary network clearly exceeds that of
the decimal input net. In fact, the decimal input seems unable to improve its performance
further after a certain number of rounds, which suggests that there is a natural limit to
approximating u as a function of decimal inputs. This is a rather impressive result, given
that in G only 16 (= 222) function values have to be learned. This effect is even more
dramatic for the “larger” game G; and we therefore adhere to the use of binary input
representations for the remaining experiments.

Next, the hidden layer structure of the networks is subject to our analysis. Ex-

periments with a single hidden layer showed that, although differences were often only
marginal, optimal hidden layer sizes are related to the problem sizes n and k, i.e. the
smoothest convergence curves were produced by using hidden layers of size n, n -k, 2 - k,
2 -k -n and so on. This suggests a regularity that seems quite intuitive, namely that the
optimal hidden layer structure is some function of the problem dimensions.
To investigate this issue further, tests were conducted with various “hidden layer vectors”
(h1,...,hs) so that each h; was the size of the j-th hidden layer, typically k, n or some
simple function (product or sum) of these values. Figure 5.3 shows a comparison between
the performance of some of the resulting networks for G; and G;; which suggests that
neither vectors more complex than (2n, 2n) provided a further increase in performance nor
hidden layer vectors simpler/smaller than the two-layer 2n-sized version. This provides
us with a simple hidden layer construction rule.

The last step in fine-tuning the networks, which consists of selecting appropriate initial
weights and the right learning rate 7, turns out to be much harder than one might be lead
to think. A first notable result is that for G; learning rates much larger than the small
fractions usually employed (a textbook treatment suggests 7 = 0.05 as a typical value) are
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Figure 5.3: Experiments with various hidden layer structures. The simplest hidden layer structure
that yields high performance for both games follows the pattern i = (2n,2n) (dotted curves denote the
performance of those hidden layer structures whose performance was judged inacceptable).
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Figure 5.4: Performance of the optimally tuned networks for G (dotted curve) and Grz. In the smaller
game, the average error over 500 samples has fallen by 76% between round 100 and 300, while for Gy it
only decreases by 47% in the same time span.

much more effective than smaller n-values. The most extreme difference that occurred
was that the mean error was 0.9% under n = 10.0 and 24% under n = 0.1 after 100
rounds of training (with initial weights chosen randomly from [—0.5;0.5]). Unfortunately,
the converse holds for the other test set, i.e. small learning rates yield much better results.
After extensive testing with both test sets and learning rates from 0.01 to 50.0 we settled

on the use of
v

“k2on
as a rule of thumb, so that we applied n; = 2.5 and n;; = 0.4 as learning rates in the two

games. Additionally, a learning rate update rule is used to slowly decrease the learning
rate after each iteration by taking

n

n < 0.997 -7

after each round.
By cross-testing all explored learning rates we also determined the optimal range of initial
link weights as

[=n; 7]

This completes the presentation of preliminary results for the payoff-learning neural net-
works. Figure 5.4 shows plots for the resulting network payoff performance in Gy and
Grr. It can clearly be seen that learning progress decreases with increasing learning
problem size — which is not particularly surprising, given the increased complexity of the
payoff function — and it is up to the overall system evaluation in Chapter 6 to validate
whether the learning performance of the Utility Engine suffices to learn the agent-level
task successfully.



5.3 Learning to (re)act optimally: the Strategy En-
gine

The task of the Strategy Learning Module is to approximate the expected future opponent
behaviour, to solve the learning problem LYBF as introduced in Section 4.2.2. Such a
model can then be used by the Strategy Generator to generate an action-value function

that models the desirability of performing a particular action a; € A for agent 7. The
idea behind this combination of learning and action selection is that if the next action(s)
of opponents can be predicted and the Utility Engine provides an accurate model of the
agent’s own payoff function, then that action can be chosen that ensures the highest payoft
for the expected opponent action.

The strategic learning algorithm that we propose combines the techniques of Genetic
Algorithms (GAs) and Nearest-Neighbour Learning, a very simple instance-based learning
paradigm often employed in case-based reasoning (Mitchell, 1997, Chapter 8). It uses
genes to encode opponent action transition rules and selects by nearest-neighbour search
those genes that match the current situation most closely. These are then consulted to
predict the next opponent action, so that m; can be constructed accordingly.

We start the discussion of the employed learning methodology by some preliminary
considerations regarding the nature of the learning problem and how we go about solving
it.

5.3.1 Designing a strategy learning component

As in the previous chapter, let us start with a naive, ad hoc opponent behaviour predicting
learning algorithm. Since OBP models aim at constructing a function that reflects the
expected payoffs that can be ensured, we can — recalling Definition 3.2 of Section 3.1.1 —
take m;(a;) to be the expected payoff of a; € A, so that

mz(a,) = uz(a,) = Z ui(ai, a_i) . P(a_i),

a_;EA_;

where
P(a—;) = Ilicj<n rici(aj)

is the probability of the joint opponent action a_;, given the (mixed) strategies «;(a,)
currently played by i’s peers.

Obviously «;(a;) can be approximated by keeping track of all agents’ action frequencies,
the ratio between the number of rounds in which agent j played a; divided by the total
number of rounds so far. Further, the payoff approximation 7; can be used as a substitute
for u;. Wouldn’t this provide us with a perfectly simple and yet effective strategy learning
algorithm?

The answer is no. Firstly, such an algorithm would require, just like the naive “ma-
trix memorization”-method mentioned in the previous chapter, an exponential number
of payoff and probability computations to obtain the m;-values for all actions (a num-
ber of |A" 1| = 2¥"7" in this case) which places it beyond the realm of computationally



tractable algorithms. Secondly, and perhaps conceptually more important, such an action-
value computation suggests that the future opponent strategies are identical to their past
strategies, because it is not capable of modelling dynamic behaviour changes (the action
frequency ratio implies that a single mixed strategy is approximated over time) and this
is quite clearly what we do not want. Thus, once more, we have to look for something
more elaborate than that.

Strategic learning and reasoning is very different from social reasoning, despite the
fact that it cannot be conducted without considering knowledge an agent has about other
agents (since the own action outcomes of i inevitably depend on its peers’ behaviour).
The latter observation could lead to the assumption that strategic reasoning s social rea-
soning in a way, which raises the question of whether it can or should be separated from
the Social Planning Layer at all, i.e. whether the very existence of the Strategy Engine is
justified.

To justify the separate view of the two layers, we should explain more precisely what
we mean by “social” and “strategic” reasoning: their key difference is that the strategic
component views peers as a “mechanical” part of the environment, i.e. as variables that
exhibit a certain behaviour according to certain rules and not as intentional entities that
are capable of managing such concepts as compromise and exploitation.

The social reasoning component, on the contrary, assigns to peers such capabilities as
knowledgeability and rationality, a fact which bears very different implications for the
agent’s own decision-making from the assumptions underlying the strategic reasoning
mechanism.

This does, however, not mean that strategic reasoning excludes the possibility of having
rational co-actors, because after all we design it for environments in which all agents can
in one way or the other be called rational. It rather aims at decoupling opponents’ be-
haviour from their reasoning processes from the modelling agent’s point of view, so that
the behaviour they exhibit is seen as the effect of their reasoning, but not as reasoning
per se.

The most important consequence of this view for the design of the respective learn-
ing components is that the strategic learners will try to adapt to changes in opponents
behaviour while assuming that the grounds opponents base their reasoning on remain
constant throughout the interaction. The dynamics of opponent reasoning will only be
considered at the social reasoning level because it is the Social Behaviour Engine that
aims at finding out how the opponent can be made to alter its behaviour and this can
only be achieved if the opponent’s reasoning process is modelled.

This rather theoretical discussion of the essence of OBP learning serves as a starting
point for specifying crucial properties of the LBF problem that justify the design of the
proposed learning algorithm, which are presented in the following paragraphs.

Opponent “automata”

One of these properties results from the observation that the Strategy Learning Module
ignores the existence of reasoning mechanisms behind the effected opponent behaviour.
If some peer’s behaviour is not the implementation of some rational strategy, what is it
then? If the peer behaves as some unintentional “mechanical” component of the environ-
ment, as a simple system variable, what are the system parameters that spawn its actions,
the ultimate reason for its behaviour?



Since the only dynamic parameters that the environment provides are the actions effected
to it by the choices of all agents, this allegedly fixed behaviour of the peer can only be
a function of the past joint action sequences of the game; if it uses any features of the
current situation at all to determine its behaviour, this must consist of what describes
this “current situation” — the joint action choices of all agents so far.®

This implies a state-oriented view of the interaction environment because it is implicitly
assumed that the sequence of past joint actions defines a state in which opponents are in
when they select their actions for the next round, i.e. that joint actions are causally linked
with each other so that the next joint action is always the effect of its predecessor(s).
This resembles very much the idea of modelling opponents as deterministic/probabilistic
finite automata (DFA), a method that was used, amongst others, by Freund et al. (1995)
and Carmel and Markovitch (1996) (these works were already reviewed in Section 2.2).
In such automata, the opponent enters some initial state at the beginning of the game
and transitions between states are triggered by the most recent action combination of the
remaining agents (which is the input to the transition function) and accompanied by the
agent’s own selected action (and by the change to some new state, of course). By having
arbitrarily large sets of states, any opponent behaviour can be modelled that operates
on histories as regular expressions over finite “alphabets” of joint actions. If stochastic
functions determine the actually occurring state transitions (in the case of probabilistic
finite automata) additional flexibility is added that allows for modelling mixed strategies
thereof.

Following this intuition, we reduce the complexity of modelled opponent behaviour
even further by assuming that each opponent j has only |A| “mental” states, each of
which determines the action j is going to perform. More specifically, ;7 will play a;
whenever it enters state (a;) (since this is only an auxiliary construction we refrain from
introducing new notations or formalisms for it), and a transition between these states

O

(a;) — (a3)
is effected by the previous joint action a_; of all agents other than j.
For the modelling agent ¢ in question, each opponent j is a system variable that behaves
on the basis of such simple action transition rules. So from #’s point of view, the joint
opponent strategy set A_; defines the set of system (i.e. opponent) states and the transi-
tions between these states are spawned by ¢’s own action choices.
This simple OBP model is illustrated for a three-player example by the state transition dia-
gram in Figure 5.5. In this example, agent 1 models the behaviour of the remaining system,
i.e. of its opponents (agent 2 and agent 3). We assume that A; = A, = A3 = {0,1,2,3},
so that the set of system states is given by the cross-product of As x Az of the individual
strategy sets of agent 2 and agent 3. Furthermore, the diagram is assumed to capture the
opponent action transitions for some fixed behaviour a; of player 1 (e.g. a; = 2) so that
actually another 3 such diagrams would be needed to fully describe opponent behaviour.
The edges capture the transitions from previous to next joint actions. The edge from
node (2,1) to node (3,2) for example has the semantics of the transition

2
(2,1) — (3,2) ~’

6This is not to say that it must depend on the game history. The only conclusion we draw is that all
a sub-intentional agent can use as an input for its behaviour-determining function is the data obtained
from the environment.
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Figure 5.5: Simple state-oriented view of a game with three players and four individual action choices
for a single action of the modelling agent 1. The vertices denote states, labeled by the joint action (as, ag)
performed by the opponents of 1. Each edge represents a deterministic transition from one action tuple
to the next, so that a “source” opponent action is always followed by a “target” opponent action.

which means that if (2,2,1) was played in the last round, then (X,3,2) will be played
next, were action X of player 1 remains unpredicted, of course, because it is agent 1 that
is modelling the remaining peers’ behaviour: its own decisions are seen as the input to
the system behaviour function and are thus subject to further reasoning, so they are not
determined by the model.
Note that this view of the system is based on the idea that (a) future actions are an im-
mediate consequence of the most recent action combination and (b) this action-to-action
transition function is purely deterministic — if the first joint action is known, any future
(sequence of) opponent action(s) can be exactly determined.
To alleviate the second restriction, we extend the world model by state transition prob-
abilities, i.e. the state transitions are now weighted by probabilities A(a_;, a;,a’ ;) that
reflect how likely it is that the next joint opponent action will be o’ ; if the previous joint
action was (a_;, a;).
More formally, the probabilistic state transition function A : A" x A x A1 — [0;1] is
defined as

Ala_;,a;,a0;) =P (Vt.a(t) = (a_s,0;) = a5V = a'_i)

for any round ¢ of the game.

This leads to state transition models in which edges are labeled with A values, so that the
probabilities of all outgoing edges of every node sum to one. Figure 5.6 shows a modified
version of the previous example with such edge labels.

Under the assumptions that the next opponent action only depends on the previous
action, that the rules that govern this action-to-action behaviour remain constant and that
the transition rules are deterministic, learning |A| such graphs is obviously equivalent
to the problem LYBF as defined in Section 4.2.2: after any round ¢, the joint actions
performed in rounds 1 to ¢t — 1 can be neglected (because future actions will depend
on the joint action tuples starting with (¥ and for any sequence of future actions of i

the resulting actions a(f:rk) can be determined by following the respective edges in the



Figure 5.6: Non-deterministic view of the game in Figure 5.5: transition edges are now labeled by
probabilities. Such a graph can be used by player 1 to represent the remaining players’ behaviour for a
constant action of itself in terms of mixed strategies.

transition diagrams.

For non-deterministic state transitions an oracle would be needed as stated in Section
4.2.2 to determine the actual opponent choices if they are using mixed strategies, but a
probability-weighted opponent behaviour tree could be constructed so that the likelihood
of each possible future opponent action sequence can be computed.

Prediction, control and Markov Decision Processes

The above model of opponent behaviour focuses around the notion of describing the oppo-
nents’ action selection rules in terms of one’s own actions by determining to which degree
and in which way the agent influences peer decisions, or, alternatively, by describing how
fixed behaviour patterns of other agents are controlled by the modelling agent’s choices.
However, such an analysis, even if it succeeds in predicting opponent behaviour accurately,
is useless unless it is exploited to maximise the agent’s own payoffs over time. What is
actually needed is a solution to the problem of learning sequential control strategies, which
can in most general terms be formulated as a Markov Decision Problem” (MDP).

An MDP is defined by a set of states S an agent can perceive, and a set of actions A
it can perform. At each (discrete) time step ¢, the agent senses the current state s; and
has to perform some action a;. According to this action choice the environment produces
some successor state s;11 = (s, a;) and the agent receives some reward (s, a;). The
functions r and § depend only on the previous state s; and on the agent’s action and
are not necessarily known to the agent. We assume for the moment that r and § are
deterministic functions.

The task of the agent is to find a policy, a mapping ¢ : & — A that outputs for each
current state the optimal action to be taken. The ways to specify what exactly should be

"We follow the lines of the introduction of MDPs provided in (Mitchell, 1997, Section 13.2).



learned as an optimal policy ¢* are manifold. An obvious choice is to choose
©* = arg max Vi(s)

for all s € S, the policy that maximises some function V,, of the rewards obtained from
state s on in the future states reached from s by employing ¢*.

Thereby, common choices for V' are the cumulative reward , the average reward that will
be received in each future state and the finite horizon reward, the sum of future rewards
for a fixed number of transitions.

In the case of non-deterministic state transitions and/or rewards (e.g. in games with dice
rolls), the quantity V,, is simply redefined as the expected value f/(p of one of the previous
measures, or, more formally,

Vs, € S.f/(p(st) = E[V,(sy)].

In the light of the LYBF problem, it is quite evident that the problem of opti-
mal action selection is nothing but the optimal policy learning problem for MDPs: if
we let the set of states be the states we derived from opponent action combinations
(S :={{a=i)}a_,ea_,), define r(s;, a;) = ui(a(fz, az(-t)) as a (deterministic) reward function
and take P(d(sy, ar) = s441) = A(a(f%, agt), a(fg) to be the probability of every state transi-
tion, the non-deterministic version of V,, can be used as a future cumulative utility to be

maximised by the optimal policy — viz, strategy.

Since the convergence of so-called @-learning algorithms (a sub-class of Reinforcement
Learning methods) has been shown for non-deterministic MDPs (the original theorem is
due to Watkins and Dayan (1992)), we have an algorithm at hand which could be readily
used to learn the required action-value function m; (while implicitly solving LYBF).
Unfortunately, things are not that simple, due to, once more, combinatorial explosion in
the number of joint opponent actions which would produce a state space that is practically
impossible to explore in reasonable time.

This observation explains why Reinforcement Learning methods cannot be employed:
firstly, even if we had the time to explore the whole state set, this would initially lead to the
exploration of very many states that will not be relevant for future actions. Secondly, as
strategies become more and more elaborate, the agent will only be interested in transitions
among states in a very small partition of the state space (especially those states close to
equilibria and dominant strategies), for which fact a lot of the “learning work” done before
will be in vain. Finally, a complete description of the state space will result in a failure
to generalise amongst them, because the response rules each opponent uses might be in
fact much simpler and easier to represent than they appear.

At the same time, the above discussion gives a feel for the concepts that have to be
approximated by OBP learners and directly motivates the construction of the learning
algorithms we will employ.

5.3.2 Genetic nearest-neighbour learning of best-response strate-
gies
The learning algorithm we design for the Strategy Engine provides only very approxima-

tive versions of the above concepts: it rests on the assumption that opponents pursue
some fixed behaviour and that this behaviour can be expressed by an action selection



function that depends on nothing but the past joint action. Additionally, it only allows
for predicting a single next opponent action, not probability-weighted distributions over
several opponent action combinations. The optimal policy is only computed with respect
to the immediate payoff the agent hopes to receive in the next round — it does not take
(discounted) future rewards into account.

On the other hand, it offers a very pragmatic way of handling non-determinism and is
able to generalise from past observations by discovering similarities between situations,
so that it is not necessary to explore the entire set of possible opponent actions.

The idea behind the algorithm is rather simple. Transition rules of the form

Q;

(a_s) — (a’;)
are encoded as genes in |A| evolving populations and reproduce with the goal of producing
specimen that match a high number of transitions perceived so far. After each round,
those individuals that match most closely the current joint action (the nearest neighbours)
are chosen to predict the next opponent action. The fitter such a neighbour is, the more
seriously is its prediction taken.
Such a prediction can obviously be made for each action a; separately, so that the agent
can feed it into the Utility Engine to obtain the m;-estimate of the respective payoff value.
Finally, m;(a;) is taken to be precisely this predicted payoff value.
Because the learner predicts just one future opponent action and suggests to choose that
action that maximises the payoff under the given prediction, this can be seen as a form
of best-response learning. Looking at Definition B.2 of Appendix B (Section B.1.1) it can
be seen that what the learner actually does is to pretend knowing what other agents are
going to do next and to choose its own action accordingly.

Genetic Algorithms that learn transition rules

Genetic Algorithms (GAs) are a learning method that is loosely based on simulating bio-
logical evolution. Hypotheses are encoded as individuals in a population and the repeated
reproduction of this population searches through the hypothesis space by re-combining
the properties of the best solutions so far. Additionally, new features are generated ran-
domly every now and then, so that getting trapped into locally optimal hypotheses is
avoided.

As with neural networks, we provide only a very sketchy description of how GAs work (cf.,
e.g., (Mitchell, 1997, Chapter 9) for a detailed treatment) to explain how we construct
Best-Response GAs.

GAs consist of a set of learning hypotheses H, the so-called population and a real-
valued fitness function that yields for each hypothesis in ‘H a measure for its “goodness”
(which depends on the application for which the GA is designed). A crossover operator is
provided that defines how any two hypotheses in H can be combined to produce offspring
(i.e. two new hypotheses). Furthermore, a replacement ratio rr € [0;1] has to be defined
that specifies what fraction of the population is replaced by the offspring of previous indi-
viduals in each generation and some small mutation rate mr € [0;1] is used to determine
the probability with which some attribute of the individual is randomly altered during
Crossover.



To describe the design of the GAs we will use, we need to determine a representation

for the learning hypotheses, to design an appropriate fitness function and to specify the
other parameters just mentioned.
Recalling the extensive discussion of transition rules as the basic building blocks of OBP
learning in the previous section, we can see that there is a very natural way of turning
these into binary strings by using the S-mapping introduced in Section 3.2.1. This consists
of representing the rule

(ai) — (b-4)

as a bit-string

(ﬁ(al)a ﬂ(a’2)7 s aﬁ(ai—l)a ﬁ(ai—kl)a R ﬂ(a’n) ) ﬁ(bl)u ﬁ(bQ)a ceey ﬂ(bi—l)a ﬂ(bi—kl): R B(bn))
of length 2k(n — 1). Such a bit-string has the semantics of the rule

VEIF o A nd® A el AL nd® THEN 68 A D A B AL AEHD

n

i.e. for any round ¢ in the game, if the previous joint opponent action was a_; and ¢ itself
played a;, then the opponents will play b_; in the next round.

The reader may have noticed that a; appears neither in the pre- nor in the postcondition
of the rule (bit-string). The reason for this is that we actually plan to use |A| populations
of such hypotheses G(0),...,G(2¥71) (remember that we defined the set A of individual
actions as a set of integers {0,...,2*71}) so that each population “specialises” on the
opponent behaviour under one specific action of 7®. The advantage of this design is that
it enables us to construct symmetric bit-strings consisting of a k(n — 1)-long precondition
and a postcondition of the same length and thus to define very simple crossover operators®.

This representation is expressive enough to capture rules of the form a_; — o’ ; for
some action a; of 7, but it does not allow for a formalization of generalized rules such as

“player 3 will play action 4 regardless of the previous joint action”.

To account for such rules, we adopt the common method of allowing a wildcard value “#”
at each bit position with “don’t care”-semantics, i.e. a rule that contains this symbol at
the [-th position suggests that the rule holds regardless of whether the [-th bit is '0’ or
1.

Before defining the fitness function and the other parameters of our algorithm, we
should present an example to illustrate our constructions so far.
Suppose agent 2 participates in a game of four players and four resources. In round ¢ — 1
of the game, the joint action was al*~Y = (5,3,4,11) and in the subsequent round ¢ the
agents played o) = (7,2,5,1). Since agent 2 played 3 in the previous round, it uses the
two consecutive adversary actions to create a new sample for G(3) (the third of sixteen
populations it maintains). This sample has the form

0101 0100 1011 — 0111 0101 0001
—— M N M =~

5 4 11 7 5 1

8For reasons of readability we drop the index i from these populations which should actually read
Gi(ai).

9Although a; is conceptually a part of the precondition for the next opponent action, it makes more
sense to exclude it from the representation of transition rules, because i, as we have explained, aims at
modelling the behaviour of the remaining system.



Now assume that some hypothesis h € G1(3) is of the form

#104 0100 #O0#1  —  #111 #444  #401

then this A matches the new sample perfectly, being a short form for a set of 2!! = 2048
fixed rules (since h has 11 wildcard positions).

This example already hints at the question of how to devise an appropriate fitness

function for the populations G(a;), because it illustrates that the only knowledge the
agent can use to assess the quality of its own hypotheses is given by the samples the
Simulation Engine distributed during the sequence of interactions enacted so far.
Since we have assumed that the set of rules that governs each opponent’s behaviour is
fized, the history of the game H} as perceived by agent i after ¢ rounds can be seen as the
trace of the application of those rules. Hence, a sample set D(a;) can be constructed for
each G(a;) which maintains the transitions performed whenever i’s action was a;:

D(a;) = {(Blai), Ba)) | Fto < t. ay=a") € H Ad,=a""™ € HI Aol = a;}

These sample sets are then used to guide the search for appropriate hypotheses. Let
h € G(a;) be a member of the a;-th population, i.e. a 2k(n — 1)-long vector of “bits”
h; € {0,1,#} as in the above example. We define the match value mv(h,d) for any
sample d € D(a;) as follows:

1 k(n—1) 2k(n—1)
mv(h, d) = 5/ 1 Z I re(h'la dl) + Z I, ost(h'l: dl))
2k(n —1) ( I=1 g I=k(n—1)+1 ’
where

1 ifhy=dVh =+#
0 else

1 ifh=4d

Ipost(hladl) - { 0 else

Ipre(hladl) - {

are two indicator functions that measure whether the hypothesis matches the sample in the
[-th bit. For the postcondition bits wildcards do not count as matches, so that wildcards
in postconditions (which only predict some set of possible next opponent behaviours)
are punished. Since wildcards always represent disjunctions of several hypotheses it is
reasonable to favour bit-strings that discover similarities in the conditions that must hold
for an opponent to behave in some way (which are possibly much simpler than completely
specified descriptions of previous joint actions). Hypotheses with “don’t care”-features in
their postconditions are quite useless, because they only express uncertainty about future
opponent actions.

