Hierarchical Common-Sense I nteraction Learning

Michael Rovatsos
Knowbotic Systems
DaimlerstraRe 32, 60314 Frankfurt, Germany
rovatsos@knowbotic-systems.com

Abstract

We describe a hierarchical learning approach for effec-
tive coordination in repeated games based on a common-
sense decomposition of the ““‘coordination problem”. In
contrast to most other research on mechanism design
and game-learning, we concentrate on breaking down the
top-level problem into simpler learning tasks concerned
with learning (i) utility functions, (ii) best-response strate-
gies and (iii) cooperation potentials. We also report on
empirical results with the layered learning architecture
LAYLA that is constructed using these sub-components in
a resource-load balancing scenario. The positive results
show that the approach deserves further investigation, al-
though a number of (possibly problem-inherent) difficul-
ties illustrate the limitations of learning approaches in real-
world applications.

1. Introduction

The study of coordination assumes a prominent position
within most of current DAI research, because the ways in
which autonomous agents situated in co-inhabited worlds
manage their interactions determine the global system be-
haviour that will evolve within that society. In the light of
the dynamic nature of distributed open systems and consid-
ering the difficulties in predicting (from a designer point of
view) the society-level phenomena on the grounds of mi-
croscopic inter-agent interactions, it seems particularly im-
portant to develop architectures and algorithms that will al-
low agents to learn how to coordinate rather than use fixed,
built-in coordination mechanisms.

While game-theoretic models have been widely used to
study interaction phenomena, they have mostly aimed at
solving coordination problems only indirectly, because no
reasoning is conducted about the interaction itself by the
agents. Instead, mathematical analysis of decision situa-
tions (as in the area of mechanism design ([4] provides an
overview)) or data-driven adaptation of learning algorithms

Jirgen Lind
Multiagent Systems Group, DFKI
Im Stadtwald, 66123 Saarbriicken, Germany
lind@dfki.de

(especially in work on game learning, cf., e.g., [5]) is em-
ployed to yield the desired behaviour.

In our work, we followed a different approach. We in-
vestigated the possibilities of learning how to interact effec-
tively in repeated n-player games on the grounds of devel-
oping a common-sense (one could even say “naive”) under-
standing of the interaction. To this end, we suggested an
intuitive decomposition of the “coordination learning prob-
lem”, and a hierarchical learning architecture was devised
that would facilitate the learning of essential sub-tasks nec-
essary to solve this problem by integrating different learning
components.

To ensure that the observed long-term evolution of co-
operative, better-than-equilibrium behaviour is solely due
to the interaction learning and reasoning that takes place,
we apply very rigorous assumptions to the experimental en-
vironment: we consider only purely self-interested agents
(individual utility-maximisers) to rule out the possibility of
“built-in” cooperativeness, require that agents have no prior
knowledge of the game and of opponents’ strategies what-
soever and exclude the possibility for an agent of observing
what payoffs other agents receive. Additionally, we prohibit
the use of communication (see also [7]) as a means of ex-
changing information, so that agents must make decisions
only on the basis of local payoff information and action ob-
servation.

Experiments with the layered learning architecture (that
is based on the hybrid InteRRaP [11] architecture) prove
that cooperative behaviour can evolve as “social rational-
ity” [9] within societies of purely selfish individuals if they
are provided with means to reason about the essential de-
terminants of interactions in a common-sense fashion.

The remaining sections are organised as follows: in Sec-
tion 2, an outline of the experimental setting is provided.
Section 3 introduces the principles of decomposing the “co-
ordination problem” in an intuitive way, thus providing the
main directions for the design of the layered learning agent
architecture LAYLA, that is described in more detail in Sec-
tion 4. This is followed by a description of empirical re-
sults in Section 5 that were obtained from experiments in

a resource-sharing scenario, and Section 6 rounds up with
conclusions and directions for future work on the subject.

2. Interaction scenario
2.1. Repeated normal form games

Repeated n-player games in strategic form [1] can be
seen as a “normal form” of coordination problems: they de-
fine repeated interactions between several agents in which
these agents choose particular actions in each round and,
as a consequence, receive some numerical payoff. Thereby,
the obtained payoffs are assumed to represent the utility that
agents assign to the outcome of the joint action taken simul-
taneously by all agents.

Formally, such a game can be defined as follows:

Definition 1 An n-player game in normal form I' =
(N, S, u) is defined by:

e the setof players N = {1,...,n},

e a finite, non-empty set of strategies S; =
{si1,- .., 8im, } for each player i. The Cartesian prod-
uct of all players’ strategy sets S = x;enS; is called
the strategy space of the game, and a conjoint strategy
selection of all players s = (s1,...,s,) € S'is called
a joint strategy.

e a payoff function u : S — R"™ which assigns a payoff
vector u(s) = (u,...,u,) to each joint strategy s,
such that u; is the payoff that player ¢ will receive.