The match function can now be used to define the fitness function which for any hypothesis
h € G(a;) reflects how many of the samples in D(a;) were classified correctly and to which
degree:

1
| D(ai)|

> mu(h, d))

deD(a;)

fitness(h) = (

This means that the fitness will be measured as the squared average match value of h
(squaring the mean value puts additional pressure on the individuals). This constitutes a
compromise between fostering hypotheses that account for a wide range of seen examples
and supporting the development of “specialised” individuals that reflect precise opponent



behaviour for special cases.

As a crossover operator we choose standard one-point random crossover, an operator
that randomly selects some position [ in the binary representation and copies all positions
from both parents cross-wise. This is shown in the following example, in which two ten-bit
parents are subject to crossover at position 4 (counting from 1):

1011]101100 . 1011]111011
0100/111011 0100/101100

As concerns mutation, the standard method of selecting some random bit and flipping

it from its current value h; € {0,1,#} to one of the other two values with equal proba-
bility is employed.
Instead of using a fitness threshold as termination criterion (which is the training strat-
egy usually employed), just one iteration of the training algorithm will be performed after
each round (for the same reasons of balancing learning and decision efforts laid out for
neural network learning in the previous section).

All this provides us with a method for updating the populations given new incoming
joint action transitions. Two more details should be pointed out concerning this update
procedure. Firstly, note that although |A| populations will be maintained, only one of
these has to be updated after each game round, because the just performed joint action
only provides a transition sample for the a; that was played by ¢ in the previous round.
Secondly, it should be mentioned that this update is done with a delay of one round,
because the consequence of the joint action in question has to be awaited to construct a

sample (ﬁ(a‘fﬂ-), ﬁ(a(_tjl)))-

Next we discuss the use of the generated hypotheses for behaviour prediction.

Nearest-neighbour prediction

The MDP view of the decision situation requires that the probabilities for state transitions
be predicted and that the rewards which can be obtained by taking a particular action in
the resulting states are compared, so that an optimal policy can be chosen accordingly.
Given a set of populations of state transition hypotheses obtained after some number of
rounds this raises the question of how the transition probabilities can be computed. The
method employed here is based on a very simple version of instance-based learning called
nearest-neighbour learning.

Instead of constructing general hypotheses for the target function, instance-based learning
methods simply store the training examples. Each time a new query instance is encoun-
tered, its relationship to previously stored examples is examined, and a target value is
assigned to the new instance according to the values of previous examples. In the case
of K-nearest neighbour learning, samples are assumed to be represented as points in n-
dimensional Euclidean space R™. To compute the target value of a new instance, its IC
(geometrically) nearest neighbours are consulted and their outputs are combined to ob-
tain the value of the target function for the new instance. The “nearer” neighbours are,
the more will their target function values be taken into account (we refer the reader again
to Mitchell (1997, Chapter 8) for an extensive treatment of these methods).

The foremost motivation for using this technique for OBP is that, no matter how large the
populations of hypotheses are, they cannot be guaranteed to include samples that match



any possible current state. Hence, we will be forced to use rules whose preconditions
resemble the current situation. Furthermore, using several individuals as “predictors”
in a given situation can be used to overcome the problems that arise when agents use
non-deterministic transition rules. By assessing the traits of postconditions of several
predictions a model of expected properties of the next state can be obtained, if a precise
prediction of the next state is impossible.

The nearest-neighbour method is applied to the GA populations in the following way:
given a particular population G(a;) for i’s action a;, we interpret the preconditions of
hypotheses as points in k(n — 1)-dimensional hyperspace (or sets of points, if wildcards
are involved). The distance from any hypothesis rule h to the current joint opponent
action a_; can then be computed as

k(n—1)
distance(h,a_;) = | Y. x(h, B(a_)[l])?
=1

where
0 ifhy=8Vh =4#
1 else

x(hu, Br) = {

is the distance between two bit values, which is zero if they are both equal or if the
value of h in bit [ is ‘#’. Thus, the distance function computes nothing but the geomet-
ric distance between the current opponent action and the hypothesis precondition in a
k(n — 1)-dimensional binary hypercube (in which preconditions with w wildcards repre-
sent 2% edges, so that one of these will always be equal to S(a_;) in those components).

This distance function makes the computation of sets of I nearest neighbours N (K, a;, a_;)
possible for arbitrary K < |G(a;)|- We refrain from presenting a formal construction of
these neighbour sets here; it should be clear that by computing the distance to a_; for any
h € G(a;) the K nearest neighbours of this opponent action can be obtained by sorting
them appropriately.

These sets represent the gene sub-populations that most closely match the current joint
action, for which reason they should be used to compute the most probable next opponent
action. The prediction is computed bit-wise by counting the postcondition bits of nearest
neighbour hypotheses and weighing the “votes” for 1 and 0 by the fitness of the respective
neighbour. We define

1 if Q(N(IC, aiaa’—i)al) >0

predict(a;, a_;,1) = { 0 else

where () is the fitness-weighted sum of the neighbours in N that predicted a ’1’ in the
[-th postcondition bit diminished by the weighted sum of those neighbours that predicted
a ’0’ at the same position:

1 ifmy=1
Q(N(K,a;,a 4),l) = Y heN(Kana i) I(hy) - fitness(h), I(h)=< -1 ifh=0
0 else

So the decision of whether bit [ in the next joint opponent action will be set or not is
made by taking a weighted majority vote among all U neighbours.

This definition can easily be extended to compute, bit by bit, the full binary version of
the next joint opponent action o’ ; by taking

predict(N(K, a;,a_;)) = a_; <= B(a’,)[l] = predict(N(K, a;,a—;),l + k(n — 1))



for all 1 <1 < k(n — 1), so that every bit at position [ of the bit-string representation
of a’; has the neighbour-predicted value of bit [ + k(n — 1) (the index offset k(n — 1)
is necessary to access the neighbour postcondition bits). In the following we will write
predict(a_;) = a'; whenever it is clear which and how many neighbours are used.

Best-response action values

Now we are left with the task of turning action prediction into an action-value function
that reflects to what degree a; € A is considered to be an implementation of the optimal
policy in the next round. As opposed to the cumulative reward, average reward and
finite horizon reward value functions mentioned in Section 5.3.1, our agents only take into
account the immediate reward received from entering a new state, i.e.

Vio(st) = r(se, )
for any policy ¢, which translates, in terms of our constructions, into
Vw(a(fg) = u;(aF, oIy

—1 2

Since an optimal policy ¢* maps each “state” (a(fz) to an action that maximises the
quantity on the right-hand side of the above equation we obtain

¢* (@) = arg max ;"7 al"™)

al™ea .
which is nothing but the best-response strategy with respect to the next opponent action
a(_t;H). By virtue of our nearest neighbour algorithm and the assumptions concerning
opponent transition rules, we can claim that this next opponent action can be determin-
istically anticipated and thus define the individual action-value function m; for any round

t of rounds played so far as

mi(a;) =| m(predict(a®), a;) || (5.1)
(m; is once more i’s payoff function estimate). Thereby, || - || is a normalizing function
such that for any function f: X — R
f(z)
f(a) =
I 7@ Xpex f(2')

which can be used to turn any action-value function (in fact any real-valued function with
countable domain) into a mixed strategy.

Thus, m; can be seen as a mixed strategy with selection probabilities for each action that
correspond to the individual action values of the pure strategies!®.

Note that the computation of the predicted opponent action requires consulting the
neighbours of G(agt)), because the next opponent action is seen as the effect of i’s last
action choice. Thus, apart from only updating only one GA in each round, only one
of the 28 GA populations has to be used to predict the next opponent action. Apart
from matters concerning fine-tuning decisions about the replacement ratio, the mutation
rate, population sizes and “neighbourhood” sizes, the design of the strategy learning and
decision algorithm is now completed. These will be dealt with in the following section,
together with a preliminary evaluation of the algorithm.

10Using such a mixed strategy profile is an alternative to choosing always the optimal policy
arg maxg, m;(a;). In Chapter 6 we will investigate whether the pure action selection rule is more ef-
fective than the mixed strategies output by m;.



5.3.3 Preliminary results

As opposed to the task of payoff approximation, strategic learning does not provide for
an explicit representation of the concept to be learned: even an external observer cannot
a priori determine how agents’ strategies will evolve in the course of a simulated interac-
tion This is due to the fact that an agent’s strategy is the result of reasoning about the
behaviour of its opponents and vice versa.

Therefore no sample action transitions can be generated in a similar fashion as the ac-
tion/payoff pairs that were used to validate the neural networks of the Utility Engine, so
that only an a posterior: assessment of the performance of the strategic learners can be
achieved. This will consist of comparing their opponent action predictions to the oppo-
nent actions actually performed in later rounds.

Since the Strategy Engine only performs a one-step lookahead, the prediction error E
which will be used as the performance measure throughout the analysis to follow can only
be calculated in terms of the actually occurring opponent action. The distance function
used for the definition of the fitness function complies with the conditions put forward for
a “similarity-measuring” function in Definition 4.2 of Section 4.2.2 and provides a simple
method for computing the prediction error LY?F made in round t¢:

E(t) = distance (predict(a(_tifl))’ a(_t%)

To illustrate how this error-per-round evolves over time, the average error p; in all rounds
so far will be shown in the plots of this section. It computes as the mean of all past
prediction errors:

1< ,
Hi = ;ZE(J)
j=1

In order to evaluate the performance of the Strategy Engine as such it seems reason-
able to test it without the Utility Engine, so that it remains unaffected by the errors in
payoff approximation. In computing the action-value function, we will therefore use the
real payoff function u; instead of 7; in Equation (5.1) so that the “blame” for sub-optimal
action choices can be purely ascribed to the predictive capabilities of the Strategy Engine.
Another issue that should be remarked is that the results we present here are very much
influenced by the properties of the resource-load balancing game. More specifically, the
existence of a single strict equilibrium (the joint action in which every agent accesses every
resource simultaneously) implies that for every agent ¢ action all;“="111...1 is the single
best response to any opponent strategy. Hence this action will yield the highest action
value no matter which joint opponent action is predicted, and irrespective of how accu-
rate this prediction is, choosing the greedy action will always be optimal. This explains
the use of prediction accuracy measuring methods instead of utility-measuring methods,
because they don’t provide a means of assessing the learners’ performance.

This property bears another implication for agents that consist of the Utility and
Strategy Engines only, namely that the maximal performance that can be expected of
them is the evolution of the Nash equilibrium. As soon as their payoff-approximating
function is accurate enough to infer that acting greedily constitutes the best response to
any opponent behaviour, they will converge to the equilibrium. If this actually happens,
they will have proven able of adapting successfully to an environment of selfish co-actors
in the sense that they can at least avoid being exploited by others and learn to act indi-
vidually rational, even though they are unable to do any better as a whole.
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Figure 5.7: Various population sizes (|| € {10,50, 100, 250, 500, 750, 1000)}) for strategic learners in
the game G;. Apart from the divergent curve (|H| = 10) performance is roughly comparable. The curve
with lowest mean error represents |#H| = 100.

The first series of experiments we review is concerned with determining appropriate
population sizes and the number I of nearest neighbours that will be used for behaviour
prediction. Both these problems are actually harder than one might think. For obvious
reasons, an increasing number of hypotheses in each population leads to a greater diver-
sity and using more neighbours certainly adds to the complexity of the decisions that are
made during action prediction, because each of them might contribute a different part of
acquired knowledge to the final decisions. Thus, optimal population sizes and numbers of
nearest neighbours will probably depend on the complexity of opponent transition rules.
Unfortunately, we do not know anything about this complexity, so all we can do is to
compare different population and neighbourhood sizes and pick the best ones.

In the resource-load balancing game, it turns out that changing population sizes above a
certain minimal number of hypotheses does not have great effects on learning performance,
even though the curves become smoother and the difference between several learners using
the same population size becomes smaller. For reasons of keeping space requirements on
a decent level (consider that even test sets as small as Gy require a total of 10 - 2° = 320
GA populations), we choose to equip each agent with no more than a total of 3000 hy-
potheses. In the case of G; this means that each agent has four populations of size 500
at its disposal, while for G;; each population will consist of 100 individuals. Figures 5.7
and 5.8 provide an overview of curves for various population sizes where K = 10 was
applied throughout. Action choices were made by the agents according to an “almost
purified” version of the action-value function m;, where arg max,, m;(a;) was played with
probability 1—0.01-(|A|—1) (any sub-optimal strategy was played with probability 0.01).

Next, appropriate choices for K were sought for. Apparently, very few neighbours
suffice to achieve optimal behaviour prediction (Figure 5.9 shows some examples for the
performance of learners under various sizes of IC in Gyy), but it should be remarked, once
again, that this may only be due to the properties of the resource-load balancing game
just mentioned — ultimately most surviving hypotheses will probably predict
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Figure 5.8: Plots for |H| € {10, 50,100,500} in G;. Differences between learners are even smaller than
for G, except that for |#| = 10 (the bold curve) performance is again slightly worse than that of the
other agents.
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Figure 5.9: Experiments with K € {1, 5,10, 25,50, 75,100} for Gs-learners applying a population size
of 100 for each population. Except from agents using one neighbour for action prediction all others do
equally well.



“each opponent behaves greedily regardless of what was played the previous
round”

which is a concept that can be adequately modelled by using a single hypothesis

HHHFH . FHEHFHFHHF — 11111101111

It is actually worthwhile to check whether such hypotheses actually occur in the pop-
ulations. In fact, the fittest individual (with fitness(h) = 0.8298) after 1000 rounds
was

1011440111004 1140411111104 1#0411101001#001 141 —»
1111111114111111111101011111104114£11110101111

whose postcondition consists almost entirely of ’1’-bits while its precondition allows for
10 degrees of freedom. Given that the actually played mixed strategies implemented the
best-response strategy around 40% of the time, this hypothesis constitutes a reasonably
accurate opponent behaviour approximation.

We decided to settle on using K = 0.1 - || for both games since all available evidence
suggests that this is a sufficient number of nearest neighbours for the resource-load bal-
ancing game.

Finally, replacement ratio and mutation rate had to be determined. Tests were con-
ducted on both G; and G for mutation rates ranging from 0.03 to 0.3 and a replacement
ratio between 0.1 and 0.9. Again, results were hardly elucidating, because even after
testing the performance of 100 agents using the same combination of parameters, the
variance between their performances was almost as big as between different mutation and
replacement rate choices. However, the following observations seem to give a few hints for
appropriate parameter choices: mostly, strategic learners which used replacement rates
between 0.3 and 0.7 outperformed those using the remaining values and, for mutation
rates above 0.2, some of them did considerably worse than others (Figures 5.10 and 5.11
show the performance of agents in G; with varying replacement ratio for a mutation rate
of 0.03 and 0.3 respectively).

We therefore adhere to the use of a replacement rate of 0.5 and a mutation rate of 0.03,
which represents the final design choice in building the Strategy Engine.

Comparing the plots for G; and G;, a major discrepancy between learning perfor-
mance in those two games becomes visible, namely that the mean prediction error does
never decrease for Gy;. To investigate this issue further, longer simulations were con-
ducted, but even after 3000 rounds, the curves remain stable around 0.4-0.5 (which implies
that the error per round is still around 0.01% ). Fortunately, this is only due to the fact
that agents employ mixed strategies in our simulations, by which the play any of the 31
sub-optimal strategies with probability 0.01 — when using pure best-reply strategies, the
performance does converge, as shown in Figure 5.12 . So this apparent “deficiency” can
be simply explained by observing that the approximation of non-deterministic transition
rules is, of course, much harder than that of deterministic behaviours. It should also be
mentioned that by using pure strategies agents converge to the equilibrium combination
within less than 100 rounds and never depart from it ever after.
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Figure 5.10: Plots for agents employing a mutation rate of 0.03 and a replacement ratio from
{0.1,0.2,...,0.9} in Gt.
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Figure 5.11: Same scenario as in Figure 5.10 with a mutation rate of 0.3. It can clearly be seen that
variance between the mean errors of agents has increased without any agent doing better than before.
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Figure 5.12: Gyr-simulation with pure best-response strategy choice. As opposed to the mixed strategy
variant, mean error starts decreasing after only about 100 rounds.

These experimental results suggest that, at least for the resource-load balancing game
with its simple best-response structure, agents are able to learn the safe equilibrium strat-
egy within reasonable time provided they have an accurate picture of the payoff function.
Next, we discuss the design of the Social Behaviour Engine prototype to complete the
presentation of the individual learning components.

5.4 Learning the “social potential” of games: the So-
cial Behaviour Engine

The Social Behaviour Engine (SBE) is the component that is supposed to extend the
architecture presented so far by social learning and reasoning capabilities that facilitate
the evolution of coordinated interaction patterns beyond the greedy, short-sighted utility
maximisation aimed at by the decision-making component of the Strategy Engine.
In order to discover and exploit the cooperation potentials an interaction situation offers,
agents have to reason about the possibility of implicit agreements and since this depends
on the global constraints that govern the payoff functions of all agents, agents will have
to gather information about the preferences of their opponents. Based on this analysis of
opponent preferences, the modelling agent will try to simulate those opponents’ reasoning
processes to find out how they can be brought into the state of behaving in a cooperative
manner.

The following sections introduce a prototypical SBE design based on recursive belief
model learning and a simple social decision-making principle for social learners that we
employ.

5.4.1 Designing a social learning component

Preliminary considerations

Unlike the learning tasks of L™ and LYBF | the learning goal specified for cooperation po-

tential learners in Definition 4.3 of Section 4.2.2 does not translate directly into a concept



that can be learned with standard machine learning methods. This is partly due to the
fact that the hypotheses of the Utility Engine and the Strategy Engine don’t provide a
measure for whether globally optimal “agreements” have been reached or not. Ignorance
of adversaries’ payoff functions makes it impossible for agents to discover potentials for
the establishment of collectively beneficial joint action choices.

Another problem is that agents are ignorant of how long the process of achieving coopera-
tion is supposed to take. If, for example, the agents tried several action selection rules to
make peers converge to cooperative action combinations, they would not know when to
evaluate the employed hypothesis, because there is no criterion that guarantees to assess
in a verifiable way whether “continuing with the current hypothesis cannot yield good
results in the future if it has not done so until now”.

This is, in fact, just one aspect of a much more severe restriction, namely that learning
data as such is not readily available. Agents wouldn’t know when and whether optimal
agreements have been reached, but even if they deem their peers’ current actions coop-
erative, they cannot verify whether they are going to persist in the future and whether
other agents are behaving only by coincidence in a cooperative way or by rational delib-
eration. Thus, no past joint behaviours can be directly transformed into training samples
to validate or falsify the usefulness of alleged “cooperation-evoking” action sequences the
agent is trying to determine.

Finally, developing hypotheses of the form “if I play a certain action sequence in the next
t rounds my opponents will converge to optimally cooperative behaviour patterns after
these” will be very time-consuming and initially probably lead to very poor performance
results for the learner, as the evaluation of hypotheses will take a very long time due to
the problems just mentioned.

Reconsidering social reasoning

We propose a view of the social learning task that leads only very indirectly to the socially
optimal action-selection rules of the L¢* definition. The basic idea of this approach is
that modelling the reasoning principles of adversaries allows for a much more coherent
view than learning cooperation-evoking action sequences directly. This is because know-
ing what other agents “think” is, quite naturally, more reliable than knowledge about
their reactions to certain behaviours: while behaviours which depend on a multitude
of parameters of current and past situations, may change or be perturbated by faulty
implementation and perception, the reasoning processes of individuals can be expected
to be stable. This does certainly not hold for humans whose reasoning capabilities as
such evolve with knowledge and experience, or for task-oriented domain MAS in which
“rationality” may mean different things at different times. For our game-theoretic en-
vironments, however, characterised by the pervasive element of utility maximisation as
the essence of all agents’ reasoning, it can be assumed that the grounds on which agents
reason remain constant throughout interaction processes.

What actually matters about the adversary’s reasoning process is determining how it
can be used to “massage” that agent into a cooperative stance, i.e. an action selection
mode from which the modelling agent can benefit. How this can be achieved will certainly
depend on the nature of two-player payoff dependencies between the two agents: for a
given (arbitrary) behaviour of third parties, certain action combinations of these two
agents will be more beneficial for the modelling agent, others will be preferred by the
modelled agent and some may be considered “reasonable compromise”. It is precisely



this last class of binary action tuples that count when it comes to establishing mutually
beneficial agreements, joint action selections by which neither of the agents is exploited
while at least one of them profits from the compromise.

Guided by this intuition, the following sub-tasks of L¢F can be specified for the learner i
attempting to achieve individually and collectively rational agreements with some other
agent j: first, find out how j can contribute to your own success regardless of the behaviour
other agents exhibit and vice versa. If neither of you can “help” the other, discard social
considerations in action selection and choose the “exploitation” strategies proposed by
the Strategy Engine. Else, be willing to “sacrifice” some potentially possible payoff to
the degree that the other agent can be expected to act to your own advantage. Attempt
to implement that compromise and if it seems to evolve look for further cooperation
potentials. If not, go back to the “greedy” action-selection rules of the Strategy Engine.
If these tasks can be learned successfully for every peer j, L¢F will be solved indirectly,
because the evolution of possible coalitions can be predicted on the grounds of basic
opponent rationality and actions can be taken to initiate it. We now discuss the principles
upon which we build the learning algorithms that will be used to solve the individual
tasks.

Social learning and decision-making principles

In order for an agent 7 to model the reasoning mechanisms of adversaries, it maintains
(recursive) models of peers’ payoff functions for all opponents in its neighbourhood®!.
More precisely, not the opponents’ payoff functions are approximated, but the binary
dependencies between their payoffs and the payoffs 7 itself might receive for given action
combinations are approximated as 2-player utility pairs (so-called gains) in n-player strat-
egy spaces. Agent ¢ updates these models with information about past moves and payoffs
(using the information provided by the UE), and decides on whether there are socially
feasible action alternatives which ensure a high payoff while making a cooperative stance
of the neighbours probable.

Adopting the viewpoint of agent ¢, the decision situation when trying to assess the
potential for cooperation and what it would do to achieve such cooperation is the following:
agent ¢ is basically aware of the fact that any other agent’s actions affect its own payoffs.
Therefore, it must try to make other agents act to its own favour, and, in turn, it should
be willing to compromise and sacrifice some of its own possible benefits to initiate or keep
up such cooperation if that seems promising (as e.g. in the Prisoner’s Dilemma).
Informally, such correlation between the two agents’ actions is governed by the equation

(1) j’s propensity to help ¢ x (2) value of j’s help for i
= (3) ¢’s willingness to compromise towards j (x)

where (1) reflects the assessment of j’s behaviour in the course of the game with respect
to how beneficial it is for 4, (2) is a measure of how high i values j’s possible help, i.e. the
“power” of j towards ¢, the degree to which j is able to improve 7’s standing. These two
values together determine the degree to which ¢ is willing to sacrifice some of its own
payoff in order to achieve compromise with j to the benefit of both.

Note that by “sacrificing some of its own payoff” we mean choosing some alternative that
is “safer” than the previous action in the sense that it ensures a possibly sub-maximal,

1A neighbourhood N; of player i is an arbitrary, non-empty subset of i’s peers (N; C P — {i}).



yet more reliable payoff'?2. This notion does not bear any implications of “common” or
“global” goals, however; we still view an agent as an individual utility maximiser.

How can j obtain a model of (1) and (2)? A peer’s propensity to help i will certainly
depend on whether actions that ¢ thinks of as “helpful” are desirable for the peer j; it will
also depend on whether 7 would help j in return, and whether it has the power to help
J at all, given that j’s standing also depends an the remaining agents P — {i,j}. This
“power” is nothing but what is expressed by (2), seen from the opposite point of view
(i.e. the value of i’s help for j).

It becomes clear that this mutual modelling of preferences and “values of peers” is inher-
ently recursive in a society of rational agents reasoning about their opponents, so we have
to decide on a method of coping with this recursion.

The position we assume is that we see rational agents as entities which are aware of their
opponents’ rationality and which also know that they are being modelled as rational en-
tities by their opponents (and know nothing more than that). This may seem a confusing
way to put it, but more simply described, the nesting of models goes down to “level 3”
meaning that in how ¢ behaves towards some neighbour j € N;, 7 will consider:

what 1 knows about j,
what 1 thinks j knows about v and
what 1 thinks j knows about what © knows about j.

This view bears strong resemblance to Gmytrasiewicz’ (Gmytrasiewicz, 1996; Gmytrasie-
wicz and Durfee, 1995) Recursive Modelling Method, but its limited maximum nesting
depth makes it much easier to handle than recursive models with infinite nesting!3.
Presenting these reasoning principles for two agents ¢ and j already hints at our strategy
of decomposing the analysis of neighbourhoods of arbitrary size into many binary mod-
elling steps, so for the moment we shall only focus on a single agent ¢ and on the model
it tries to build of some peer j. Later, we shall return to |N;|-sized neighbourhoods by
combining the results of several binary interdependency analyses.

In the following sections we introduce formal frameworks for modelling (a) the value'*
and (b) the preference structure of an arbitrary peer with respect to the modelling agent’s
action alternatives in a multi-player environment: Gain Models and Probabilistic Ordering
Models. Simple update algorithms will be provided for these and a social decision-making
principle based on the principles informally expressed in Equation (x) will be proposed
that turns the nested models into social action values which can then be used by the
Social Behaviour Generator to generate a social bias that may alter the individual utility-
maximizing strategies of the SE. In that, most of the concepts will be different from
previous work on recursive modelling methods (Gmytrasiewicz, 1996; Vidal and Durfee,
1998a). Therefore, a more extensive treatment of the technical details will be necessary
in contrast to the algorithms presented in the previous sections which were based on
“off-the-shelf” machine learning methods.

12A5 an example, the option to “cooperate” in the Prisoner’s Dilemma produces a lower payoff than
“exploiting” the opponent, but attempts to “exploit” will not go unnoticed in the long run, thus yielding
the poor results of the “defect/defect” joint action most of the time.

13 Another (admittedly vague) reason for choosing this level of nesting is that we don’t expect humans
to go into “deeper” recursive reasoning, and humans can still infer “what one likes from what one does”.

14«“Value” of a peer and “value of a peer’s help” shall be used as synonyms henceforth.



5.4.2 Formal framework

The formal framework underlying the learning and decision-making activities of the SBE
consists of three parts — the approximation of two-player utility dependencies in n-player
interactions, a learning algorithm for recursive models of these and the computation of
social action values to bias agents’ strategic decision-making toward socially feasible action
choices.

Modelling binary payoff interdependencies in n-player games

The first thing that is required to find out which actions of a peer j can be considered
cooperative and which not is an approximation of the value of j’s actions for %, given the
payoffs actually received by 7 after each round. It is part of the nature of the game that
those payoffs depend on the actions of agents other than j, therefore our approach will
be that we introduce those values for a constant behaviour of all agents except 7 and j
first and then “approximate those other agents away”.

Loosely speaking, if 7 intends to play a; € A, the value v,, of j’s action k; € A is larger
than that of ks € A, if the distance of the respective payoffs to the minimal payoff for ¢
under j’s actions is larger for k; than it is for k. Thus, if u; : A — R is once more i’s
payoff function,

Uai(kl) > Uai(k2)

is equivalent to
ui(ai, kv, a—gijy) — Inin ui (@i, aj, a—gi ) > ui(as, ko, a_gijy) — Inin ui(as, aj, a_gij1)
J J

if we assume some constant behaviour a_g; ;3 for the remaining agents. So whenever
j chooses an action that is better than some other action as compared to the “worst”
alternative it could have chosen, this action is considered more valuable for ¢. Diminishing
the payoffs of the two action combinations by the minimal worst payoff u;(a;, a;, a_y ) j
could induce on 7 in the current situation (given that ¢ plays a; and the remaining agents
play a_g; j}) is necessary to put the benefits of k; and k5 in relation to the worst outcome
j can cause.

If we were to compute the exact values for v,, for the whole spectrum of a_g; ;;, the above
inequality would have to be replaced by

Z P(a_{i,j}) . Uai(kl) > Z P(a_{i,j}) * Vg, (kg) (52)

a_ (i} €A_i 5y a_ (i} €A_{i 5y

where P(a_y; ;) is the joint probability of the remaining agents’ actions. Such values are,
of course, highly infeasible to compute, since even the update of the probabilities requires
exponential space and an exponential game duration to yield reliable values. We therefore
simplify this model to the easy-to-update approximation of gain-values defined as follows
for any two players ¢ and j:

Definition 5.1 (Gains)

Let P be the set of players in an n-player game with strategy space A = A™. For any
two players i,j € P we define the gain values of j’s actions for i’s action a; € A as the
values of the function gain,, : A — [0;1] computed as

A - mazgain, (a;) + (1 — X) - mingain, (a;)

gain, (a;) = rish(a) (5.3)




for any optimism parameter \ € [0;1].
Thereby, the maximal gain and minimal gain values of j’s action a; for i’s action a;
and the risk value of action a; are defined by the following equations:

. . _ . i . . . _ . . . ! .
mingain, (a;) = a_{i?}ner}zw—2 (uz(az, aj, G j}) (11191612 ui(a;, aj, a_{w})> (5.4)

y B— . . . . . p—— ] . . I ..
mazgain, (a;) = a,{fﬁ%ﬁn—z (ul(az, aj, 0_{ij}) glelg u;(ai, a;, a_{m})) (5.5)
risk(a;) = . max | ui(ai, a_;) — a7£22_1 ui(ai, a_;) (5.6)

Equations (5.4) and (5.5) provide measures for the maximum/minimum “gain” in payoffs
measured as the distance to the minimum payoff with respect to j’s actions under all joint
actions performed by the remaining agents. The respective a_y; ;3 for which these gains
are achieved represent the most/least favourable action combinations of third parties with
respect to the “help” j can provide to 7 if it plays action a;.

Equation (5.6) computes the overall risk for  in taking action a;, i.e. the difference between
the absolute minimum and maximum payoff under a;. The actual gain values defined in
Equation (5.3) are computed by combining the best and worst possibly obtainable gains
weighted by some “optimism parameter” A that expresses how likely the implementation
of the respective remaining agents’ joint action is considered by i. Then, the gain of j
playing a; is determined as that weighted gain combination in relation to the risk value
of action a;.

To illustrate the properties of such gain models, consider the following example of a
four-player resource-load game in which agents share two resources (the parameters of the
game are v = 20, T'= 4 and ¢ = 1). The following table shows a matrix of gain values
of the actions of agent 2 for agent 1, i.e. player 1 is the agent that models the help that
2 can provide irrespective of others’ actions, and agent 1 uses an optimism parameter of
A=0.5.

player2 | 00 01 10 |11
playerl

00 0 0 0 0

01 039 0 [039| 0

10 0.39(039| O 0

11 0.42{0.21]0211] 0

If agent 1 plays ’00’, obviously none of agent 2’s actions can improve agent 1’s standing,
because it will always receive zero payoff. Likewise, if agent 2 plays "11° this cannot be of
any help for agent 1 because that action always maximises the “damage” done to agent
1 by agent 2. When the first player accesses only one of the resources, then any action
of agent 2 by which it either accesses none of the resources or the opposite resource of
the one agent 1 has chosen is considered equally helpful for agent 1. If agent 1 accesses
both resources, the influence agent 2 can have on agent 1’s standing is smaller then be-
fore, except in the optimal case in which agent 2 refrains completely from resource access
(thereby “stepping out of i’s way”).

Thus, gain functions provide us with simple approximations of binary payoff depen-
dencies in n-player environments. Updating such a model is a rather trivial matter; in



the course of the game, agent ¢ simply uses its payoff estimate m; instead of u; and the
joint actions perceived so far instead of the whole remaining agents’ strategy space A"™2
to compute the quantities from Definition 5.1. We will call the estimates agents build of
the gain values gain models (GMs) to distinguish between the exact values defined above
and the picture agents have constructed of them from their experience.

Bearing in mind, however, that 7 is supposed to model the gain values it induces on 7, the
picture j has of the gains it is inducing on ¢ and so on, we need a formalism to approx-
imate some other agent’s gain models, which will have to make do without information
about the opponent’s payoff function. This is presented in the next paragraph.

Probabilistic ordering models

A Probabilistic Ordering Model (POM) is a probabilistic approximation of the orderings
that govern j’s preferences concerning the combinations of its own actions and the actions
of 4, i.e. it is a model one agent has of its peer’s gain model. While other authors
(especially Gmytrasiewicz (1996)) represent hypotheses about opponent preferences as
distributions over a set of possible payoff matrices, we encapsulate the uncertainty here
in rank probabilities. This means that we are only interested in the probability that
the value of some (7,7) action combination (/,k) in j’s GM'® takes on a certain ranking
position among all (a;, a;) rather than in the probability with which it has a concrete
numerical value. We believe that such a probability distribution over combined actions
and ranks yields a more compact representation of all possible matrix entry orderings
than a (probability-weighted) enumeration of all payoff matrices that correspond to those
orderings. We first define POMs formally before going into the details of their use.

Definition 5.2 (Probabilistic Ordering Models)
A Probabilistic Ordering Model is a structure s = (A, M, R, p, p) where

e A is the action set of both agents i and j,

e M : A%? = R is a real-valued matriz,

e R={1,2,...,|R|} is a set of ranks,

e p: A> - R is a ranking function, such that

1. VLEU K € Ao p(l k) < p(l, k) <= MU, K") > M(l, k),
2.V, ke A, p(l,k)=r=Vr"#rp(l,k)#7r" and
3. Vl,ke A, Frp(lk)=r

hold 1©.

e p: A? x R — [0;1] is the rank probability function, that assigns to each pair
(I, k) a non-negative probability with which it assumes position r € R in the ordering
of all matriz entries.

5When talking about models of opponent gains, we will use letters [, k to denote the two agents’
actions instead of a; and a;.

16These conditions require that each matrix entry (I, %) (i) holds exactly one rank in the ordering and
(ii) that this rank is lower than that of some other entry, if the value of the first entry is higher (i.e. the
maximal entry in M has rank 1).



The idea behind having such POMs is that if we take M to be j’s actual GM matrix and
choose R large enough to represent any ordering in GM (|R| > | A?|), then POMs allow for
the representation of any probability distribution over the orderings in that GM. Hence,
7 can use evidence obtained by action observations to infer changes in the probability
of certain GM orderings by updating the individual rank probabilities of the respective
binary action tuples (locally). More specifically, the observations will be used by i to
increase one of P((I',k") > (I,k)) or P((I', k") < (l,k)) by some constant § € [0;1] which
we call the POM update factor.

Using elementary transformation rules for probabilities and the conditions put forward
for p in the POM definition, these two probabilities can be computed as follows for any
Lk K eA:

P((l', k) > (1,k)) = P(p(l', k') < p(L,K)) = P |\ (oI, k') = 1" A p(l, k) = 7‘))

r'<r
\R|-1 |R|
= p(lla kl:’rl) ) Z p(la k,T)
r'=1 r=r/+1

and

P((I',K) < (LK) = P(p(l' k') > p(l,k)) = P ( (p(l', k') =" A p(l, k) = 7‘))

|R| -1
= Y (p(l',k',r') Y p(l,k,r))
r'=2 k=1
This calculation leads to the definition of the update operation for POMs, the add-
operation. It is based on the intuition that ¢ starts with the “empty” POM sy (whose
p-function maps every (I, k,r) to the initial probability ﬁ for every rank r € R (implying
that each matrix entry holds every position in the total ordering with the same proba-
bility). On incoming evidence in support of either of the propositions (I', k") > (I, k) and
(I',k") < (I, k), it updates the rank probabilities for both (/,%) and (I, k") according to
the following definition:

Definition 5.3 (The add-operation for POMs)
Let s = (A, R, p,p)'" be a POM. The add-operation is defined by

add(s, (I', k'), (I, k), 8) = &'

where s' = (A, R, p,p') and § € [0;1] is the fraction by which P((I';k") > (I,k)) should be
increased.
Then

1
Vr € R.pl(l’, Ifl, 7') = m . (p(l,, kl, 7") + )

p( k) - S p(Lk, r'))
P((l, k) > (I, k)

and

1
Vre Rp'(l,k,r) = ——- (p(l,k,r) +0

p(la ka T) ) Z:’_:ll p(lla kla T,)
1+9

P k) < (I K))

1"From now on, we can drop the M argument of the POM specification, because we are talking about
i’s model of j’s GM, and i is ignorant of the real structure of M.



r |1 2 3 4

r |1 2 3 4

r |1 2 3 4

(0,0) [0.25 0.25 0.25 0.25
(0,1) | 0.40 0.29 0.19 0.12
(1,0) | 0.12 0.19 0.29 0.40
(1,1) | 0.25 0.25 0.25 0.25

(a) After two add(s,(0,1),(1,0),0.3) op-
erations; the probabilities of the higher
ranks for (0,1) have increased to a
greater degree than those of low ranks,
with opposite effects on the rank prob-
abilities of (1,0). Thus, the algo-
rithm assigns larger probability shifts
to those ranks who can cause § most

0.02 0.01 0.01
0.92 0.04 0.02
0.02 0.04 092 0.02
(1,1) | 0.01 0.01 0.02 0.96

(b) After 20 iterations of adding 0.3
to all binary relations in in the chain
(0,0) > (0,1) > (1,0) > (1,1); the
POM captures the transitive nature of
“>” by clearly distributing all ranks
among the matrix entries. This is a
very interesting property, because we
get the transitivity conclusions “for
free”.

(0,0) [0.44 0.16 0.14 0.26
(0,1) | 0.03 0.92 0.04 0.01
(1,0) | 0.01 0.04 0.92 0.03
(1,1) | 0.33 0.12 0.11 0.44

(c) This is the result of adding 0.3
twice to (1,1) > (0,0) in the POM
shown in (b); the model uncovers the
violation of the antisymmetricity of
“>” and reduces/increases the proba-
bilities of extreme ranks for (1,1) and
(0,0) much quicker than it changed
them in (a). (1,0) and (0,1) remain
unchanged.

easily.

Figure 5.13: The POMs shown in (a)-(c) show the results of several (series of) operations on a simple
POM with |A?| = |R| = 4; the rows show the probability of each entry of the matrix A x A assuming
rank r (represented by the columns). Initially, all POM-entries are 0.25.

and the values P((I', k") > (I, k)) and P((l,k) < (I', k")) are calculated as presented above
using the original POM s (we shall write s((I', k") > (I, k)) for P((I', k') > (I,k)) hence-
forth, if that probability is calculated using the POM s).

At first look, this definition seems quite complex, but it is necessary to keep the rank
probabilities p consistent with the axioms of probability theory. It is rather difficult to
explain the mathematical details of this construction in words, so we suggest observing
Figure 5.13 which shows some examples of POMs and operations performed on them to
illustrate their behaviour.

One of the interesting features of the formalism is that in performing add-operations,

we need not worry about decreasing the § added to some POM entry with every new
piece of evidence. This is normally necessary, because if s((I', k') > (I, k)) is already very
large due to past observations, it is reasonable not to weigh any further evidence for this
statement as heavy as before. Fortunately, add-operations have precisely this effect on
probability values even if a constant ¢ is employed throughout.
Another important aspect is shown in table (b) of Figure 5.13, namely that if evidence
for transitive “chains” of >-relationships is provided, then the POM distributes the ranks
neatly among matrix entries. Table (c) shows that the POM is “aware” of this rank dis-
tribution being fragile, so that a violation of the previously assumed chain immediately
has very strong effects on the values affected by the contradiction.

This makes POMs a very practical means of approximating the orderings that govern
matrices and thus particularly useful in settings in which knowledge of the precise quanti-
ties of matrix positions is not required. We next discuss the way POMs will be employed
by the Social Behaviour Engine.

Recursive belief modelling

We now have shown how an agent 7 can update a model of its own gains with respect
to some peer j’s actions and how the models it has of j’s GM will be constructed. As
mentioned before, we intend to conduct this modelling down to the third level of nesting.
We therefore equip agent i’s SBE with the following four components for each agent



jeN;:

Model Function Type
s%(1, k) | ¥’s model of its own gains wrt j GM

s'(k,1) | i’s model of j’s gains POM
s2(I,k) | 7’s model of j’s model of i’s gains POM
s3(k,1) | 7’s model of j’s model of i’s model of j’s gains POM

The GM s° of ¢ will be constructed as described above, i.e. Va; € A,a; € A. $°(L,k) =
gaing,(a;). The update algorithm for it, UPDATEGM will not be described in detail,
since it is clear that it can be conducted by simply keeping track of the maximal/minimal
payoffs and the corresponding joint actions during the game.

The remaining models will be POMs with an initially uniform distribution over all ranks
for every matrix entry (i.e. s' = s> = s> = s5). These POMs will be updated after
each round of the game using two different algorithms UPDATEPOM_UNPROFILED and
UPDATEPOM_PROFILED, depending on whether the behaviour of the agent whose gains
are being modelled is profiled or not, i.e. whether it exhibits some preference for specific
actions or not.

UPDATEPOM_UNPROFILED

This algorithm is employed whenever a SBE component other than s° has to be updated
and the opponent of the agent whose gains are being modelled exhibits an “unprofiled”
behaviour, i.e. it shows no preference for any action or, to put it another way, does not
show any intentionality in its actions. Such an update mechanism is necessary for two
reasons: firstly, during an early phase of the game agents might still follow an explo-
ration strategy to gather information about the nature of their payoff function. For their
opponents, such a “playing around”-attitude does not reveal any information about the
preferences of those agents but they know that they might be modelled — if acting inten-
tionally themselves — as intentional entities by their sub-intentional behaviour exposing
peers. A second reason is that agents might encounter opponents which are sub-intentional
non-deliberative components of the system lacking any rationality. A possible condition
to decide whether some peer behaviour'® Pr; : A — [0;1] is profiled or not is given by

2
profiled(j) = true <= > (Prj(aj) - ﬁ) > 1

ajEA

where ¥ € [0;1] is a wariance threshold (which is exceeded, if the variance from the
supposed mean probability ﬁ becomes too high).

We now explain UPDATEPOM_UNPROFILED informally for a situation in which j acts in
an “unprofiled” way and 7 acts intentionally.

Given this situation, how should i’s GM be modelled by j? Since j reveals no preferences
through its actions (and is aware of that), it knows that 7’s s = sy. Therefore j assumes
1 to act irrespective of j’s own actions, i.e. ¢ will choose that action which provides the
highest gain in s regardless of what j plays. If i just played [, the expected gain for 4

was
> Prj(k) - s°(I, k)
k€A

18Pr; is the posterior probability of the peer to play k € A for every k, i.e. the frequency with which
it has chosen that action in the past.



because for ¢ j's action probabilities are only distributed according to Pr;. Assuming that
7 is a rational player, if ¢ played [y in the previous round, it must have tried to improve
its expected payoff when choosing [, which means that

ZPrJ U, k) > ZPrJ s(lo, k)

keA kA
must hold. Given that this inequality might have been caused by any of the s°(/, k) >
s%(lo, k) and considering that j’s actions are almost equally distributed, we add some
small (constant) quantity ¢ to the probabilities of all such relations. So in any round, if
lo and [ are i’s subsequent action choices, we perform the operations!®:

Vk € A. add(s?, (I, k), (lo, k), 6)

UPDATEPOM_PROFILED

The last section covers the cases in which at least one of the two agents exhibits an
unprofiled behaviour. If both act like deliberative, rational players, things get much more
complicated, because action choice depends on the opponent’s expected behaviour, the
opponent’s behaviour depends on the first agent’s behaviour, and so on.
Before going into the details of the update algorithm devised for such situation, the auxil-
iary definition of flattened POMs is necessary, because the probabilities P((I', k") > (I, k))
that we have used so far only provide a means of making comparative statements between
the values of two action tuples and no method of deducing absolute values for ([, k) action
combinations has been introduced.

Definition 5.4 (Flattened POM) Let s be any POM. Then the flattened POM 3§ cor-
responding to s is a matriz 5 : A> — R such that

|R|
Vi, ke A5l k) = Zcr (I, k,r)

and ¢ = (c1,...,¢r) 45 a real-valued rank-flattening vector with V' > r. ¢ < ¢,
i.e. some vector that assigns the highest value to the lowest rank and decreases with in-
creasing rank.

Flattening a given POM compiles it into a binary payoff-matrix, which seems to contradict
our initial considerations about discarding quantitative matrix properties and restricting
ourselves to an analysis of the orderings of opponents’ gain values. Yet this transforma-
tion is indispensable for the following analysis of the agents decision situation, so we will
use it in the following without specifying how the c-vector will be determined in practice.
For reasons of conventional notation we shall write s(l, k) for 5(, k) henceforth for any
POM s, thereby pre-assuming that the models have been converted into flat matrices
where necessary.

Since we have decided to consider this nesting only up to the third step, we can assume
the following rational choice model for players:
Player 7 will base its choice upon the gain it expects for any action | € A given the
expected behaviour of its peer j. The expected gain g;(a;) can be used as a measure for
the probability with which ¢ will choose the respective action and it can be computed as

i(a:) =[l 3_ s°(ai, k) - Pla; = k) | (5.7)

kEA

19The same operations would be performed on s! and s® if ¢ was acting in an unprofiled way, and j
exhibited a profiled behaviour.



if P(a; = k) is the probability with which ¢ expects j to play £ € A (]| - || is again
a normalizing function, so that the g;-values always sum to one). The next step is to
determine the peer action probabilities P(a; = k). Assuming that j is a rational player,
too, ¢ has to consider that the peer follows a similar logic in selecting its own actions. So
if j estimates the probability with which 7 might play [ as?*® &;(I) we obtain

P(a; = k) ~|| s'(k,1) - (1) | (5-8)

as a selection probability estimate for all £ € A, because the picture ¢ has of j’s gain model
is reflected in the POM s'(again, the values are normalised to obtain a valid probability
distribution).

Furthermore, 7 assumes that j considers also what it knows about i’s own GM to compute
g;i(l) in Equation (5.8). Knowledge of what i has revealed about its own preferences is
stored in s?, so these ¢;(I)-values compute as

ei(l) =l s*(L, k) - &;(k) | (5.9)

by virtue of the same argument as before. Taking the recursion one step further, s® (i’s
knowledge of what it has revealed about its knowledge of j’s GM) can be used to obtain
the values for ¢;(k) in Equation (5.9):

ej(k) =l s°(k, 1) - &s(1) || (5.10)

This time, however, ¢ assumes that no further recursive models are maintained by its
opponent, so that all j can use to determine the action probabilities of 7 are the posterior
probabilities with which the actions have been selected so far:

Taking equations (5.8) to (5.11) together and replacing the e-variables where required,
we can construct an explicit representation of the ezpected gain g;(a;) for any action of i
that makes use of all available models.

Although this choice model will only be used later in the social decision-making rule,
we have introduced it here to motivate the construction of UPDATEPOM_PROFILED and,
in fact, the above equations map directly to appropriate update operations for the POMs
s!, s and s® after each round.

These operations basically reflect the propagation of the e-probabilities from s to s.
Assume that if (lo, ko) — (I,k) is a (i,7) two-move sequence (i.e. for two consecutive
rounds ¢ and t + 1, ag.),j} = (lo, ko) and agﬁ) = (I, k) hold). For each such consecutive

action pair, we perform the following steps:
1. Let 5% := s3.
2. Perform add(3?, (k, 1), (ko, o), ).

3. Foralll' € A, let

ﬁ > (53((k’,l’) > (ko, b)) = s*((K', 1) > UfﬂJO)))

k'eA

dl/ =

be the mean of the differences in the probabilities of all affected orderings induced
on s by Step 2.

20The use of € instead of P for these probabilities is due to the fact that e-values are derived from
recursive models of preferences, while probabilities P always denote the ezact likelihood with which some
proposition holds.



4. Let 5% := §°.

5. For all I' € A, perform
add(§21 (lla k)a (l0a ko), dl’ . (5)

so that s? is adapted to the changes in Step 2.

6. For all ' € A, let

dy = ﬁ > (P, K) > (o), ko) — *((1 K) > (lo, ko))

7. Let §' := s".

8. For all ¥’ € A, perform
add(5*, (k,1'), (ko, o), dys - 0)

to propagate the changes in Step 5. to s'.
9. Finally, adopt 5%, 52, and 5° as the new POMs for i’s SBE.

Briefly summarised, all UPDATEPOM_PROFILED does is to update the affected probabil-
ities in s® according to the action observation, and to propagate the resulting probability
changes from s? to s? and from s? to s, as if, loosely speaking, the changes of s', s? and
3 directly represented the changes in the e-values in equations (5.8)-(5.12) above.

In the next section we provide a social action-value function computing rule, which
suggests a method of realising the right-hand side of equation (%) presented in Section
5.4.1 by making use of the formalisms introduced in this section.

Determining social action values

Intuitively, an agent is willing to compromise or cooperate if it would give away some
proportion of the gain it expects for itself for the sake of achieving that compromise. In
terms of our formal framework this translates into the principle

“instead of choosing that action which promises the highest utility for i it will
also consider other, sub-optimal actions if the expected behaviour of j given
those actions promised a gain at least as big as the amount of utility sacrificed”

In our recursive gain model system, this can be restated as follows: if 7 has computed
some predicted behaviour P(a; = k) for j then i’s expected gain is g;(a;) for any action
a; € A as defined in Equation (5.7). Then, if we let v € [0;1] be a compromise factor
that expresses how big a percentage of its expected maximal gain 7 is willing to sacrifice,
and m; is i’s (individual) action-value function obtained from the Strategy Engine, we
can construct the decision function SOCDECIDENEXT for 7 for round ¢ in the following
way:

1. For every a; € A compute the normalised expected gain g;(a;) as defined in Equation
(5.7).

2. Let £Lj:={a; € A | mi(a;) +7 " gi(a;) > maxyeami(a;)}.



3. While £; = () decrease « and try constructing £; as before, until either £; # 0 or
v =0.

In step 2. we construct the set £; of all actions for which the sum of action value m;(a;)
and the y-weighted expected gain induced by j’s behaviour is greater than the maximal
action value (the expected relative payoff of the most “greedy” action). We call £, the set
of socially feasible actions towards j. If this set is empty, we decrease v until £; becomes
non-empty, which means that we look for actions which enact less compromise, if “we
can’t be as nice as we would like to be”. If v becomes zero and L; is still empty, the
algorithm terminates and returns the empty set; else, a non-empty set of socially feasible
actions is returned.

Extending this rule to arbitrarily-sized neighbourhoods N; C P — {i} can be done
in a straightforward manner by proceeding in the following way: for each agent j in
i’s neighbourhood M, i constructs the set of socially feasible actions L£; separately and
determines the set of neighbourhood-feasible actions as L := Ujea;£;. On the basis of
these constructions, the social action value function I; of Section 4.4.2 can be defined as
follows:

S ien: Speasi(k,a;) ifa; €L
) = e . M(a) = { e Freasilioed (5.12)

i.e. that action in £ is chosen with highest probability that seems most desirable for the
largest possible number of agents in the neighbourhood (after all, their preferences should
also be taken into account). If £ = (), I; should exhibit no preference for any action, so
we choose to define

Va; € Al; (0,,) =m; (0,,)

to account for cases in which compromise with any neighbour is impossible.

The separate computation of L;-sets implies that we allow for various degrees of coop-
eration with each neighbour, a fact which makes the implicit deal-making highly flexible
and adaptive to peers with different “power” and “helpfulness”.

The construction of L-sets constitutes the central step in the employed social reasoning
methodology necessary to construct the social action-value function /;. This can be used
to overrule the greedy “strategic” choices implemented by playing m;.

At this point one might be tempted to infer from the design of this function that we
have circumvented the problem of antagonism by endowing agents with a cooperative bias,
which inevitably will make them cooperate in practice, because they are designed to do
so. However, this is not the case, since our agents still do not pursue any other goal than
to maximise their individual utility. Their propensity to cooperate springs solely from
their ability to detect the potential for cooperation to the benefit of both themselves and
their opponent. It is now time to conduct a first evaluation of this learning component
as was done for the other two parts of the architecture. For various reasons which we
soon discuss, such preliminary testing cannot be easily organised for the Social Behaviour
Engine, so we will actually restrict this analysis to the presentation of a simple example.

5.4.3 Preliminary results

The formal framework used by the social learning and decision-making layer in the LAYLA
agent architecture offers a variety of parameters for which appropriate values should be
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Figure 5.14: TIT FOR TAT state transition diagram. The arcs represent the actions of the modelling
agents, the nodes those of the modelled opponent. ’C’ is marked the initial state, so that the opponent
would never defect first. Whenever the modelling agent defects, the opponent will defect as well in the
following round and the converse holds for cooperating.

determined through empirical evaluation. These include the optimism parameter \ em-
ployed to calculate gain values, the rank-flattening vector ¢ used to compile POMs into
real-valued matrices, the POM wupdate factor §, the compromise factor v that determines
which actions will be considered socially feasible and the size and structure of neighbour-
hoods {N;}icp.

Unfortunately, we are not in the position of testing the performance of the SBE indepen-
dently from the other components as was done for the Utility Engine and the Strategy
Engine in previous chapters. The payoff function estimate 7; could in principle once more
be replaced by the precise payoff function u;. The action-value function of the Strategy
Engine, however, can not be substituted by the respective precise concept, because, as was
previously remarked (cf. Section 5.3.3) the opponent behaviour on which action values
are based is not fixed. Thus, no fine-tuning decision of the SBE can be conceived of that
can be proved to be valid regardless of the SE results.

For this reason, we deviate from the methodology of making parameter choices through
extensive testing and present a simple, very stylised example of the behaviour of social
learners. This example will be based on the Iterated Prisoner’s Dilemma (IPD) as intro-
duced in Section 3.1.2. The reason for choosing the IPD is that the simple TIT FOR TAT
strategy provides a reliable, robust meta-strategy that can be used as a fixed behaviour
pattern to simulate the OBP models of the Strategy Engine. TIT FOR TAT requires the
player (i) not to be the first to defect and (ii) always to perform whichever action the
opponent has performed in the previous round. Using the notational conventions of the
“opponent automata” (cf. Section 5.3), TIT FOR TAT translates for either player into
the state transition diagram shown in Figure 5.14. Assuming that both players are TIT
FOR TAT-compliant, the action value function m; yields for any player ¢ in round ¢

o032 ifd"P=cC _foe6m ifd"Y =cC
mi(C) = { 0.0 else mi(D) = 1.0 else

Quite naturally, defecting is considered more effective if the agent has been defecting
before and cooperating seems slightly more promising if the agent has been cooperating
before (which, by the rules of TIT FOR TAT forces the opponent to cooperate in the next
round as well).

Although these action values take opponent behaviour into account, they still favour
selecting the maximin “defect” strategy, so our task will be to show that the (C,C)-
agreement can be established when using the SBE.

A last preliminary step that has to be taken to provide all the necessary inputs to
the SBE is to construct the two players’ private gain models s and s which can be



computed using the exact payoff functions u; and u,. The matrix obtained by performing
the calculations of Definition 5.1 is for both players

player 2| C | D
player 1
C 1.0 | 0.0
D 1.0 | 0.0

and is for this special simple case independent of the choice of .

Using 6 = 1.0 and assuming an initially equal posterior probability distribution
(Vi € {1,2}.Va; € {C,D}.Pr;(a;) = 0.5), cooperation on both sides emerges immedi-
ately and remains stable throughout the game if and only if v > 0.5. This observation
is subject to the condition that both agents play ’C’ in the first round, which is un-
derstandable given that the computation of m; depends on the previous action and the
construction rule for £; cannot include 'C’ in these sets if m(C) = 0.

In a second test, we decrease v, to 0.4 after 50 rounds. Quite remarkably, it took player
1 only 4 rounds in which it was exploited by its opponent to realise that it should alter
its behaviour to ’D’. The choice of 7, is a very sensitive issue here; while for values of
0.505/0.508 it takes agent 1 6/13 rounds to discover the exploitation, it will fail to do so
for any v; > 0.509. For all remaining rounds, the (D,D)-combination was played, since
player 2 cannot go back to 'C’ due to its low compromise factor.

Changing 7, back to 0.5 again after 10 more rounds yields a permanent (D,D) behaviour
which means that agent 1 does not “forgive” agent 2’s egoism — unless both agents play
'C’ in some future round “by accident”, that is.

This is again an effect of the action values resulting from the TIT FOR TAT strategy,
and it is not clear whether such effects carry over to the resource-load balancing games in
which OBP models are much fuzzier and in which a certain degree of randomization will
always influence the way in which the POMs will develop over time. We therefore choose
not to make any further decisions concerning SBE parameters and leave this task to the
evaluation chapter, in which all components will be tested together.

However, we have obtained a very essential result for our social learning and reasoning
components with this “toy example”, namely that under certain conditions it can make
agents move away from short-sighted greedy action choices to collectively rational be-
haviours. The fact that all used components were constructed one by one according to
the formalisms of the UE, SE and SBE prototypes suggests that the integrated reasoning
and learning architecture is reasonable, because the result cannot simply be explained
with coincidence.

To complete the design of our prototype, we next present the top-level algorithm that
summarises the behaviour of LAYLA agents. It encapsulates the control flow between the
components and implicitly defines the decision-making function of the agent.

5.5 Integration — the SOCCER algorithm

The top-level LAYLA algorithm called the SOCial Cooperation-Enabling Reinforcement
algorithm is rather simple and relies on the notions of “exploration needs” and “profiled
behaviour”. “Exploration needs” reflect the necessity for any agent to try out actions at
the beginning of the game until it has a satisfactory picture of its own payoff function.
We assume that as long as those needs are not satisfied, the agent doesn’t go into any



strategic/social reasoning at all, thus behaving seemingly sub-intentionally for its peers.
We shall use exploration_needs_fulfilled as a testable predicate for this (the testing condi-
tion might be, e.g. “has the error in payoff prediction fallen below some threshold?”).

This notion is crucial to the construction of a social reasoning algorithm, because it pro-

vides a clear condition of when to switch the social decision-making component “on” and
13 2
oft”.

The SOCCER algorithm for some player 7 in round ¢ is shown in Figure 5.15. Since the
update mechanisms for the SBE are somewhat complex in that they depend on whether
the opponent or the agent itself are behaving intentionally, we have chosen to include the
update operations in the top-level algorithm.

The algorithm takes as inputs a neighbourhood Nj;, the current joint action a® and
associated payoff u;(a®) and collections of the recursive models s°-s® for every neighbour
j € N; (where S; denotes the respective s-model for opponent j). Implicitly, the SBE
has, of course, a Utility Engine UFE and a Strategy Engine SE at its disposal.

The first two function calls UPDATESE and UPDATEUE are meant to update the ANNs
and GAs of the lower layers as discussed in earlier sections. Additionally, they output
strategies aVF and o°F as exploration/exploitation strategies according to the exploration
needs of the UE and the action values of SE.

As far as the Strategy Engine is concerned, the strategy o®F it returns will simply be the
(mixed-strategy) action-selection rule m; derived from individual action values:

Va; € A.a®"(a;) = my(a;) (5.13)

The Utility Engine takes o® and combines it with an exploration function z that reflects
how much exploration is still needed for particular actions, defined as

) =1 (F92) (5.0

for any a; € A, where #(a;) is a function that counts how many times a; has been played
so far, so that those actions that have been played less often will be assigned greater
selection probabilities.

If 7 is not satisfied with the performance of its neural network it will attempt to bias
the action selection rule toward actions with higher z;-values. So whenever the payoff
prediction error exceeds the threshold (, the strategy aUF returned by the UE (which
implicitly defines the UE strategy e; introduced in Section 4.4.2) will be a mixture of
o®F and z;. Whenever payoff prediction is accurate enough, the action-value maximizing
strategy will be chosen:

UE (

«

@) = ex(a) |l ei(a»—{z(“i”“”(“i) if ug(a®) = mia®)| > ¢ 5 4

T () else

Thereby we use “|u;(a®) — m;(a®)| > ¢ also as a testable condition for the predicate
exploration_needs_fulfilled.

UPDATEACTIONPROBS is a simple action-frequency updating function that keeps track
of how often ¢ and j have performed particular actions in the past; UPDATEGM() simply
updates the |N;| s®-models according to new payoff/action pairs and the results of the



SOCCER(i, N, a®, u;(a®), 80, 8!, 82, 8%)
5P UPDATESE( (®));
aVE « UpDATEUE(a®, ula®), oSP);
UPDATEACTIONPROBS(a);
FORALL j € N; DO
UPDATEGM(SY, al! ul?);

? "
IF profiled(j) = false THEN
IF profiled(i) = true THEN
UPDATEPOM_UNPROFILED(S?);
END:;
ELSE
IF profiled(i) = false THEN
UPDATEPOM UNPROFILED(SJI)

UPDATEPOM UNPROFILED(S3)

ELSE
UPDATEPOM_PROFILED(S}, 87, 53);
END;
END:
L; + SOocDECIDENEXT(j, @°F);

END;

IF ezploration_needs_fulfilled(i) = true THEN
a1« SocCoMBINE({L,; }en;);

ELSE
att])  oUE,

END;

RETURN oltt1);

END

Figure 5.15: The SOCCER algorithm.



Utility Engine.

Integration of the SBE, whose recursive gain models are updated with the UPDATE_POM _-
PROFILED and UPDATE_P OM _UNPROFILED algorithms is achieved by performing SOCDE-
CIDENEXT for every peer. This function constructs a (possibly empty) L;-set for each
neighbour by using the action values a”F of the Strategy Engine as described in the pre-
vious paragraphs. SOCCOMBINE implements the computation of a social value function
l; by creating a mixed strategy that outputs the most peer-desirable action contained in
the union of L;-sets.

Finally, the strategy to be played in the next round is selected according to whether the
UE demands further exploration or the social action values can be safely used (which can
be identical to the SE action values, if compromise is not possible).

This provides us with simple instantiations of the functions e;, m; and [; that were
proposed to organise the decision-making control flow between LAYLA components, thus
enabling the realisation of game simulations with integrated agents.

5.6 Summary

This chapter introduced a prototypical design for game-learning LAYLA agents that is
in concordance with the general architecture introduced in Chapter 4, as illustrated in
Figure 5.16. The choice of the particular algorithms was partly motivated by the learning
tasks, as e.g. in the case of the payoff-learning neural networks and the transition-rule
genetic algorithms used for opponent behaviour modelling, and partly derived from ex-
trinsic intuitions, such as the best-response argument used for deriving action values and
the “compromise” argument employed by the social reasoning component.

An interesting side-effect of these choices is that the smooth transition from sub-symbolic
methods to explicit symbolic reasoning was realised for the learning components in the
same way as it exists in the generic InteRRaP architecture. While the Utility Engine uses
the entirely sub-symbolic formalism of ANNs, the Strategy Engine employs a mixture of
both principles since it combines logical rules with evolutionary methods and instance-
based learning. The Social Behaviour Engine, finally, uses an explicitly symbolic decision-
rule and an inference mechanism for re-organizing knowledge about preference structures
that is similar to symbolic/numerical methods for probabilistic reasoning, e.g. Bayesian
learning.

Amongst the most important characteristics of the prototype is that it employs very

little knowledge of the system environment: agents only need to know about their action
alternatives and those of others and they need to be informed about the payoffs they
receive and about the currently performed joint actions. At some points we also assumed
that agents were aware of the fact that their payoffs depend on global resource access,
but we believe that in a resource-load balancing scenario this is not an overtly restrictive
assumption. Apart from this assumption, the designed components can easily be adapted
to any other n-player game.
For the specific class of resource-load balancing games that we account for, preliminary
results proved that agents can learn the individual concepts at least in principle. Whether
the learners’ performance is sufficient and whether we can successfully combine the learn-
ing components to ensure the emergence of coordinated behaviour remains to be shown
in the next chapter.
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Figure 5.16: Layered learning view of the LAYLA prototype. Each agent “consists-of” three
learning layers for different learning tasks; learning results are propagated through these in a
hierarchical way. L' can be decomposed further at a “learning cell” level: the ANN units
interact via back-propagation. LYBP combines the results of 2¢ GA populations; individuals
in these populations interact through crossover, and they compete for selection in the nearest-
neighbour algorithm. L¢" is decomposed into several neighbour analyses, each of which is built
of the recursive belief models. The society-level layer Lociety consisting of n agent learners is
only sketched (by a dashed frame) as it is not implemented explicitly.






Chapter 6

Evaluation

Each new program that is built is an experiment.
It poses a question to nature, and its behaviour
offers clues to an answer.

— A. Newell and H. A. Simon,

Computer Science as Empirical Enquiry

So far, we have explained the general class of problems for which our approach was de-
signed, we presented an abstract architecture that is supposed to tackle these, and we
have provided an extensive treatment of a possible concrete agent design that embodies
the properties of the general framework.

Yet these undertakings can only be justified by proving their practical adequacy, be it
through exact mathematical proof methods or by empirical validation. As mentioned be-
fore, we choose to pursue the latter alternative, mainly because an exhaustive theoretical
analysis of the employed learning algorithms lies beyond the scope of this work. A second
reason is that randomisation in action choice and the close interplay between action and
learning imply that only asymptotic bounds for convergence of the learning algorithms
can be provided (as is common practice in the field of machine learning). Furthermore,
rather restrictive assumptions have to be made to provide precise theoretical results, as
will be illustrated in the paragraph on the theoretical derivation of the compromise factor.
Empirical testing, on the other hand, shows whether, how and why the algorithms work
in practice, how fast they converge to effective behaviour patterns, how these relate to
optimal solutions and whether they remain stable.

The following sections are organised as follows: First, an overview of the evaluation
procedure is provided together with a discussion of complexity issues that impose severe
restrictions on the scope of covered problem sizes. The subsequent section gives an account
of extensive tests' divided into three parts — fine-tuning tests, conducted to optimise the
performance of the integrated architecture, “bounded rationality” tests, by which the ef-
fects of limited reasoning capabilities and noise on agents’ performance are assessed and
“scaling tests” that analyse the performance of the architecture for larger problem sizes.
Finally, we round up with a critical review of the evaluation and a summary of its main
results.

LAIl of the reported simulations were carried out using the gsim software package, a JAVA imple-
mentation of the LAYLA system that we have developed. It can be downloaded (together with online
documentation) from http://www.ags.uni-sb.de/~rovatsos/layla.



6.1 Measuring system performance

Before embarking on the presentation of empirical results, a precise description of how
these tests will be conducted and what performance measures will be applied has to be
presented, together with an outline of the underlying assumptions.

In the case of testing LAYLA societies, we additionally have to explain why most of the
conducted tests were performed for two-player games, and this will be the issue that we
look at first.

6.1.1 Complexity issues

It is a natural consequence of excluding the possibility of communication and the avail-
ability of prior knowledge that all computational effort is devoted to extracting as much
information as possible from very scarce input data. In our architecture, agents use a
single percept consisting of the current joint action and the associated private payoff to
update the neural network of the Utility Engine, to train the genetic algorithms of the
Strategy Engine and to predict future opponent actions accordingly. Moreover, this per-
cept is used to update the Social Behaviour Engine POM models, the agent’s Gain Model
and to generate socially feasible action choices.
Unfortunately, this involves very costly computations in terms of both time and space.
Consider a game with n players and k resources which is played for d rounds. Firstly, the
Utility Engine trains the net with the new sample, which can be done in O(w), where w
is the number of network weights. According to our choices concerning network structure
(cf. Section 5.2.2), the networks? agents employ will have kn - 2n + 2n - 2n + 2n weights,
so that update (and predict) operations can be done in O(n?k).
Assuming that the sample sets of the UE are not constrained in size, and that, in every
round, the agent updates the network with all stored samples (one update iteration for
each sample), the total time complexity of the UE after d rounds is O(d?n?k), since a
total of

ii _d(d+1)

i=1 2
update operations will be performed during the game.
Under the assumption that the GAs in the Strategy Engine use a number of samples in
O(nk) (so that the complexity of the UE is not exceeded), and that this layer uses all past
examples in each round in the same fashion as the UE, we obtain an overall asymptotic
running time of O(d?nk) for the Strategy Engine®.
As concerns the Social Behaviour Engine, we assume that the number of ranks is sufficient

to capture binary action matrices, i.e. |R| = |A|? = 2% . 2¥ = 22% and that the neigh-
bourhood size is in O(n) (the larger the society, the more neighbours should be reasoned
about).

Further, we will assume that the Gain Model (with respect to one neighbour) can be up-
dated in time O(2Fn%k): retrieving the mazgain and mingain values involves determining

2The input layer of each net has size kn, the two hidden layers have size 2n and the output layer
consists of a single unit. Each unit of each layer is connected to every unit in the subsequent layer.

3The GA update runs in time linear in the population size (i.e. O(nk)), assuming that crossover and
mutation can be done in constant time. The computation of the fitness function takes time linear in
the number of past examples and population sizes, so that, once more, this complexity is quadratic in
d. Recalling that in every round only one of the 2¥ GA populations is updated and used for nearest-
neighbour-prediction (which, again, can be achieved in time linear in the number of nearest neighbours)
this yields a total complexity of O(d*nk + nk + nk) = O(d*nk).



the minimal payoff under the peer’s actions, so that actually 2* payoff values have to be
predicted using the UE, resulting in a total complexity of O(2fn%k) (payoff prediction,
just like ANN update takes O(w) = O(n?k)).

Also, at least one add-operation has to be performed in each round and such an operation
(cf. Definition 5.3) takes O(|R[?) = O(2%) (as do the retrieve-operations that are neces-
sary to determine the P(s(k',l") > s(k,l))). In the worst case, UPDATE_POMPROFILED
will have to be performed in every round which involves O(|A|) = O(2¥) such update
and retrieve operations, yielding a total of O(2* - 22¥) = O(25%) for one round and one
neighbour.

Flattening each POM is linear in the number of the model’s entries, i.e. O(2?%); the same
holds for determining the expected gain g;(a;), so that for a total of 2% actions a; the
construction of £; takes O(2F - 22) = O(2%). Thus, the total running time of SOCDECI-
DENEXT is O(2%)+0(2%) = O(2%) for one neighbour, so that O(d-|N;|-2°%) = O(dn25*)
is the running time of the SBE in d rounds (since |[N;| = O(n)).

Thus, a LAYLA system consisting of n agents has an asymptotic time complexity of

O(n - d*n*k) + O(n - d®nk) + O(n - dn2°)

if we take the running times of the UE, the SE and the SBE together, which is exponential
in the number £ of resources, cubic in the number n of players and quadratic in the game
duration d.

It is therefore not surprising that a dramatic increase in simulation times can be

observed for different problem sizes. A JAVA implementation of the LAYLA prototype
took typically around 20 minutes for a 1000-round long two-player simulation, while over
twenty hours were necessary for a ten-player five-resource game (benchmarks measured
on a Sun Sparc Ultra-2 workstation).
Even worse, we can expect larger games to be much more difficult to solve, so that, in
practice, a greater number of rounds will have to be played until they can be expected
to converge. Since our framework involves a large amount of randomisation in action
choice and since the learning processes very much depend on the actual history of the
game so far, multiple testing of identical settings would be necessary to obtain reliable
values for learning and action performance. This makes a thorough testing of large-scale
interactions even more intractable.

We confront this problem by proceeding as follows: extensive testing for a multitude
of parameter choices is conducted for a two-player two-resource game. To ensure that our
results are reliable, identical simulations are conducted repeatedly (typically, each test
will be repeated 100 times). Convergence of the algorithms is validated by using game
durations much longer than the “complexity” of the problem: such a two-player game
has only 16 joint action combinations (A = |A]?> = 2% .2F = 22.22 = 16) and payoff
functions and best-response predictions can be learned with very high accuracy within a
small number of rounds (cf. the analyses in Section 5.2.3 and Section 5.3.3). Therefore, by
running simulations of 1000 rounds we can rule out that agent behaviour might converge
after more rounds (even if this were the case, it would point at very low performance).
On the other hand, if stable situations are established much earlier, such long simulation
times are useful to ensure that equilibria are not left again.

After determining optimal configurations for these games, we will present the results
of singular simulations for larger five-player, ten-player and fifty-player examples. In
contrast to the two-player games within which agent performance is verified rigorously,



these scaling experiments can only serve as illustrations of how effective the framework
can be. Most of the parameter choices for these larger problem sizes will be derived (very
vaguely) from the two-player example and can by no means be claimed to be optimal.
Due to the complexity problems just mentioned, we will be forced to assume that — apart
from the compromise factor y, for the choice of which we will use a theoretical argument —
most of the parameter choices simply carry over to larger problems, which is, admittedly,
rather undesirable.

However, the surprisingly good performance of the algorithms as we use them is a remedy,
because even if parameter choices were sub-optimal, this would prove that there is room
for even better performance than what was observed.

6.1.2 Assumptions

In this section, we present the assumptions that will hold throughout the experiments to
follow. An assumption that has already been made in the introductory chapter is that
we only account for repeated multiple-access resource-balancing games, as introduced in
Chapter 3. Once more the fact should be underlined that this specific class of games are
cooperative in the sense that there exist pareto-optimal joint action combinations which
yield higher payoffs than the Nash equilibrium (the situation in which all agents access
all resources). In strictly non-cooperative games, quite naturally, we cannot expect coop-
eration to emerge under any algorithm.

Secondly, the game parameters (n, k, v, T and c) will be fixed during the simulations,
i.e. we do not analyse adaptivity in the sense of environmental changes. However, it can
be expected that the algorithms should be able to adapt to new situations, at least if a
meta-reasoning component tracked current performance (Section 7.2 discusses the neces-
sity of such a component in more detail).

Noise functions will not be applied by the Simulation Engine during the first series of
experiments, so that the the best-case performance can be determined independent of
perturbations in action execution, payoff perception and action perception. In Section
6.2.2 we will lift this assumption and analyse the effects of noise.

Also, maximal computational effort will be devoted by every agent to learning in each
round. This means that all past action-payoff samples will be stored (i.e. agents use
unconstrained sample sets for the UE and SE), and that all models of the SBE will be
updated after every round and used for social decision-making. This assumption will be
lifted in the section on bounded rationality (Section 6.2.2), so that the effects of con-
straining reasoning capabilities can be examined.

Finally, it should be pointed out that we will exclusively use homogeneous populations.
This means that all agents taking part in a particular simulation will be identical in their
internal structure, that they will use precisely the same reasoning and learning mech-
anisms. This assumption serves as a means to discover the basic properties of LAYLA
reasoning, which is obviously simpler if all agents employ the same parameters.

Next, the goals of conducting the tests are outlined and how the achievement of these
will be measured.

6.1.3 Performance measures

What do we expect of a LAYLA system? The ultimate reason for having such an agent
architecture is, recalling the discussion of Chapter 1, to prove that effective, coordinated



behaviour in repeated games can be learned without prior knowledge and explicit com-
munication. The top-level learning task T of the society specified this goal operationally
in Section 3.2.1 and this definition was followed by introducing the inverse of the distance
between the optimal-coalition payoff vector and the current payoff vector as a performance
measure P. We will adhere to P as the central performance measure for LAYLA societies,
but we also introduce some additional measures that provide information about certain
interesting aspects of agents’ behaviour.

The minimal performance that we require agents to exhibit is that of the equilibrium
state, i.e. the situation in which every agent accesses all £ resources. The payoff that is
distributed to agents under this action combination is

v
v = b (7 =)

and is, of course, equal for every agent (we refer to this quantity as the greedy payoff
henceforth). If this payoff is achieved by all agents, this implies that the best-response
strategy has been successfully learned. Thus, after each round, the cumulative reward
obtained by an agent until round ¢ can be compared to the cumulative greedy payoff
l - Ugreeay tO check whether the agent fulfills this criterion.

Although learning the equilibrium strategy is non-trivial by itself, it can only be seen as a
first step towards coordinated behaviour — truly intelligent agents should do better than
that. In the optimal case, they should form a maximal coalition in which each agent plays
the fair strategy by which it accesses % resources (cf. Section 3.2.2). Then, the respective
(expected) fair payoff each of the agents would receive per round computes as

2 (79
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Thus, the cumulative fair payoff ¢ - u 4, provides an upper benchmark for system perfor-
mance in the same way as the greedy cumulative payoff function represents a lower bound
for desirable performance.

Using the greedy, fair and actually achieved cumulative payoff functions, simple quan-
tities can be defined that measure the optimality of system behaviour, the evolution of
cooperation within the society, the convergence and stability of behaviour patterns and
equity among agents.

Optimality, the criterion that is fulfilled to the same degree as the optimal-coalition pay-
offs are realised, can be measured by using P, or, alternatively, by comparing the gradient
of cumulative agent payoffs to that of the fair cumulative function.

Cooperation among agents is evolving whenever the gradient of cumulative agent rewards
is higher than that of the greedy function and rising so that this measure reflects whether
global performance is improving beyond the level of mutual exploitation.

Agent behaviour is said to converge to a certain value if the gradient of some agent’s
cumulative payoffs converges to some (upper or lower) bound. It is said to be stable if
the gradient of the agent’s cumulative reward function is some constant quantity (within
a certain percentage € of its previous value) after a certain game iteration (in that case
we call this round the convergence-yielding round).

Equity, finally, reflects the ability of an agent to “avoid doing much worse” than its ad-
versaries: whatever degree of cooperation or blind egoism is established, no agent should
allow others to exploit it. Showing that agents have the capability of defending themselves
against opponents’ attempts to exploit them adds a further dimension to the adequacy
of the approach, namely that LAYLA agents exhibit competitive performance in iterated



games and is also in concordance with the intuition of individual rationality: only agents
that can make at least as much of their situation as other agents can be deemed veritable
utility maximisers.

To measure this aspect of agent performance it suffices to compare the difference between
the cumulative payoffs of individuals participating in the same simulation. To this end, we
will usually compute the mean cumulative payoff u(agents), i.e. the average cumulative
reward of all players, and the standard deviation between cumulative rewards o(agents)
that provides a measure for how much each player’s performance deviates from p(agents)
on average.

All of the above measurements will quite often be conducted for a certain number s of
repeated, identical simulations, and in that case we use (g, s) and o(g, s) to denote the
mean value and standard deviation of the respective quantity g.

It will often be useful, for example to measure the average convergence-yielding round
number p(conv, s) between s simulations and the standard deviation o(conv, s) thereof.

This overview of applied benchmarks and performance measures completes the intro-
duction to our testing procedure. The following paragraphs give a detailed description of
the actual tests and an analysis of the main results.

6.2 Experimental results

The extensive testing of the system falls into three phases: first, fine-tuning choices of
the system parameters are made and the performance of agents under the optimal choices
are analysed. Then, issues of robustness, bounded rationality and reduced computational
capacities are pondered on. Finally, we test the architecture for larger games.

6.2.1 Fine-tuning LAYLA parameters

Difficulties in testing the performance of the Social Behaviour Engine lead to testing it
only for a very stylised IPD example in Section 5.4.3 and to postpone the choice appropri-
ate values for the optimism parameter A\, the POM update factor  and the compromise
factor . Furthermore, parameters that determine the integrated algorithm’s mode of
operation, such as the exploration margin ( and the variance threshold 1 have still to be
determined. These two issues are dealt with in this section and system performance is
evaluated for the resulting choices.

We start by describing the initial system parameters, and subsequently discuss the
effects of choosing alternatives for these.

Initial simulation settings

All following experiments are performed on the basis of a two-player two-resource game,
where v = 20, 7= 4 and ¢ = 1 and d = 1000 is the total number of rounds played in
each simulation. These settings imply that ©greeqy = 3 (which occurs if both agents chose
action 3 (3(3) = (1,1)) and e = 4. The optimal payoff is achieved whenever the two
agents play one of the joint actions (1,2) or (2, 1), to that they access disjoint, non-empty
subsets of R = {ry, r9}.

To speed up learning, unconstrained sample sets are chosen both for the UE and the SE.
The optimal settings for the UE and SE are adapted from the fine-tuning choices of G
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Figure 6.1: Plot of a two-player simulation (the first 300 rounds are shown). The curves between the
greedy and fair cumulative payoff lines denote the (almost identical) cumulative agent payoffs.

in Chapter 5, since this game is identical to the one used here. Guided by the optimal
UE performance (cf. Figure 5.5), the exploration margin ( is set to 0.03, so that sufficient
exploration of the payoff function can be completed in less than 100 rounds.

As concerns the SBE settings, initial values are chosen rather arbitrarily: the variance
threshold is set to ¥ = 0.01 to ensure that peers consider their behaviour to be profiled
quite early and we choose v = 0.5, § = 0.5 and A = 0.5. Quite naturally, each agent has
one neighbour (its opponent) and POMs consist of 4> = 16 ranks to cover all possible
matrix orderings in the joint action space. Finally, the employed rank-flattening vectors
have linearly decreasing entries starting from one, i.e.

¢= (1,1—i,1—3,...,1—§).
16 16 16

These choices already yield astonishing results for a sample simulation run, in which
agents converge* to the optimal behaviour after 110 rounds (within a tolerance interval of
e = 5%), thus realising as much as 92.9% of the maximally possible fair cuamulative payoff
after 300 rounds. The low standard deviation of o(agents) = 10.0 also shows that the two
agents achieve comparable overall performance, so that none of them is really exploited.
Plots of the cumulative payoff functions compared to fair and greedy payoffs are shown in
Figure 6.1. Starting from these initial settings, we present fine-tuning choices and their
effects on system performance in the following paragraphs.

Determining the compromise factor

The compromise factor v determines which actions will be included in the construction
of L;-sets (the larger v is chosen, the more alternatives to the best-response strategy will
be considered socially feasible). If we look at the way in which + is used in practice, it
becomes obvious that in the £;-construction criterion (cf. Section 5.4.1)

a; € L; <= mi(a;) > Imax mi(a;) = - gi(a:)

2

4“Whenever measuring convergence, we refer to the agent that converged last — in this example, the
two agents actually converged in rounds 80/110.



there is no direct relationship between the quantities of the individual action-value func-
tion m; and the expected gain g;(a;), since they are derived from different models (the
SE best-response GAs and the SBE opponent models). In an attempt to get a complete
picture of how the choice of v affects the SBE decision-making function, we will first
present a theoretical argument to derive appropriate y-values, which we then validate by
experimental results.

In the resource-load balancing game, gain models and action-values can be determined
in terms of the payoff received for each resource and are independent of the opponent that
is being reasoned about (under the assumption of homogeneous populations).

In order to obtain the precise value of the gain of 7 with respect to j for one resource r € R,
we firstly observe that all individual actions of 7 and j fall into two disjoint categories:
actions by which r is accessed (AT) and actions by which the agent refrains from access
tor (A7).

Secondly, the maximal and minimal gain values of 7 for any joint action tuple (a;, a;) are
realised when none of the remaining agents P — {i, j} accesses r or all remaining agents
access r, respectively. To see this, we compare the quantity

Dlr] = ui(a, a5, agiy)lr] — min ui(ai, aj, a—giy)[r]
i €A

for all a;, a; and a_g; 53 ((us(...)[r] is i’s payoff for resource 7). Clearly this quantity will
always yields zero if a; € A~ (if the agent does not access r it obtains no payoff for it).
Furthermore, it is only positive if a; € A~ because the minimal payoff value for resource
r is always realised when a; € A*. Finally, u; depends on the number p* of agents in
P — {i,j} who access r. As a simplified form of D, we thus obtain

0 ifaiEA_orajEA+

(et —©) = (Geizr —¢) else

where the denominators in the non-zero case depend on whether a; € A" or not.

Simple calculus suffices to validate that D[r] is maximal for p* = 0 and minimal for

pt = |P| — 2, so that we can define maximal and minimal gains in terms of r as follows
for a; € A* and a; € A~ (in all other cases, they will be zero):

Dlr] = {

mazgaing (a;)[r] = E% —¢)— (% - =
mingaing, (a;)[r] T c) - (nLT - c) =

Now if 7 accesses k; resources (k; < k) by playing a;, and ¢ of these resources are not
accessed by 7, this yields

| _q,()\.%_ul—/\)ﬁ)
gaing, (q) = ki,(g_c) —ki'(nLT_c)

T

(6.1)

as the overall gain value of any such binary action tuple for ¢ by applying the constructions
of Definition 5.1.
Having determined precise gain values, we still need to analyse the quantities of m; to
simulate the construction of L;-sets.

As before, we can describe m; in terms of how many resources are accessed, if we
make some important assumption: we consider that the best-response strategy has been



learned perfectly by the Strategy Engine and that it has a precise picture of the payoff
function, i.e. that m; = u;. We also assume that all agents are currently reacting according
to the best-response strategy, meaning that whatever ¢ plays, all agents choose the greedy
action choice of accessing all resources simultaneously®.

The action value m;(k;) for any action of ¢ by which k; resources are accessed can then
be computed as

mi(k) =ki- M | M= (Z_T ~) = ! - (6.2)
Socwck () k- (5 —¢)  Zocker (1)

given that it is based on the above worst-case argument (M is simply a normalizing con-
stant, i.e. the sum of all m;(k;)).

Now we are in the state where we can derive upper and lower bounds for v to ensure
that resources are distributed in an optimal way, i.e. that every agent is willing to access

[£] resources. This can be done by requiring that

m(5) > =70 (]2)
m([5]-1) < o702

hold, so that 7 considers precisely those actions as candidates for inclusion into L; which
implement an optimal resource distribution (and does not “put up with” any less ex-
ploitative actions).

To solve these inequalities for v, we need to make one more assumption to obtain the
expected gain g;(k;) of accessing k; resources, namely that any opponent j is ezactly as
cooperative as i itself (which can safely be assumed, since we are talking about homoge-
neous populations).

This means that

(6.3)

gi(ki) = || Xrea; 9aing,(q) - P(j does not access q of the k; resources accessed by i) ||
= gaing (k — k;)

because j accesses (with probability 1) exactly as many resources as j does, so that k — k;
resources are accessed by j alone.

Replacing the g;-values accordingly (which involves using Equations (6.1) and (6.2)), the
inequalities in (6.3) can finally be solved for v to yield

2(n—1)3 2(kn+k —1)(n—1)2
S DI Uy Rl e T S Iy B | G

(6.4)

so that the suggested appropriate values for v only depend on the problem sizes k and n
and on the optimism parameter \.

For our two-player two-resource example, the corresponding values are 0.25 and 0.625,
so that - should lie somewhere in between these values if optimal cooperation is to emerge.

We verify the adequacy of this lengthy mathematical derivation of the compromise
factor by conducting a series of tests for v € {0.1,0.2,...,1.0}, the results of which are
quite surprising.

It turns out (cf. the plots in Figure 6.2) that for compromise factors lower than 0.5 the

5This assumption serves to simulate the situation “just before” social reasoning can begin.
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Figure 6.2: Plots for two-agent simulations and different y-values. For v = 0.4 (topmost plot), agents
achieve an average payoff just above the greedy (dotted) curve (80.125% of the fair cumulative payoff).
The graph in the middle shows agent behaviour for v = 0.6 (agents converge to optimum and achieve a
final mean payoff of 96.13% of the fair cumulative payoff), and in the third graph we can see that “overtly
compromiseful attitudes” (v = 0.9) lead to highly sub-optimal performance (only 71.65% of the greedy
payoff are realised on average).



previously shown convergence never occurs, while agents do “better than greedy” with in-
creasing performance for increasing v € [0;0.5]. This already provides us with cumulative
payoffs that are much higher than what agents devoid of social reasoning would achieve.
For compromise factors of 0.5 and 0.6 agent performance converges to the optimal, fair
payoff vector in around 80% of the simulations. This can only mean that since the as-
sumptions made in our theoretical argument always implied that all reasoning components
were functioning perfectly, compromise factors should in practice be close to the upper
bound of the vy range, so that minor errors (e.g. mixed strategies instead of the pure ones
assumed before) can be overlooked.

The bounds determined for v prove more important still, when we consider the results of
those simulations in which v exceeded these. In that case, agent performance was very
poor, because agents they would either settle on highly sub-optimal action combinations
(e.g. a mixture of (1,1), (1,0) and (0,1)) or — even worse with respect to equity — not
coordinate their activities at all, so that one of them gets exploited by the other invariably.

This smooth transition from “individually rational” via “socially rational” to “overtly
compromiseful” behaviour effected by various choices of v explains why this parameter
was called “compromise factor” in the first place. It illustrates that the choice of this
factor is crucial to the system behaviour, and this is also why this lengthy discussion has
been devoted to it.

Further SBE parameters: POM update factors and optimism parameters

The update factor  determines to which degree recursive belief models are altered on
new, incoming information about action choices. Guided by the intuition that the way
in which d-choices influence SBE decisions is closely related to the choice of 7 (since the
belief models are used to compute the P(a; = k)-probabilities in the “expected gain”-
computation, cf. Equation (5.7)), we first test the whole range of v € {0.1,0.2,...,1.0}
against values of 4 chosen from {0.1,0.25,0.75,1.0}, but, quite surprisingly, almost no
difference can be observed between these four ¢ values. For each of them, the effects of
v choice are identical to those described in the previous paragraph, i.e. convergence to
optimal payoffs can only be achieved by choosing v € {0.5,0.6}.

To verify this observation, we conduct 100 simulations with v = 0.6 for the extreme
0-values of 1.0 and 0.1, and observe that for 6 = 1.0 80% of the runs show conver-
gence (u(conv,80) = 286.7 and a o(conv, 80) = 272.4) while agents converge to optimal
behaviour 79% of the time for 6 = 0.1 (p(conv,79) = 318 and o(conv,79) = 249.5).
Final cumulative payoff as well as its standard deviation (between individual runs) are
almost identical (§ = 1.0: u(agents,100) = 3631.67/0(u(agents), 100) = 322.2, § = 0.1:
w(agents,100) = 3567.53 /0 (u(agents), 100) = 304.7).

Since no relation between agent performance and d-choice can be discerned, 6 = 1.0 will
be applied henceforth.

The previous paragraph showed that the choice of the compromise factors depends
on the optimism parameter A\, but the issue of which y/A-pairs result in optimal per-
formance has not been resolved yet. We therefore conduct tests for different value pairs
(A € {0.0,0.1,0.2,...,1.0},v = 0.6°) and examine average optimality-yielding rounds as
well as standard deviation between them.

6For the special case of the two-player two-resource game, v = 0.6 can be chosen for any ), because
the bounds for v are independent of the A choice.
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Figure 6.3: Average convergence round (line) and standard deviation (boxes) for various A
choices. For the simulations that did not converge, the “convergence-yielding” round was taken
to be 1000.

As can be seen from Figure 6.3, it seems most reasonable to be “rather pessimistic” in de-
termining gain values (A = 0.2 is optimal both in average convergence time (u(conv, 100) =
315.0) as in standard deviation (o(conv, 100) = 145.8).

However, we refrain from attempting to provide a general explanation for this observation,
because it obviously depends on specific characteristics of the game in question and shall
simply use A = 0.2 for the remaining experiments.

Global parameters: exploration threshold, “profiled” threshold, randomisa-
tion

We now turn to an analysis of the effects of various choices for the exploration threshold
¢ (which determines the degree of accuracy that agents expect of UE payoff prediction
before moving on to purely strategic/social action choice) and variance threshold 9 that is
used to determine whether opponents are behaving in a “profiled” way or not (cf. Section
5.5).

Furthermore, we explore the possibility of using “purified” versions of m; and I; instead
of mixed strategies; such “purified” probability vectors are simply obtained by always
choosing the action with maximal m;/l; with probability 1 and all other actions with
probability 0.

For ¢ and ¢, the following sets of parameter values are cross-tested:
¢ €4{1.0,0.5,0.25,0.1,0.05,0.03,0.01,0.001,0.0001, 0.0}

and
¥ € {1.0,0.1,0.01,0.001, 0.0}



Each of the resulting parameter 50 pairs is applied in 10 repeated simulations. The
following observations were made:

1. For 9 € {1.0,0.1}, no convergence to optimal behaviour can be achieved. Expecting
the opponent to exhibit a very strong preference for certain actions to be considered
“rational” is obviously harmful since no “risk” is taken to initiate cooperation.

2. We obtain almost” the same results for ¢ € {0.001,0.0001,0.0}. In this case the UE
finishes exploration to late (in the case of ¢ = 0.0 exploration actually carries on
forever) so that social reasoning cannot begin within less than 1000 rounds.

3. Performance of convergent agents increases with decreasing ¥ and increasing ¢ (the
absolute optimum is reached for ¥ = 0.0/¢ = 0.25 with u(conv,10) = 184.7 and
o(conv,10) = 39.1).

4. The number of non-convergent simulations increases with decreasing 9: for 9 = 0.01,
7% of the agents do not converge to optimal behaviour, while this percentage is 25%
for ¥ = 0.001 and 28.6% for ¥ = 0.0.

How can we interpret observations 3. and 4.7 As concerns (, it is quite obvious that it
pays to start considering strategic/social arguments in action choice as soon as possible,
even if the picture one has of the payoff function is inaccurate.

The effects of various ¥-choices seem somewhat more complex, in that there appears to
be a trade-off between ensuring the emergence of optimal behaviour and achieving it ef-
ficiently, i.e. after a minimal number of rounds. In fact, though, this is only the effect of
inaccurate UE payoff prediction — repeating the tests without making use of the UE (so
that the real u; is used instead of 7;) yields a rather astonishing result, namely that in 100
out of 100 simulations (!) convergence to optimal behaviour occurs (p(conv, 100) = 157.8,
o(conv,100) = 203.1 for ¥ = 0.001).

The interplay between UE performance and ¥ can thus be explained as follows: there is
always some probability that the neural nets are learning “too slowly”. If, in that case, v
is too small, the modelling agent will discern some preference structure in the opponent’s
actions quite early, but, since its own payoff model is inaccurate, it will draw wrong con-
clusions from the opponent’s actions (e.g. construct wrong gain values) and be unable to
converge to truly optimal behaviour.

We can draw a further conclusion from the fact that 100% of the simulations converged
while the UE was not used, namely the agents’ success hinges on the accuracy of the pay-
off function estimate — without it, none of the other components can ensure good results.

As regards the use of “purified” m;/l; vectors, we observe that agents fail to produce as
good results as they did with mixed strategies — only 18 out of 100 simulations converge to
optimal behaviour, and they converge more slowly and less reliably (u(conv, 18) = 344.5,
o(conv, 18) = 546.1). This only confirms the observation we made during preliminary
experiments with the SBE (cf. Section 5.4.3): when agents use purified strategy vectors,
there is zero possibility of choosing a non-greedy action, so that no agent “takes the risk”
of initiating cooperative behaviour. The observation that there has to be some agent
that starts deviating from greedy behaviour patterns should be emphasized as one of the
central conclusions we draw from the empirical evaluation.

"For ¢ = 0.001 two of the 50 simulations converge, but only after 803/708 rounds.



6.2.2 Bounded rationality issues
Noisy data

Robustness is an issue that is very important in most real-world environments that pro-
vide noisy perception, sensory failure and action execution failure. Even if it is acceptable
for system performance to deteriorate under increasing amounts of noise, we expect an
“intelligent” system to degrade gracefully when faced with such difficulties.

To investigate the impact of noise on agents’ performance in the LAYLA system, Gaussian
noise functions are used as n%, n? and n functions (cf. Section 4.4.4) with standard
deviations taken from {0.0,0.1,0.25,0.5,1.0,1.5,2.0,3.0,5.0,7.5,10.0}. For the discrete-
valued functions n* and n, perturbations are computed in a “toroidal” manner, such
that, e.g. if in a game with |A| = 16 action a; = 13 is perturbed by a quantity of 5.4 when
executed, then we obtain® n(13) = 13 + |5.4] mod 16 = 2.

First we test n%, n® and nP? separately (10 simulations for each of the above noise levels,
i.e. a total of 270 simulations) to determine the maximal noise levels, at which conver-
gence to optimal behaviour can occur at all. The results are that convergence occurs up
to o(n®*) < 0.5, 0(n%) < 0.25 and o(nP?) < 1.0. For all noise levels for which convergence
occurs, we run another test suite in which each of the individual configurations is repeated
100 times, the results of which are shown in Table 6.1.

There are several conclusions we can draw from the experimental results. The first
of these is that there are natural limitations to the robustness of the system towards
noise, which seems quite natural. However, there are differences between the system’s
susceptibility to different kinds of noise: n® seems to have the severest effects on agent
performance, n% is slightly easier to cope with, and both are considerably more hazardous
than payoff noise n*?.

We can explain this effect as follows: Action perception noise n® implies that both the
UE and the SE obtain incorrect samples. Additionally, the UE samples are “more” erro-
neous than in the case of action execution noise, because inputs to the neural net may be
altered in every position (every resource access of every agent).

Action execution noise n®, on the other hand, does not affect the learning mechanisms
(except for exploration strategies). All it does is to turn action decisions into different
results, so that acting is affected but not learning. So as long as there is not too much
noise (that either makes it impossible to pursue some deliberation or confuses the oppo-
nent completely) agents may very well learn the right thing, even if they don’t do the
right thing.

Still, it is much more dangerous than payoff perception noise, to which the system is
surprisingly tolerant. The experiments prove that agents may still converge to optimal
behaviour even for o(n??) = 1.0. In our game with 4 = 4.0 and ugyeeqy = 3.0 this actu-
ally means that each of these values might be perceived as the other one on the average,
so that convergence under these conditions is rather impressive. It turns out that this
performance is mainly due to the robustness of the neural networks to noise. As is shown
in Figure 6.4, their performance decay is rather small compared to the amount of noise
in the learning data.

But the experimental results in fact hint at much more unexpected properties of per-

8Note that this is a very rigorous form of noise, because the most “extreme” strategies (those that are
close to all; and none; (cf. Section 3.2.2)) can easily be confused when executed or perceived.



o (™) 00 | 01 | 025 | 05 | 075 | 1.0 | 20
w(agents, 100) 3521.6 | 3580.9 | 3582.2 | 3407.2 | 3089.7 | n/a n/a
o(u(agents), 100) | 336.2 | 337.7 | 290.9 | 2835 | 161.2 | n/a | n/a
conv 74 78 86 41 0 n/a n/a
w(conv, #conv) 290.9 | 251.1 | 313.3 | 545.8 - n/a n/a
o (conv, #conv) 208.0 | 170.1 | 205.5 | 245.9 - n/a n/a
u(o(agents), 100) | 29.3 30.1 30.3 66.2 | 166.9 | n/a n/a
o (n) 00 | 0L | 025 | 05 | 075 | 1.0 | 20
u(agents, 100) 3521.6 | 3618.6 | 3547.2 | 2790.7 | n/a n/a n/a
o(u(agents),100) | 336.2 | 312.2 | 322.8 | 129.9 | n/a n/a n/a
#Hconv 74 84 72 0 n/a n/a n/a
w(conv, #conv) 290.9 | 252.0 | 262.1 - n/a n/a n/a
o (conv, #conv) 208.0 | 176.7 | 196.1 - n/a n/a n/a
u(o(agents),100) | 29.3 24.2 27.0 97.2 n/a n/a n/a
o (nPP) 0.0 0.1 025 | 05 | 075 | 1.0 | 20
u(agents, 100) 3521.6 | 3462.6 | 3590.9 | 3489.1 | 3435.3 | 3487.1 | 3016.2
o(u(agents), 100) | 336.2 | 368.0 | 393.6 | 433.2 | 546.9 | 238.6 | 146.5
#conv 74 68 79 76 75 60 0
w(conv, #conv) 200.9 | 274.2 | 227.0 | 314.7 | 414.7 | 524.7 -
o(conv, #conv) 208.0 | 219.5 | 196.9 | 227.3 | 262.5 | 225.1 -
u(o(agents), 100) | 29.3 20.9 41.6 95.8 56.0 40.3 92.6

Table 6.1: Convergence analyses for (separately tested) kinds of noise. The average convergence round
u(conv, #conv) and its standard deviation o(conv, #conv) are computed for the number of convergent
simulations #conv. The other quantities always refer to a total of 100 identical simulations. Optimal

values are shown in bold characters, “n/a” stands for “not assessed”.

formance under noisy data. Apparently (cf. Table 6.1), the optimal values of all® measured
quantities are achieved in simulations with positive noise, or, more specifically, for small
noise levels of 0.1 and 0.25. For simulations with such noise functions (i) highest system
performance (in average final payoff and reliability but also in proportion of convergent
simulations) is achieved, (ii) equity between agents, as reflected by u(o(agents),100) is
maximal and (iii) convergence occurs earlier than in the other cases.

Maybe this is an effect similar to that reported by Thomas and Sycara (1998), namely
that heterogeneity can add to the stability of a system. Here, this heterogeneity is in-
duced, so to speak, by noise: because learning data is slightly distorted when received
by the agents, they all have slightly different knowledge about payoff functions, opponent
actions and opponent decisions. Thus, they are maybe less prone to oscillate around non-
coordinated patterns of behaviour (just think of the Coordination Game) and converge
to optimal behaviour because they make mistakes in acting and sensing. Although this is
only one of many possible explanations for the observed effects, we believe that this issue
deserves to be examined more thoroughly.

To investigate this issue further, we present one more series of experiments on noisy
data, where all noise functions were applied simultaneously to the system. These exper-

9Except for o(u(agents),100) which is minimal for high noise levels under which all agents behave
greedily (in every simulation).
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Figure 6.4: Neural network errors for various noise levels. The top left plot shows the performance with
no payoff noise, the other three illustrate performance decay for noise with a(nP?) = 0.25 (top right),
o(nP?) = 1.0 (bottom left) and o(nP?) = 2.0 (bottom right).

iments (cf. Table 6.2) show that the previously obtained results carry over to the new
situation. Except for equity (u(o(agents),100) is the only seriously sub-optimal value
for o(noise) = 0.25), performance is roughly comparable to that of the previous series of
simulations. This shows that there is almost no interference between the different types
of noise functions apart from the fact that action perception noise makes it impossible for
agents to converge to ., for noise levels above 0.25.
We infer from this observation that the system does not get confused when exposed to
more than one type of noisy data, i.e. that the “joint damage” done by the noise functions
is not substantially greater than that of individual types of noise. This is another inter-
esting property in our system that proves its suitability for worlds that provide imperfect
information and sensory failure.

In the next paragraph, we focus on another kind of bounded rationality: constraints
in reasoning capabilities.

Limited reasoning capabilities

Until now it has been assumed that agents have unlimited computational resources for
learning and decision-making. In this section we briefly discuss the effects of lifting this
assumption by conducting some experiments with agent groups that have a limited stor-
age space for learning samples and probabilistic ordering models. We analyse these two



o(noise) 0.0 0.05 0.1 0.25 0.5
u(agents, 100) 3521.6 | 3489.2 | 3477.6 | 3590.4 | 2816.7
o(u(agents), 100) | 336.2 | 406.1 | 428.11 | 342.5 | 137.9
conv 74 80 71 83 0
w(conv, #conw) 290.9 | 327.8 | 255.9 | 281.6 -
o(conv, #conv) 208.0 | 2374 | 218.5 | 196.1 -
p(o(agents),100) | 29.3 | 30.1 34.2 52.8 | 121.4

Table 6.2: Convergence analyses for simulations with simultaneous action perception, action execution
noise and payoff perception noise ( g(noise) = o(n®¢) = o(n) = o(nP?) ). As before, we conduct tests
only for noise levels below which at least one of 100 simulations converges.

issues as erxamples of where bounded rationality might come in. Others would include
limited training time per round, limited GA population sizes and/or neural network di-
mensions (these have been implicitly tested in the previous chapter) and the use of more
shallow recursive belief models.

We first analyse the effects of restricting the number of POM ranks |R|. We test rank
numbers of 2, 4, 8, 16, 32 and 64, bearing in mind that 16 ranks are sufficient to represent
the preference structures of peers in this game. As can be seen from Figure 6.5, four
ranks suffice to capture the orderings of peer gain models and, moreover, this number of
ranks is optimal with respect to mean convergence-yielding round (u(conv,83) = 273.3)
and a standard deviation of o(conv,83) = 221.2. Looking at the real gain values of the
underlying game, it can clearly be seen (cf. the gain matrix on p. 93) that they consist of
four different entries, so that this result confirms our intuitive ideas of SBE learning. The
fact that the learners get confused by having more than 16 ranks (which are obviously
redundant to model a 4 X 4 gain matrix) seems even more convincing with this respect.

Finally, tests with various sample set sizes were conducted to examine the effects of

constraining learning data storage capabilities on learning performance. To this end, both
the UE and the SE sample memory spaces were restricted to a size of 10, 25, 50, 75, 100,
250, 500 samples (as opposed to the 1000 that would be necessary to store all samples
that appear in the simulation runs). Twenty simulations were run for each of these sam-
ple set sizes, but the results are hardly elucidating; agents that stored only 10 samples
converged 17 out of 20 times, all others converged in all but one simulation. This might
be a hint that there is a minimal number (25) samples that should be stored, but still the
differences are not too dramatic.
Figure 6.6 shows mean convergence rounds and their standard deviations for all sam-
ple set sizes. While optimal performance was achieved for a sample set size of 75
(u(conw, 20) = 240.2, o(conv, 20) = 138.3), values for the other sample sizes do not allow
for a straightforward interpretation since there is very little variation between them. It
seems as if either all samples should be stored to achieve good results, or some small
“memory window” should be applied to keep reasoning at a reasonable time-scale.

This ends our analysis of bounded rationality issues. They have basically shown that
LAYLA agents are reasonably robust to noise (and what the limitations of this robustness
are) and that, at least in simple two-player games, reducing the computational abilities
of agents does not have too severe consequences on their performance. Moreover, there
are hints to positive effects of bounded rationality, such as the performance increase for
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small amounts of noise and the superiority of agents that do not store too much learning
data and do not attempt to be overtly precise in modelling gains (this is an effect similar
to the phenomenon of overfitting). We now turn to the interesting issue of examining
whether and how our observations for two-player games scale.

6.2.3 Scaling tests

In this final evaluation step, we show examples for LAYLA system performance in much
harder five-player, ten-player and fifty-player games. In all of these games, agents have
five resources at their disposal, though, of course, with increasing population size, it will
be harder to distribute these efficiently among agents. It should be remarked that the
three games we used have joint strategy spaces of (roughly) size 107, 10'® and 107 and
are thus indeed almost insoluble from a mathematical perspective (e.g. with dynamic pro-
gramming methods).

The employed compromise factors (for A = 0.5) were determined using the theoretical
derivation of Section 6.2.1, which yielded 0.00306 < v < 0.3469 for the five-player game,
0.042 < v < 0.25023 for the ten-player game and 0.05051 < v < 0.26181 for the fifty-
player game. To adhere to the rule of choosing v close to its upper bound, we applied
compromise factors of 0.34, 0.25 and 0.26 respectively. SBE neighbourhoods always con-
sisted of 20% of the population, so that each agent reasoned about 1, 2 and 10 neighbours
in the three games.

The results of the scaling tests are shown in Figure 6.7. As before, the plots show

cumulative agent payoffs compared to the fair cumulative payoff and greedy cumulative
payoff curves. It can directly be seen that the exhibited agent behaviour is far from being
optimal for those larger games (it lies somewhere around 80% of w,,) but also that it is
well above the greedy payoff curve, which illustrates that LAYLA agents can cope quite
well with the problems of large-scale interactions.
There is another, more subtle (but equally important) property of the simulations that
cannot directly be deduced from looking at the payoff curves, namely that agent perfor-
mance only seems to converge to some payoff-per-round between g ceqy and ugqir — in
fact, agents continue to improve their performance, even though the progress in learning
is hardly measurable: for the three games, the average final payoff rises by about 0.5%,
0.2% and 0.05% every 100 rounds (in terms of wsqy). This indicates that the system,
even though it is primarily focusing on ensuring a comparatively high performance, still
continues to learn. Unfortunately, complexity problems (600 rounds of the fifty-player
simulation, for example, take more than one week) make it impossible for us to validate
whether this learning will continue or whether there is some upper performance bound
that cannot be exceeded.

It can safely be said that the performance agents exhibited for these very hard problems
is highly reassuring. It shows that LAYLA agents are both capable of achieving high
exploitation levels very quickly and yet may continue to learn and not converge to local
maxima too soon. However, the right balance between exploration and exploitation still
has to be found and we see these results only as indications of the possibility to further
improve the architecture with this respect.
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6.3 Summary

This section provided a wide range of empirical results which proved the adequacy of our
approach and offered valuable insights to properties of the LAYLA system.

The central result is that layered learning agents using our prototypical design did much
better than greedy “cooperation-blind” individuals even in very large, inherently complex
games without using communication and without any prior knowledge of the interaction
situation. Quite naturally, optimality was only attained for simple games but performance
is highly satisfactory even for the harder problems.

A second result is that we determined a set of parameters which are crucial to the perfor-
mance of the system, especially compromise factors, exploration margins and “profiled”
thresholds. Most importantly, the success of LAYLA agents obviously always hinges on the
performance of the payoff learning component. This is an effect of the interdependence
caused by sharing knowledge among different learning components, and such phenomena
must not be overlooked in designing hierarchical /distributed learning systems.

On the other hand, we found out that certain other parameters have little or no influ-
ence on the system, such as the optimism parameter, the POM update factor, POM
dimensions and sample set sizes. Unfortunately, we have not been able to identify gen-
eral (meta-)rules for determining these parameters yet, so that there clearly is a need for
devising some additional meta-reasoning component to cope with this problem (cf. the
discussion in Section 7.2).

Surprisingly, limited amounts of noise were found to be helpful, since they apparently
increase diversity and randomisation in learning and decision-making. For greater noise
levels, agents proved to degrade gracefully, even under combined action execution, action
perception and payoff perception noise. This provides us with insights to limitations of
the effectiveness of learning algorithms under imperfect information and action.

Ultimately, all of these results can only be seen as an initial assessment of the archi-
tecture. Due to space limitations, we have not given an analysis of system performance
in heterogenous populations, of the effects of dynamic changes in the environment or of
the implications of having various types of neighbourhoods (with different sizes and/or
structures).

We still believe that sufficient evidence for the usefulness of the architecture has been
provided and this fact hints at possible conclusions that we can draw from our efforts.
These will be further discussed in the closing chapter to follow.






Chapter 7

Conclusion

They constantly try to escape
From the darkness outside and within
By dreaming of systems so perfect
that no one will need to be good.
— T. S. Eliot, Choruses from 'The Rock’

To evaluate the contribution of a novel approach within the context of a broader field of
research it does not suffice to analyse its performance as was done in the previous chap-
ter. If we are to gain insights from the architecture we proposed, we need to question its
adequacy on a more abstract level, to describe its advantages and drawbacks, to look at
questions that it leaves unanswered and — if possible — to draw some more general con-
clusions concerning the analysed problems. These issues will be covered in the following
sections. Before that, however, we briefly summarise the contents of the previous chapters
to provide a concise overview of the main goals of this work, the proposed methods and
the results obtained.

7.1 Summary

We have presented a layered learning architecture that allows autonomous agents to learn
how to coordinate effectively in multi-agent environments. As a starting point for our con-
siderations, we questioned some of the central assumptions made by many other works
from the field — we claimed that neither prior knowledge nor communication is necessary
for cooperation to evolve, and that suitable social reasoning mechanisms can be devised
to achieve effectively coordinated behaviour even among non-benevolent, self-interested
individuals.

Within a game-theoretic framework, we presented an application scenario which captures
many hard problems that may occur in interaction situations and determined optimal
solutions for the underlying games to ensure a rigorous assessment of the performance of
our system.

The learning architecture that we devised subsequently was based on two basic concepts.
It merged the idea of a general hierarchical, distributed learning methodology for complex
learning problems with the concrete decomposition of the “coordination task” into three
learning sub-tasks, each related to one of the so-called essential determinants of interac-
tion. It is only this combination of a methodology for layered adaptation and of a learning
problem that can be decomposed appropriately that enabled us to extend InteRRaP to a



learning architecture in a straightforward manner.

At the core of the architecture, of course, lay the individual learning algorithms that were
supposed to manage the learning tasks of each layer. Much emphasis was put on providing
rigorous definitions of the learning problems and on identifying practicable “approxima-
tors” for these sub-tasks (which are almost insoluble in their most general form).

At some points off-the-shelf learning techniques (adapted to the underlying learning prob-
lems) were employed, but we also explored new, “customised” learning methods that
proved to be particularly effective for the special class of learning problems we analysed.
Before going into an overall analysis of the integrated system, preliminary tests with each
of the layers were conducted to ensure that each layer was capable of managing its own
learning task.

Finally, an extensive account of the empirical evaluation of the system was given, whose
focus was on assessing the performance of the proposed system and its limitations. Essen-
tially, it proved that our method s appropriate to solve coordination problems in settings
where only very little information is available. Yet there is a much wider range of conclu-
sions that can be drawn from the individual results, and these will be critically reviewed
in the following.

7.2 Achievements and Shortcomings

In Chapter 1 we argued for a decomposition of the “coordination” task into individual
learning goals that would facilitate the emergence of effective interaction patterns in agent
societies of purely selfish non-communicating agents that that have no prior knowledge
of the interaction setting. We claimed that the identification of essential determinants of
interaction was the key to interaction learning; and that a layered learning architecture
suited for combining learning components that focus on these determinants would enable
agents to coordinate their actions effectively with other individuals.

There are several arguments in support of the fact that these goals were achieved.
Firstly, our agents always did substantially better than in the “greedy” equilibrium states.
Thereby, they proved capable of (i) defending themselves against others’ attempts to ex-
ploit them and (ii) identifying inefficient greed and behaving cooperatively whenever it
seemed beneficial to them.

For small problem sizes, they almost invariably converged to optimal behaviour, while
their performance was still very good for larger problem sizes (with vast joint strategy
spaces and highly complex payoff functions). Given the fact that they start off without
any information about payoff function properties, opponents’ decision-making processes
and the utilities other agents obtain, this is a rather impressive result. It proves' that
coordination can be learned in principle with very little information and without any
domain-dependent knowledge concerning resource conflicts or the nature of physical ac-
tion and perception.

Also, agents need not count on their peers’ benevolence and they need not be benevolent
themselves, unless it appears to be “a good move”. As a consequence, there need not
exist some external authority to enforce mutually beneficial agreements, even though its
existence would probably make them more reliable and easier to achieve.

LGenesereth et al. (1986) have shown that communication is not necessary to achieve cooperation.
However, they assumed a great deal of knowledge about opponent reasoning mechanisms; the strength
of our approach lies in the fact that agents deduce all knowledge about others from action observation.



More generally, we can say that it has been shown that cooperation is very likely to emerge
even amongst self-interested individual utility maximisers provided that they be “socially
rational” (in the sense that they base their decisions on their dependence on others) if
they are given enough time to gather information about the nature of the interaction they
are involved in.

A second positive result we can report is that breaking down the task of “learning how
to coordinate” into the three learning problems concerned with interdependence modali-
ties, opponent behaviour and cooperation potential is adequate for our purposes.

Tests conducted in Chapter 5 proved that these sub-tasks are learnable and that the al-
gorithms we constructed for them are suitable to learn payoff functions, to predict future
opponent behaviour and to approximate the decision mechanisms of peers. Then, by
proving that these algorithms can be integrated to work together for solving the top-level
task in Chapter 6, it was shown that they can be combined appropriately to yield a self-
contained hierarchical learning architecture.

Even though the components interact in a pre-designed way that seemed intuitively ad-
equate, it is not a trivial matter that an effective agent-level (and, perhaps even more
surprising, a society-level) learning process emerged.

There are several further aspects of the observed system performance that underline
the effectiveness of our architecture. The resource-load balancing games we used for val-
idating agent performance are very hard games. Their equilibrium states tempt agents
to act in a greedy, un-coordinated fashion, so that we would probably assume humans
to submit to this temptation unless they are forced to behave cooperatively (by some
external authority) or have reached enforceable agreements with their opponents (which
they can obviously only achieve if they are able to communicate). But even cooperative
agents would most likely get confused by the multiple fair allocation states the games
offer, so that convergence to optimal behaviour would be very hard to attain. In the light
of these properties of the games we used it seems quite reassuring that LAYLA agents do
that well. Moreover, the system was reasonably robust to noise and agents converged
to effective coordination patterns within an acceptable amount of time, considering that
they enter the interaction without any prior knowledge.

All this strongly supports our claim that the main problems our work was concerned
with were adequately solved. However, there are also some points of criticism that should
be addressed.

One major problem of our architecture is complexity. The overall computational com-
plexity of the system effectively restricts it to use in small agent groups only. Unless
immense computational resources can be provided, it is unlikely that it can be used in
large-scale simulations.

However, there are some possible remedies to this problem (other than supplying more
powerful hardware). One of them is to increase the amount of information that is made
available to the agents by communication or by prior knowledge. Quite obviously “know-
ing more” implies “having to learn less”. The modularity of a layered architecture such
as LAYLA allows for an identification of what kinds of information would be useful for
the agents and of “where to put it”. A (possibly tentative) explicit representation of the
payoff function might be made available to the UE if, for example, the agent has some
domain knowledge with which it can model its own utility function. OBP learning could



be replaced by actual opponent behaviour commitments that are communicated to the
agent. In a similar way, the revelation of preference structures by peers could speed up
the learning process of the SBE2.

Another possibility is to manage the time and space resources spent on learning dynam-
ically (cf. Gerber and Jung (1998), Horvitz, Cooper, and Heckerman (1989)) so that
whenever a stable state is reached the agent can suspend the learning process and resume
it as soon as it notices some changes in the environment. In the simulations of Chapter
6, for example, it seems a sheer waste of computational resources to conduct any further
learning as soon as the greedy or fair convergence-points are reached, but still the agents
actually conducted exactly the same amount of learning after the emergence of these sta-
ble states as they had done before.

Conceptually, i.e. as regards the scope of modelled interaction situations, the most
severe problem is that we do not account for sequential interactions. LAYLA agents en-
gage in repeated interactions, but these are identical one-shot games with no intermediate
steps (or, if these exist, they are encapsulated in the black-box procedures represented
by abstract strategy sets). And while we have tried to do away with most of the other
problems of game-theoretic models (especially the epistemic aspects discussed in Section
3.1.3) there does not seem to be a reasonably simple way to get around this issue.
Imagine we were to extend our framework to cope with state-oriented world models, in
which certain states are goal states (possibly those states in which agents consider their
tasks completed). Regardless of whether agents receive intermediate rewards or if they
construct these themselves to identify optimal policies (as is common in reinforcement
learning methods), the rewards will depend on the actions of other agents. Hence, we
would obtain one interaction situation for each state the agent might find itself in. Even
under the assumption that the state spaces which are normally huge in multi-agent do-
mains can be clustered to yield a limited number of normal-form games, agents would
have to learn several games. We can only guess what implications this would bear on
complexity and training times. Thus, although in theory our framework can be extended
to accommodate the needs of agents interacting in stateful environments it would proba-
bly produce intractable learning problems.

Furthermore, some minor points concerning specific design decisions and the employed
testing policy should be mentioned. The architecture was tested only for a single, very
stylised scenario — many more would be necessary before we could safely speak about
LAYLA as a “generic” paradigm. A great deal of internal agent parameters and learning
algorithm configurations were determined through experiments with this particular class
of games. Choices concerning UE neural network dimensions, SE population sizes and
nearest-neighbour numbers were made in a clearly domain-dependent way, as was the
case for most of the SBE parameter choices (some of them were even set to arbitrary,
fixed values, as e.g. rank-flattening vectors and the depth of nesting in recursive belief
modelling).

The compromise factor 7 constitutes the most crucial system parameter when it comes
to changing from exploitative to cooperative actions. The fact that it was determined
according to the theoretical derivation of Section 6.2.1 is therefore perhaps the most se-
vere shortcoming with this respect. However, we have not been able to identify a generic

2In the case of communication, one would have to compare the benefits of additional information to
the computational overhead produced by allowing for explicit communication.



method of computing appropriate values for this parameter yet (ideally, it should be
learned as well).

Finally, our framework does not allow for major dynamic changes in the environment,
such as the entrance of new agents into the society or changes in the number of available
resources. But, quite obviously, this problem could easily be done away with: UE neural
network dimensions could be changed during the learning processes, SE populations and
their bit-string individuals could be replaced by larger/smaller hypotheses online and,
since the SBE is based on many binary dependence analyses, its adaptation to new group
sizes is straightforward.

Despite all these drawbacks, we still believe that our approach is a useful step towards
more generic concepts of coordination learning in multi-agent environments. It has been
shown that the layered learning methodology works in principle, that it can be useful for
boundedly rational agents to coordinate their actions in open systems in which they may
encounter malevolent, cooperative or even irrational peers.

On the other hand, the LAYLA architecture suggested a way for extending InteRRaP to a
hybrid learning architecture by showing that a hierarchical layering can be used in learn-
ing in the same way as it is useful for reasoning, planning and decision-making.

In our view, one of the most important achievements lies in the fact that we confronted
some of the strongest assumptions of game-theoretical models, especially that we replaced
perfect rationality, i.e. the ability of agents to analyse the mathematical structure of pay-
off functions exhaustively and to make decisions accordingly, by adaptation.

In the next section, we discuss some issues that should be looked at in the future.

7.3 Open questions

LAYLA agents are designed for communication-less repeated stateless interactions amongst
egoist utility maximisers. They use fized learning and myopic decision-making mechanisms
and internal parameters, and their learning focuses on gathering information about their
adversaries. Quite naturally, most of the possible extensions to the system that can be
thought of relate to each of these assumptions.

The most important of these extensions would certainly be the development of a meta-
reasoning component for the LAYLA architecture. Ideally, such a component would be
capable of

e flexible resource management that allows agents to adapt their learning and reason-
ing efforts to time and space constraints dynamically,

e monitoring the learning layers’ performance, adapting their parameters whenever
necessary, managing stored training sets and discarding current hypotheses upon
unexpected changes to the environment and

e controlling the interaction between learning and decision-making layers in a more
flexible way than is possible now.

The benefits of having such a component would be that we can tackle some of the com-
plexity problems previously discussed, and that the development of short-sighted decision-
making strategies (as it is currently reflected in the computation of best-response strategies



and expected gains) would be controlled by a planning component to yield more reliable
long-term meta-strategies: only if the agent can reason about its learning and decision-
making components can it improve its long-term abilities beyond the myopic perspective
of the current SE and SBE implementations.

The central advantage of re-configuring internal parameters dynamically would be that
the compromise factors could be determined by the agents themselves. The performance
of agents in heterogenous societies or in societies in which opponents’ social stance changes
over time probably hinges on the capability of adapting “cooperativeness” to the current
situation.

At a more conceptual level, it appears most natural to include a means of reflection about
“coordination learning” once we set out to develop such a learning methodology — if there
exists a generic theory of learning how to coordinate, individuals should also be able to
reason about it.

Then, of course, the “no communication” and “no sequentiality” assumptions should
be reconsidered. In Chapter 1 we gave several reasons for not including the possibility of
explicit communication in our system but, obviously, it does constitute a central part of
interaction in real-world problems. The importance of communication for our architec-
ture would probably lie in the fact that it can be used to speed up the learning process:
communication-less environments provide a very limited amount of information so that
the information agents have at their disposal would be substantially enriched if they were
exchanging messages.

In a more general sense, communication should be analysed with respect to its effects
on the evolution of interaction. An interesting question would be, for example, whether
communication-less environments provide more or less possibilities of deception than set-
tings in which agents can communicate or vice versa. Another interesting issue to look
at is concept formation (cf., e.g., de Jong (1999)) among coordination-learning agents,
i.e. to ask what kind of concepts would be formed by agents if, in an evolutionary way,
they began by exchanging random strings and assigned meaning to them over time. This
would maybe be an alternative way of determining what essential concepts govern the
process of interaction.

Including the possibility of sequential interactions with intermediate steps was already
discussed in the previous section. The main argument that speaks for such an extension
is that natural worlds require the explicit planning of future activities, sequences of strate-
gies that will lead to desirable states. As we have mentioned, our methodology cannot
be extended to accommodate these requirements in a straightforward manner, but they
certainly are an interesting extension to it.

Another interesting issue is the inclusion of alternative forms of learning. In our ar-
chitecture, agents build models of others, i.e. they learn something about their opponents,
but what if they learned from or with others?

Bandura (1977), for example, argued that a great deal of social learning is not based
on reinforcement but on imitation, and there is a growing body of research in DAI that
follows this intuition (cf., e.g., Demiris and Hayes (1996), Kuniyoshi et al. (1994), Price
and Boutilier (1999) or Bakker and Kuniyoshi (1996) for an overview). This is because
the risks connected with the exploration-exploitation problem of reinforcement learning
usually make humans rather imitate some behaviour of successful individuals than to try
random behaviours until an optimal strategy is found. In the same way, interacting agents
might be able to learn something from each other, even if their observations are usually



limited /unreliable and if, in many cases, there is some heterogeneity between the imitator
and the imitated (so that supposedly effective, observed behaviours are not necessarily
useful for the imitator).

Alternatively (or additionally), agents could engage in collaborative learning to speed up
the learning process. They might, for example, make agreements about a certain method
of exploring the joint strategy space so that no action has to be repeated more often than
is absolutely necessary. Or compare their gain models to find out to which degree they are
interdependent. Note that such collaborative learning does not require that the agents
themselves be collaborative — they could make deals about who is going to learn what
and only participate in the societal learning efforts if it pays for themselves.

Until now we have only contributed to something like “small group research” for multi-

agent systems. It has not been analysed whether the architecture is suitable for large-scale
societies of possibly non-recognisable agents or for societies that evolve over time (e.g. in
generations) and these are also questions that deserve our attention.
While complexity reasons were the main reason for restricting ourselves to relatively small
societies, it should be made clear that “scaling” does not imply that we should look at
games with, say, a million players; even in such large populations, it is very unlikely that
the particular interactions comprise more than a few dozens® of agents — larger games are
simply unsolvable.

7.4 Theoretical value vs. practical relevance

Quite often — especially in such novel fields as multi-agent learning — there is some discrep-
ancy between the theoretical value of developing an architecture (and testing it within
some abstract, mathematically modelled scenario) and the practical use of the suggested
methodology. Admittedly, this work has been mostly concerned with providing a theo-
retical, hierarchical approach to the problem of “learning how to coordinate effectively”
and there are only limited possibilities to use it directly in some concrete application.

The resource-sharing scenarios mentioned in Section 1.3.2 give examples for the kind
of real-world applications for which the approach is suitable. Typically, it can be used
for the long-term optimisation of systems in which agents represent human users and
suggest /decide which of the available resources to use at some given point in time. There,
it is particularly effective and useful whenever the global system behaviour is not known
in advance and users can only learn from their past observations, i.e. from occasional
system feedback (e.g. response times). In that case, having LAYLA agents monitor and
manage the interactions probably yields much more reliable strategies than the subjective
heuristics that humans usually develop over time. This is because the latter might be bi-
ased by personal feelings (“Oh my God, the guy next door is using that server again!”),
obliviousness (“Wasn’t Altavista always fast during early evening hours? Or was it that
other search engine?”) etc.

3 According to Rosaria Conte (personal communication), “fifty” seems to be a magical number in
current research on social simulation/artificial societies — systems either consist of up to fifty deliberative
agents with elaborate reasoning/communicative/adaptive capabilities or they comprise thousands (or
even millions) of simple, reactive agents (e.g. cellular automata). However, it is common practice to have
two-player encounters or interactions between a manageable number of groups (clusters of individuals)
in large societies.



Another type of systems that are possible candidates for the use of our framework are ap-
plications in which a centralised resource allocation is either impracticable or intractable.
Consider, for example, external modem access to some local area network (LAN). Obvi-
ously, the LAN is not able to control which external users will clog the telephone con-
nections at what time even if it may very well control access to the network itself. Also,
given the fact that in having multiple external users with different needs at different times
it is very difficult to schedule efficient modem-caller allocations in a centralised manner.
If, on the other hand, resource allocation was managed distributedly by the callers, they
might learn that it does not pay to dial-in all the time, because if everyone does so, they
will never access the network themselves.

Still there is no doubt that the benefits of the suggested framework lie clearly on the
theoretical side. We contributed to the comparatively unexplored fields of multi-agent
learning and hierarchical learning and we presented an adaptive architecture for effective
behaviour in repeated games, thereby lifting some of the critical assumptions made by
other works from the field.

Many theoretical problems remain unanswered. Most importantly, it would be desirable
to have some insights into the theoretical properties of layered and distributed learning as
we employ it. In the experiments of Chapter 6 it was very often the case that we had only
very vague, intuitive explanations for why the system worked instead of a well-founded
theory that would provide more reliable arguments. Given, though, that no multi-agent
learning theory has been developed so far in the way it exists for single-agent learning
(the work of Vidal and Durfee (1998b) is a first step in that direction), it is very hard to
formalise general learning properties of the LAYLA system, especially properties that are
independent of the underlying games.

Furthermore, it seems that many of the observed behaviours should in some way be linked
to the terminology of the social sciences via social metaphors, because these fields have
a long tradition in studying social interaction that Al can benefit from. Concepts like
social norms, trust, deception, group formation, conformity, reputation and isolation have
not been explicitly connected to the system behaviour that was observed, but they are
certainly useful (if not essential) abstractions when talking about social dynamics in co-
inhabited worlds.

We believe that what is still missing in DAI research is a social level characterisation
(Jennings and Campos, 1997) of intelligent systems that describes global system behaviour
on the grounds of local agent interactions — maybe social metaphors are one of keys to
the explanation and prediction of emergent behaviours in multi-agent societies. Since the
micro-macro effect is one of the most exciting features of distributed intelligent systems
it surely deserves further analysis — our work can be seen as a contribution to these efforts.
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Notation
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vectors).
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POM update factor (some probability € [0;1]) in the Social Be-
haviour Engine.

Transition function in a game for a player ¢ and for the whole player
set; computes the next action as a function of the history of the
game (in Markov Decision Processes (Section 5.3.1), state transition
function).

Transition probabilities for opponent behaviour (Strategy Engine).
Distance function for nearest-neighbour prediction (Strategy En-
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The k-th pure strategy of player ¢ written as a mixed strategy.
Utility Engine exploration bias function of agent .

Neural network performance measure (mean error on a set V of
generated samples).

Strategy Engine prediction error in round t.

Some percentage of tolerance in determining whether a simulation
has converged (Chapter 6).

The accessor-resource delay factor of the MARLOG game (in the
general version, a function of the player; a constant in the simple
MARLOG).

Probability that j will play & deduced from the recursive belief
models (Social Behaviour Engine).

Learning experience for a given machine learning algorithm.
Learning experience for an agent learner in a repeated game sce-
nario. Consists of a series of joint actions and the respective payoffs
for i (equivalent to H; in the LAYLA system).

The learning hypothesis by which agent 7 predicts its opponents’
actions.

Strategy Engine GA fitness function.

Policy in a Markov Decision Process.

The expected gain of playing a; for agent ¢ (Social Behaviour En-
gine).

Gain value of j’s action a; for 4’s action a; (Social Behaviour En-
gine).

Genetic algorithm populations of a Strategy Engine in a MARLOG
game of k resources.

Learning goals of learners L, L; and L;.

The learning hypothesis by which agent ¢+ computes a future action
sequence that will lead to a globally optimal behaviour and the
length of the predicted sequence.

Hidden layer dimension vector of Utility Engine neural networks.
Hypothesis (bit-string) in a Strategy Engine GA population and its
[-th bit.

The history of a repeated game as player i perceives it in round ¢
(a sequence of past joint actions and the corresponding payoffs for
Hypotheses (individuals) of a genetic algorithm population.
Indices for players.

Neural network learning rate.

Number of available resources in a MARLOG game.
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Number of nearest neighbours used for opponent behaviour predic-
tion (Strategy Engine).

Social Behaviour Engine action-value function of player i (social
action-value function).

Indices for actions in Probabilistic Ordering Models.

Optimism parameter for the computation of gain values (Social
Behaviour Engine).

Learning components in layered learning architectures.

Set of socially feasible actions with respect to neighbour j.
Interdependence modalities (IM), opponent behaviour prediction
(OBP) and cooperation potential (CP) learners.

Strategy Engine (greedy) action-value function of player i.
Average Strategy Engine prediction error.

Mean final payoft of all agents in a single simulation.

Mean of quantity ¢ in s identical simulations.

Average convergence-yielding round number in s simulations.
Arbitrary real-valued matrix that is modelled by a POM (Social
Behaviour Engine).

Mutation rate of a genetic algorithm (Strategy Engine).

Match value function for GA hypotheses (Strategy Engine).

The number of players in a game in normal form.

Simulation Engine action execution noise function for player 1.
Simulation Engine payoff noise function for player 3.

Simulation Engine action perception noise function for player .
The set of players of a game in normal form.

Set of K nearest neighbours for a given action a; of player ¢ and a
given previous opponent action a_; (Strategy Engine).

The set of natural numbers (including zero).

Neighbourhood of agent 7 (Social Behaviour Engine).

Strategy 0 in any MARLOG game. Opposite to “all”, it is the
strategy by which none of the available resources is accessed.

Set of individually and collectively rational joint strategy combina-
tions/one such strategy.

Rank probability function that assigns a probability to each rank
statement (Social Behaviour Engine).

Payoff estimate of an agent that tries to learn its true payoff func-
tion u;.

The (real) probability of statement s.

The set of players in a MARLOG game.

Learning performance measure (in general, and as a function of the
LAYLA hypotheses 7, f, and h).

The posterior probability with which s was found to be true (the
frequency with which it occured in prior observations).

The posterior probability with which agent j has played action [ so
far (Social Behaviour Engine).

Prediction function that outputs the next opponent action on the
basis of nearest-neighbour outputs (Strategy Engine).

Boolean function by which the behaviour of agent j is judged to be
“profiled” or not (Social Behaviour Engine).
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Variable: a resource in the MARLOG game/a rank in a Probabilis-
tic Ordering Model. Function: reward function in an MDP.
Ranking function in Probabilistic Ordering Models. Assigns a rank
to each matrix position (Social Behaviour Engine).

Set of resources in a MARLOG.

Set of ranks in Probabilistic Ordering Models (Social Behaviour
Engine).

The set of real numbers.

A general multiple-access resource-load balancing game.
Replacement ratio of a genetic algorithm (Strategy Engine).
t-long sequences of strategy choices of player i, the subset @) of
players or the whole player set.

The t-th strategy choice of player ¢, the subset @) of players or the
whole player set in a sequence of actions.

Recursive belief models of an agent (Social Behaviour Engine).
Collections of recursive belief models for all neighbours (SOCCER
algorithm).

The “empty” POM, has a rank probability function that assigns
each matrix position to each rank with uniform distribution.
Standard deviation between final agent payoffs in a single simula-
tion.

Standard deviation of quantity ¢ in s identical simulations.
Standard deviation between convergence-yielding round numbers
for different simulations.

Pure strategy of player ¢ in a normal-form game.

The strategy space of player ¢ in a game in normal form, the cross-
product of these for all players.

Sets of t-long sequences of strategies.

State space in a Markov Decision Process.

Mixed strategies for general normal form games (cf. « for indexing
conventions).

Mixed strategy spaces for games in normal form.

A function that measures the similarity of opponent strategy se-
quences.

Access time factor for a resource in the MARLOG (func-
tion/constant, cf. also ¢, v).

Numbers of played one-shot games in a repeated game.

Variance threshold for determining whether a peer is profiled or not
(Social Behaviour Engine).

The task of a learning algorithm.

Set of Nash equilibria of a simple MARLOG game RL.

The utility function of a game I" for one player, a subset of players
and the whole set of players.

The maximally possible/greedy/fair single-agent payoff in a MAR-
LOG game.

(Geometrical) distance between two payoff vectors.

Value assigned to a resource in the MARLOG game (func-
tion/constant, cf. also ¢, T').

Value/expected value of a policy ¢ (MDPs, Section 5.3.1).



w
¢

#
|

—

A.2 Abbreviations

ANN
BBL

CG

CP

DAI

DE

DFA

DPS

IM
InteRRaP

GA

GM
LAN
LAYLA
LPL
MAL
MARLOG
MDP
MAS
OBP
PD
PFA
POM
RL
SBE

SE

SG

SOCCER
SPL
UE

Vector of all weights in a neural network (Utility Engine).
Exploration threshold of the Utility Engine (SOCCER algorithm).
Wildcard symbol for bit-strings (Strategy Engine).

|| Normalising function.

Artificial Neural Network
Behaviour-Based Layer

Coordination Game

Cooperation Potential

Distributed Artifical Intelligence
Decision Making and Execution Module
Deterministic Finite Automaton
Distributed Problem-Solving
Interdependence Modalities

Integration of Reactive Behaviour and
Rational Planning

Genetic Algorithm

Gain Model

Local Area Network

Layered Learning Agent (architecture)
Local Planning Layer

Multi-Agent Learning

Multiple-access resource-load balancing game
Markov Decision Process

Multi-Agent System

Opponent Behaviour Prediction
Prisoners’ Dilemma

Probabilistic Finite Automaton
Probabilistic Ordering Model
Reinforcement Learning

Social Behaviour Engine

Strategy Engine

Situation Recognition and Goal Activation
Module

Social Cooperation-Enabling Reinforcement
Social Planning Layer

Utility Engine






Appendix B

Solution concepts for games

We provide an introduction to some solution methods of classical game theory, which we
use to determine optimal solutions for the resource-load balancing game (cf. App. C).
Section B.1 introduces several concepts that constitute formalisations of individual ratio-
nality, i.e. that are solely based on the principle that players will use those strategies that
promise maximal payoffs. These can be thought of as agent-level solution concepts, since
they make predictions about how utility-maximising individuals will behave.

Then, we look at the system-level view of games by presenting the kernel solution method
for n-person cooperative games in Section B.2. Although this concept still obeys the
principle of individual rationality, it also analyses the optimal behaviours that collections
of cooperating players should exhibit!.

B.1 Dominance relations, equilibria and
pareto-optimality

As Fischer et al. (1998, p. 29) have pointed out, defining what should be thought of as
a “solution” of a game is not a trivial issue. From some individual player’s standpoint,
solutions might be defined as those behaviours which yield high worst-case payoffs for
that player, but from the system designer’s viewpoint, this might be inadequate, because
such “solutions” fail to get the most out of the game for all players involved (from a global
perspective, the four “wasted” units of payoff in the PD when playing (D,D) instead of
(C,C) are an inacceptable outcome).

In this section, we will present some very basic solution concepts which are based on
simple mathematical properties of the payoff matrices and the assumption that players
are individual utility maximisers.

B.1.1 Dominance, best replies

The notion of dominance is essential to the analysis of solution concepts, because it
provides a simple criterion to rule out strategies that are worse than some other dominant
strategy for at least one joint strategy combination, while they never outperform the
dominant strategy. Under the assumption that agents act rationally, dominated strategies

LThis section closely follows the lines of the introduction given in (Fischer et al., 1998) and the
introductory chapter in Weibull’s book (Weibull, 1995). As in Section 3.1.2, we will use the PD and CG
games to illustrate the concepts we formally introduce in the following sections.



can be neglected, and some games can in fact be completely solved by applying this
principle.

Definition B.1 (Strict and Weak Domination)

e A strategy s; € S; is said to weakly dominate some other strategy t; € S;, iff
Vs_; € S_jui(si, s—i) > ui(ts, s_5)
(for any opponent behaviour, s; yields at least as high a payoff as t;), and
ds ; € S ui(si,54) > uity, s)
holds (s; is more successful for at least one joint opponent strategy).

e The strategy s; is said to strictly dominate t;, if the second condition holds for
any S_;, t.e. iff
Vs ; € S,Z’.UZ’(S,‘, S,Z’) > U,i(ti, S,i).

In the PD, the “defect” strategy strictly dominates the “cooperate” strategy. If the
iterative elimination of strictly dominated strategies reduces all players’ strategy sets
to singletons {s}}icn, then the game is said to be strictly dominance solvable and the
resulting joint strategy s* is the only essentially rational choice for the players?. While
this provides an intuitive and simple solution method for the PD, it does not apply to the
CG, since in that game no strategy dominates the other.

A concept somewhat orthogonal to that of dominance is the notion of best replies. Instead
of ruling out the dominated strategies that are less profitable under all joint opponent
strategies, best replies are maximally utile strategies with respect to some fized opponent
strategy. They are the answer to the question “what is the rational action choice for a
player if she knows the actions others are going to perform in advance?” (In that sense,
dominant strategies denote “rational choices if nothing is known about the behaviour of
the remaining players”.)

Definition B.2 (Best Replies)
e The pure-strategy best reply correspondence BR; for player i is a function
BR;:Y_; — 25
which maps each mized-strateqy opponent profile to the non-empty, finite set
BRi(0 ;) = {h € S; : ui(el, 0 5) > ui(ef, o0 ;) Vk € S;}
of so-called best replies to o_;.
e Similarly, the mixed-strategy best reply correspondence BR; is a function
BR;:Y_; = %,

defined by .
BRi(O'_Z') = {h €, uz(h, O'_Z') > Ui(k,O'_i) Vk € Zz}

20f course, it will only be chosen if all players are rational in the sense that they seek to maximise
their own profits, if they know all opponents’ payoff functions and if all agents know of that knowledge.



o As before, we will write BR = X;enBR; for the combined pure-strategy best-
reply correspondence and BR = X;cyBR; for the combined mixed-strategy
best-reply correspondence.

The formalisms just introduced may seem somewhat complex, but including mixed strat-
egy combinations in these definitions will be of great advantage when we get to the
theorem of the existence of equilibria soon.

Basically, all that best-reply correspondences do is to map some (mixed or pure) joint
opponent strategy to those strategies in a player’s strategy set that ensure the highest
payoff. Since the payoffs of mixed strategies are convex combinations of those of pure
strategies, no mixed best reply can yield a higher payoff than any of the pure best replies.
However, there can be mixed best replies that are much more important than pure best
replies as we shall shortly see.

Let us return to the two example games. In the PD, D is the single (pure) best reply
to any (mixed or pure) opponent strategy. This supports the argument for (D,D) as the
only stable solution, because it gives players another “reason” to pick D. In the CG, on
the contrary, the best reply to some opponent strategy is to play A with probability 1 if
the opponent plays A with probability greater than 0.5, and to play B with probability
1 if the opponent plays A with probability less than 0.5 (if the opponent chooses A with
probability 0.5, any strategy is a best reply)®. So for the CG the concept of best replies
provides us with a new result, namely that we can restrict the analysis of rational strategies
to the two pure strategies, and that with only very little information about the opponent’s
preferences we can infer how the player should behave. Still, the problem which remains
is that unless one of the players knows the precise strategy of her adversary, there is no
way to respond optimally.

The notion of best replies would be only half as valuable, if it didn’t serve as the starting
point for the definition of equilibria, which we turn to in the following paragraph.

B.1.2 Nash equilibrium vs. pareto-optimality

The notion of Nash Equilibrium, conceived by John Nash as early as 1951 is a very
simple yet very interesting solution concept for games, based on defining joint strategy
combinations that are best replies to themselves, i.e. states in which none of the players
has an incentive to deviate from her current strategy.

Definition B.3 (Nash Equilibrium) )
Let T' = (N, S,u) be a game in normal form, and BR be a combined mized-strategy best-

3To prove this, we consider some arbitrary mixed strategy of player 1 o; given by the probability
p € [0; 1] with which player 1 will choose action A (this implies that o1 (B) =1 — p). If player 2 plays A
with probability ¢ using a mixed strategy oz, then her expected payoff will be

uz(o2) =u2(q) =pg—p(1—q)+ (1 —p)(1—q) —(1—plg=4pg—2p—2¢+1

This linear function in ¢ has positive gradient if p > 0.5 (case (a)), negative gradient for p < 0.5 (case
(b)) and is constantly 0 for p = 0.5 (case (c)).

If (a) is the case, then obviously the maximum of us(q) is reached in ¢ = 1. Conversely, in the case of
(b), the function is maximal for ¢ = 0 (since it decreases monotonically). For (c), Vg € [0;1].u2(qg) =0
holds, so any ¢ will be a best reply (yielding zero payoff).

Since the payoff function is symmetric, i.e. u1(o) = uz(o), the same holds mutatis mutandis for the best
replies of player 1.



reply correspondence for I'. The set
O={ceX | o€BR(0)}
is called the set of Nash equilibria of I'.

Thus, if an equilibrium strategy 6 € O is played, either @ itself is a best reply to it, or some
equilibrium other than #. Nash himself found out (Nash, 1951), that © # () for any finite
game?, and this is a very strong result, since it proves the existence of stable strategies,
yet only stable in the sense of “once O is reached, it won’t be left again”; it does not mean
that some particular equilibrium strategy will be a stable solution, if several exist.

This problem of equilibrium selection occurs in many games. In fact, it is the whole point
of analysing such games as the CG in which the equilibria (A, A) and (B, B) can be easily
determined, but it is impossible to predict to which of these (if any) the players’ strategy
choices will converge.

In the PD, though, the (only) NE is to be found in (D, D), so from an equilibrium-analysis
standpoint, players will fail to recognise that (C,C) would have been a more preferable
choice.

Thus, the PD is one example of a game in which equilibria yield sub-optimal results for
both players, which shows that this cannot be the ultimate solution for any game.

With this respect, the criterion of pareto-optimality often proves to be more appro-
priate than equilibria for defining rational choices, and we therefore introduce it next.

Definition B.4 (Pareto-Optimality)
Let T'= (N, S,u) be any finite game in normal form. A joint strategy combination o € 3
15 called pareto-optimal, if it meets the condition

Vo' € X.0' # 0 = (3i € Nou;(0') > ui(0)) = (3j € Nouj(o') < uj(o)).

This means that a conjoint strategy is pareto-optimal, if and only if any alternative joint
strategy that is better for at least one player is also worse for at least one of the other
players. Hence, pareto-optimal strategies are exactly those strategies that are profitable
for at least one player, while none of the other players has to sacrifice the possible payoffs
she might have obtained from choosing some other strategy.

The importance of this concept becomes clear if we consider the PD game once more:
changing from the safe (D, D) strategy combination to (C, C) — the pareto-optimal solu-
tion — is profitable for both players at the same time, but unfortunately (C,C) does not
constitute an equilibrium, so neither of the players can be sure that her opponent will
actually choose to play D, and since this “epistemic argument” is of recursive nature,
neither of the players would actually be acting rationally if they chose C.

In the CG both equilibria are pareto-optimal, but even though both solution concepts
coincide, the initial problem of coordinated action selection remains unsolved.

With the above definitions and observations we have given a concise overview of cer-
tain simple game-theoretic solution concepts. What we still lack, though, is the precise
formulation of a solution method that can be applied to the application scenario to find
optimal solutions. This will be presented in the following section.

4A game with a finite number of players and finite strategy spaces, that is.



B.2 A collectively and individually rational solution
concept

The first solution concept for n-person cooperative games was proposed by von Neumann
and Morgenstern. It is based on the assumptions that

1. players are able to communicate with each other and thus able to make agreements
and to form coalitions;

2. that the distribution of coalition payoffs is “decoupled” from the obtainment of the
profit, i.e. payoffs can be transferred between players.

In the settings we consider, neither of these two assumptions hold. However, it is im-
portant to analyse the existence of beneficial coalition-forming, because it might occur
in an emergent way as if agents had agreed on them, and in fact it is our very goal to
prove that these can emerge without explicit communication, at least in our application
scenario (which exhibits certain properties that allow for such cooperation).

B.2.1 The characteristic form

To analyse the profit structure of games, they first need to be transformed into the so-
called characteristic form, in which the usual payoff function is replaced by a characteristic
function that reflects for each possible coalition the collective payoff that it can ensure,
no matter what the remaining players do.

Definition B.5 (Characteristic Form of a Game)
A n-person game I' = (N, v) in characteristic form is defined by

e the set of players N = {1,...,n} and

e the characteristic function v : 2V — R which assigns a real value (the coalition
payoff) v(K) to each K C N (it is required that v()) = 0).

e The game is called superadditive, if for any two disjoint K, Ky € 2V, v satisfies
the inequality
v(K1 U Ky) > v(K;) + v(Ks).

e [t is called essential, if ‘<’ can be replaced by strict inequality for least one K1 and
K, in the above condition’.

One possibility to convert a game in normal form into characteristic form is to define

v(K) =max min Y u(o,1), (B.1)

CEX K TEXN K kCK

i.e. to assign to each K the “maximin” sum of the coalition players’ payoffs under the
least profitable action combination of the non-coalition players®.

5If this does not hold for any two K; and K>, then

> o({i}) = o()
ieN
follows directly, which means that even the maximal coalition N cannot add to the player’s individual
profit, thus an analysis of possible coalitions in such games is not interesting.
6This calculation is not possible if forming the coalition itself produces some extra cost. Since we do
not account for games with communication here, though, it can be safely applied



B.2.2 von Neumann and Morgenstern’s solution: the kernel

The kernel, the solution method we present here, is a classical solution concept for n-
person cooperative games and is applicable to the resource load game we use (hence we
shall neglect alternative methods).

The kernel method is based on ruling out certain payoff distributions within coalitions if
these contradict two basic assumptions, individual rationality and the already mentioned
pareto-optimality. Individual rationality requires that the player obtains at least as much
payoff as she could have gained by her own strength. It is most natural that this can
be seen as a requirement for any payoff distribution to be called rational, because other-
wise the player has no incentive to participate in the respective coalition. The notion of
pareto-optimality has been formally introduced before, but seen in the light of coalitions,
it denotes the property of payoff distributions to be optimal (in the sense that there are
no alternative distributions which assign a larger payoff to some player without decreas-
ing some other player’s payoff) rather than strategy combinations. Based on these two
concepts, von Neumann and Morgenstern defined the set of imputations, i.e. “allowed”
payoff vectors. We now introduce these formally.

Definition B.6 (Individual Rationality, Pareto-Optimality (II) and Imputations)
Let T' = (N,v) be any finite game in characteristic form, and u = (uy,...,u,) € R" a
payoff vector.

e u is called individually rational, if and only if every player gets at least as much
payoff as she could have obtained on her own, i.e. iff

Vi € No; > v({i}).

e u s called pareto-optimal, if and only if it meets the condition

> u; =v(N)".

1EN

e the set I(v) of imputations for the game I' is defined as the set of individually
rational and pareto-optimal payoff vectors.

Thus, imputations define the set of possible payoff distributions that are both acceptable
for each individual, because they ensure at least as much payoff as they would have
obtained “outside” the coalition and fair, because all of the possibly obtainable collective
coalition profit is distributed among the participating players.

In order to define the kernel of the game, the concept of individual rationality is extended
to that of collective rationality. Collective rationality means that a coalition K will only
accept imputations in which it obtains at least as much payoff from the maximal coalition
N that it could gain as an independent coalition by its own strength. So only imputations
that respect this condition will be accepted by all possible alternative coalitions, and will
hence eventually be formed.

"To see that this definition is equivalent to Definition B.4, note that Y,y u; < v(N) must hold for
any payoff vector (since the coalition cannot distribute more than its collective payoff) and that if v were
not pareto-optimal, then some other ' would exist, by which a higher profit could be distributed to one
player without affecting other players’ payoffs. This would imply that ),y u; > v(NN), which cannot be
the case, and hence such a v’ cannot exist, so u was pareto-optimal.



Definition B.7 (The Kernel of a Game)
The kernel of a game I' = (N,v) is the set of all imputations v € I(v) for which the
condition of collective rationality holds:

VKQN.Zui > v(K)

1€EK

If a payoff vector from the kernel is used to distribute v(/N) the game is called stable —
no individual or group of individuals has an incentive to form a coalition other than N.
Therefore the kernel of a game can be seen as a solution which respects the criteria of
individual and collective rationality.






Appendix C

Proofs of theorems in Chapter 3

This chapter provides the full details of the mathematical proofs of Lemma 3.2, Corollary
3.2 and Theorem 3.2 that determine the equilibrium strategy for the simple MARLOG
and a class of kernel payoff vectors. We start by introducing some auxiliary definitions
that will be needed for the main proofs.

C.1 Auxiliary definitions

Definition C.1 (Resource Load)
The load of some resource v € R induced on it by a joint action combination a € A of a
set of players P equals the number of agents from P that access r by playing a, i.e.

Vr € RVa € A.load(a,r) = B(a;)[r]
j=1

Definition C.2 (Resource Payoff) The resource payoff any agent can receive for any
resource r € R under some fized resource load 1 <1 < n computes as

Using this definition, we can rewrite u;(a) as
k
ui(a) =) B(a;)[r] - rp(load(a, )

r=1

for any a € A.

Definition C.3 (Expected resource payoff)

o For any 1 € P with mized strategy o;; and any r € R, the resource access prob-
ability P(«;,r) can be computed as the sum of the probabilities of those actions in
A whose binary encoding is 1 in the r-th component:

P(a;,r) = > a;(a;) (C.1)

aieAaﬂ(ai)[T]:l



o With this definition we are able to define for any joint mized strategy cg of some
subset of players Q C P the probability with which r will be accessed by exactly |
agents (0 <1< |Q|):

P(ag,r,l) = P(l agents access ) (C.2)
This probability can be computed by defining
X() ={x €{0;1}" is 1 in ezactly |l positions }

and taking

Plag,r,l) = 3 I(1)-P(on,r) ..., I(n)-P(a, 7)™, I(i) :{ (1] Z;eEQ
z€X(l)

e Thus, the expected payoff for resource r u;(«,r) that player i can expect to
recetve from r can be expressed as

n—1

ui(o,r) =Y Pla_y,rl)-rp(l +1), (C.3)

=0

i.e. the weighted sum of the probabilities that the resource (if i itself accesses it) will
have opponent load 0,1,..., n-1 (depending on how many other agents access the
resource at the same time) and the respective resource payoffs for i.

e [t follows from this construction that the (overall) expected payoff fori can be rewrit-
ten as

k
ui(a) =) Plag,r) - uil, ) (C.4)
r=1
by weighing the expected resource payoffs by the probabilities with which i will access
them.

C.2 Globally dominant /dominated strategies and equi-
librium strategy

Lemma 3.2

For any player p;,

(1) the pure strategy all; = e?k_l strictly dominates all other strategies and
(2) the strategy none; = €} is strictly dominated by all other strategies.

Proof:
(1) By contradiction:
Let o ; be any mixed opponent strategy. Using equation (C.2) in Definition C.3 it can
be seen that for any resource r some probability distribution P(«_;,7,1l) over opponent
loads 0 <1 < n —1isinduced by a_;.
Now assume that there is some strategy «; # all; which is not strictly dominated by all;,
ie.

da_; € E_i.ui(ai, (l/_z') > ui(alli, Oé_i).



The expected payoff u;(«) is (by Equation (C.4)) linear in r, and the summands are non-
negative (by construction, % —c¢>0and [+1 < (n—1) + 1, and P(a_;,1,1) € [0;1]).
This sum is maximal, if for all r € R, P(a,r) = 1.

Since «; # all;, P(ay,r) < 1 for at least one r (because all; is the only strategy that
accesses all resources with probability 1) there can be no such a_;, hence no «; is not

strictly dominated by all;, which proves our claim.
u

(2) As in the previous argument, assume that there exists an «; # none; such that
da_; € ¥_ui(none;, a_;) > ui(oy, ay),

i.e. that for at least one «; and one a_;, none; will yield a payoff at least as high as «;.

Taking into account that P(none;,r) = 0 for all » € R (it is in fact the only strategy with
this property), equation (C.4) yields u;(none;, a_;) =0, so if o; # none;, u;(ag, a_;) > 0,
for which reason no «o; and a_; exist that fulfill the above condition. This proves our

argument.
u

Corollary 3.2
The set of Nash equilibria of the simple multiple-access resource load game RL = (n, k,v,c,T)
is given by

O(RL) = {allp}, (C.5)

that is the singleton set containing the joint combination of the '2¥ — 1’-th pure strategy
of all players (the joint strategy in which all players access all resources).

Proof: (trivial)

Since for every ¢ € P the strategy all; strictly dominates any other strategy for any joint
opponent strategy, it is in particular the single best reply to any joint opponent strategy
(cf. App. B, Section B.1.1). Extending this argument to all agents yields for the joint
mixed-strategy best reply correspondence

Va € ¥.BR(a) = {allp}

which proves the proposition.

C.3 Kernel analysis

C.3.1 Characteristic form of the simple MARLOG

We first present a proof of the following lemma.

Lemma C.3.1

Let @ C P be an arbitrary non-empty coalition in a simple MARLOG RL = {n, k,v,c,T)
with |Q| = ¢. Further, let a’, ¢ be the joint strategy of all non-coalition members by
which each of them accesses all resources (cf. Lemma 3.2). Then

VCYQ € EK.G,HP,Q = arg aIIliIl Z UZ'(O'Q, UP,Q)
P-Q icQ



Proof:

First, we extend the mapping u;(a, ) that returns the expected value of each resource
r € R for one potential accessor given some opponent behaviour to arbitrary non-empty
sets of potential accessors () C P in a straightforward way by defining

ug(a,r) == %P(ai,r) (o, r), (C.6)

so that the coalition would potentially receive the sum of its participant payoffs if it
accessed 7.
Now for any two [, 1, with n > l; > [, > 0, obviously

V. Y _
LT ST ¢
holds, so that
n—q
rp(n—q+1) <Y Plap_g,r,1)-rp(l +1) (C.7)
1=0

because a convex combination linear in [ can never yield a smaller value than the mini-
mum of the summed entries.

Hence, non-coalition members P — Q) will reduce the payoff for () maximally if the prob-
ability P(ap_g,7,1) is one for | = n— ¢ and zero for all [ < n —q for all 7 € R, i.e. if they

all play allp_¢g which proves the above proposition.
u

So to define the characteristic function, we are left with the question “how can
ug(ag, ap_g,r) be maximised for every resource if the opponent coalition plays allp_g?”
The following auxiliary definitions are necessary to resolve this issue.

Definition C.4 (Coalition access payoff for a resource)
For any non-empty coalition Q C P, we define the coalition access payoff in terms of
the load induced by the joint QQ-strategy cg additionally to any resource r € R, i.e.

CAP(z,r) =z -rp(n — q+ x)
for x € [0;q] (¢ =1Q|), and x can be deduced from any g by taking

T = Z P(a,r)

i€Q
foranyr € R.

The intuition behind this definition is that every ()-action defines an additional load z
(that may be different for every resource). CAP(z,r) (whose value does actually not
depend on 7 in terms of x, for which reason we will often write CAP(x)) computes the
sum of all payoffs the z accessors of r receive. All this is done only for the case in which
the opponent coalition plays in the most unfavourable way.

We now define the maximum of this quantity for integer values of = as a function of the
opponent load Il =n — q.



Definition C.5 (Optimal resource access for a coalition)

Let zop(l) := % — [ for any non-empty coalition Q of size ¢ = |Q)|.

The optimal resource access opt(q) is defined as

opt(l) := arg max CAP(l"), h=zem()], lo=Tzep(l)]

re{ly,la}

Simple calculus suffices to show that the C AP-function reaches its (only) maximum at

\/c”j% —[. All the optimal resource access does is to derive the maximal integer-valued ad-
ditional load that ) can induce on the resource from the (possibly real-valued) maximum
Topt (0pt and z,p; of course depend on the size of the coalition ¢).

Let Mg C X¢ be the set Mg :={ag € Xx | Vr € R.P(ag,r,opt(n—q)) =1}. Mg is
the set of all joint strategies of players in @ in which exactly opt(n — ¢) of these agents
accesses every resource. We present the following theorem.

Theorem C.3.1
Let RL = (n,k,v,c,T) and Q C P be an arbitrary non-empty subset of P. Then M
defines the maximin joint strategy set of @, i.e.

Mg = arg max min »_ u;(ag, ap_q)-

Yo ap-Q ¢
aQEQ‘PQZeQ

Proof: By contradiction:
Assume the existence of some ag ¢ Mg with

> ui(ag, allp—q) > Y _ uilkg, allp—q)

i€eQ €Q
for any pg € Mg. (All expected payoffs of strategies in jig are equal, so it suffices to pick
an arbitrary pg.)
Then by the definitions of pg and allp_g, and because of g # g, at least one r € R
has load greater than opt(n — ¢) +n — ¢ or smaller than opt(n — ¢) +n — ¢ with non-zero
probability. We have shown that the expected resource payoff ug(ag, azl_Q, r) is lower
than if r had load opt(n — ¢) +n — g in both cases, and any joint strategy of @) other than
g assigns non-zero probability to the sub-maximal components of the expected resource
payoff in a convex combination (cf. Equation (C.6)) and is thus sub-optimal. This holds
in the same way for the overall expected payoff by summing over all resources (which are

independent of each other).
u

This provides a maximin strategy for any coalition (), i.e. a coalition payoff that can
be ensured irrespective of the behaviour of non-coalition players, and this enables us to
define the game in characteristic form.

Definition C.6 (Characteristic form of the simple MARLOG)
For any RL = (n,k,v,c,T), the characteristic form CF(RL) = (P,v) is defined by

e the set of players P and

e the characteristic function v : 2¥ — R, which maps every non-empty subset players
Q@ C P to the coalition profit v(Q) defined by

v(Q) =D ui(pg, allp_q) = k- opt(n — q) - rp(opt(n — q) +n — q)
1€Q

for an arbitrary pg € Mg.



C.3.2 Kernel payoff distributions

To prove that the kernel of the game is non-empty (in fact, we define a payoff vector that
is in the kernel of the game), we first need to prove some properties of the characteristic
function.

Lemma C.3.2
The MARLOG in its characteristic form C'F(RL) is superadditive.

Proof:
As in the definition of super-additivity (cf. Definition B.5, App. B), we have to show that
for any two disjoint @1, Q2 € 2%, v satisfies the inequality

v(Q1UQ2) > v(Q1) +v(Q2) - (C.8)

We first prove that CAP(z,,:(l)) is a function that decreases in [.
Simplifying C’AP(w/— — 1) yields the function

v v
CAP(wou(l) = ¢ 1 =2/ - Vi+ ol
which can be converted into a quadratic function if we substitute d for v/, i.e.

CAP(zop(d)) = c-d* — 2 cT -d+ T
The first derivative of this function CAP'(zop(d)) = 2¢- d — 2\/: is negative for | < Z,
but since we require that n < 2% and [ < n by definition of @ this holds for all /, hence
CAP(z,pt(1)) decreases with strict monotonicity.
Since CAP(x4(1)) is a function that decreases in [, it obviously increases with decreasing
[ =n — q, i.e. the resource a coalition can ensure for its members by accessing a resource
increases with the size of the coalition.
Next, we prove that

CAP (2opi(|Q1 U @) > CAP (w0t (|Q1])) + CAP (2o (|Q2])) - (C.9)

Using the same explicit function representation C AP (2, (1)) as in the previous proof,
the statement becomes (after sufficient simplification) equivalent to

CAP(Zopt(n — 1 — q2)) > CAP(zopt(n — q1)) + CAP(zop(n — ¢2))

1
<:>\/1——+\/1———\/1—@—@>5

if g1 = |@Q1] and g» = [@2]. Since £ <1, 2 <1 and ¢; + ¢2 < n must hold, the proof of
this statement can be reduced to proving

1
V0<a,b<l,a+b<1lvl—a+V1—-b—+V1—a—b> 5
It turns out that the left-hand side of the inequality is even greater than one, which yields
as a final condition
ab >0,



and since ¢; and ¢, are non-empty, this condition holds invariably. Finally, we can use
the transformation

v(Q) = k- CAP(opt(n — q))
and inequality (C.9) (which we just proved) to conclude that

v(Q1UQ2) > v(Q1) + v(Q2)-

taking into account that the constant £ has no effect on the inequality, and that .y (()
can safely be replaced by opt(l) without affecting the result.

It follows from the above considerations that v(Q) is maximal for ) = P. For the
case of () = P no opponent coalition exists, so [ = 0; furthermore C AP(z) is maximal for

opt(0) = 1, because it decreases for all z > ,/% -l = ,/% — 0 =0, and it is undefined

for x = 0 (hence 1 is the integer that yields the highest value for CAP(x)).
Thus,

v(P) =k-rp(1)

and this is the maximally possible value of v(Q). We define a payoff vector u* =
(uy...,ur) € R" by letting

Vi€ Pl = v(P) L k-rp(1), (C.10)
n n

and claim that this vector is in the kernel of CF(RL).

Theorem 3.2
The vector u* is in the kernel of the game C'F(RL) where RL is an arbitrary simple
MARLOG in normal form.

Proof:
Recalling the definition of the kernel of a game (cf. App. B, Definitions B.6 and B.7), we
have to show that

1. Vi e Pt > v({i})
2. Yiep ui =v(P)
3.VQ CP.Yicqui > v(Q)

To see that 1. is the case it suffices to compare v({i}) to u;, i.e. to check whether

v({i}) = k-rp(n) < — - k-rp(1) = u;

2

SR

hold. Simple algebraic transformation shows that this is true for any n > 1 which is given
by the game definition.
Claim 2. is true by definition of u* and 3. can be proven by verifying that

S =g+ 2 rp(1) 2 k- CAP(opi(n — 1)) = (@)
1€Q



which, given that opt(n—gq) is some 1 < ¢’ < @ (and by leaving out k) can be transformed
into the inequality

q
p -rp(1) > ¢ -rp(n —q+¢')

/

Simple algebra reduces the statement —L— <

air S to ¢’ < ¢ which is always true, so
multiplying by % yields

S

!
q v<qv

n—q+k T=n T
Thus it remains to prove that —cq’ < —c which is trivial because it holds for all ¢’ > 1,
and I <1 while ¢’ > 1 by definition. This completes the proof.
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