Games that are of particular interest are games that re-
flect “social dilemmata”, such as the Prisoners’ Dilemma
[2]. Such games are typically characterised by the fact that
the sets of their Nash equilibria and pareto-optimal solu-
tions (cf. [6] for definitions of these terms) are disjoint. In
such games, choosing the best reply to any opponent strat-
egy may be sub-optimal to all players, so that even self-
interested agents behave irrationally if they greedily seek to
maximise their worst-case payoff.

In our resource-load balancing application scenario, we
have developed a payoff function that has a single, strict
Nash equilibrium (by which all agents greedily access all
resources simultaneously, which then become helplessly
overloaded) and several pareto-optimal resource allocation
strategies that are beneficial to all players (the case in which
agents reach fruitful compromise about how to distribute re-
sources efficiently).

2.2. Game simulations

In the experimental system we use to evaluate our archi-
tecture, agents choose some particular strategy (action) in

each round simultaneously and communicate it to the Sim-
ulation Engine, the sole system component that has knowl-
edge of the payoff function. Once all agents’ choices have
been collected, their execution is implemented by the Simu-
lation Engine, and the individual payoffs are distributed to
the agents as well as information about all agents’ choices.
Thereby, it is the ultimate and only goal of each agent to
maximise the utility it receives over time.

Noise may come in (in the form of Gaussian perturba-
tions) at any point in this procedure, i.e. in action execution,
payoff perception and action perception (of other agents’
actions). Thus, every possibility of effectory and sensory
failure can be simulated, so that a realistic interaction envi-
ronment is realised.

To start off with, agents have no knowledge whatsoever
about the effects of their choices and they have no infor-
mation about the future behaviour of their peers. Also,
they never perceive what payoffs other agents obtain in the
course of the game. The motivation behind this model is to
restrict the scope of available information to “seeing what
others do and noticing how happy | am with it” so that a
minimal set of percepts can be determined that suffices for
the agent to build an understanding of the concrete interac-
tion environment and to learn to behave optimally in this
environment.

3. Intuitive modél of the coordination problem

Informally, an agent is coordinating its local actions per-
fectly with those of its co-actors, if it can maximise the util-
ity it obtains from interactions. However, individual util-
ity maximisation can lead to “egoist traps”, if agents fail
to recognise potentials for mutually beneficial cooperation,
i.e. the existence of pareto-optimal strategy combinations
that are more profitable than best-response equilibria for at
least one player, while none of the remaining players is at a
disadvantage.

In the context of repeated one-stage games, we could
thus characterise a set of joint strategies OPT C S as so-
cially coherent, if and only if the payoff vector u(opt) of
any opt € OPT is in the kernel® (cf. [4] for definitions)
of the game T", remembering that the kernel requires pay-
off distributions to be both individually rational (in that the
optimal coalition guarantees to each participant at least as
much payoff as she could gain by her own strength) and
socially rational (in that it provides the coalition as a whole
with at least as much payoff as any other possible coalition).
While this construction might seem questionable as a con-
cept of “socially rational behaviour” in the general case, it
provides us with a simple working definition for it in the

1For the games we consider, we will assume that this kernel is non-
empty.

realm of repeated games among selfish agents. In particu-
lar, it defines a set of optimal behaviours against which we
can measure the actual performance of our learning archi-
tecture.

Given the top-level task of the society to converge to
strategies in OPT', one may proceed and ask how this can
be achieved among agents devoid of communication and co-
operative attitude that are not controlled by some central au-
thority. Our approach to solve this problem was as simple
as to ask: What does an agent need to know to reach this
goal, and how should it use this knowledge?

It was found that a very intuitive decomposition of the
problem, as it would seem natural for humans, suffices to
solve it. It is based on the idea that any interaction situation
is characterised by the so-called essential determinants: the
modalities of interdependence, opponent behaviour and co-
operation potential.

Modalities of interdependence describe what the inter-
action consists of, i.e. what actions agents have at their
disposal and how the outcomes of those actions depend
on each other. In other words, knowledge about interde-
pendence modalities is knowledge about “what would hap-
pen to agents ay, as, - . . a, if they concurrently performed
actions si, sa,...s, in situation S”. In game-theoretic
models, these interdependencies are captured by the pay-
off function (which does not depend on any situation con-
text). Therefore learning them implies learning the payoff
function, i.e. a mapping from the joint strategy space to the
utilities the learning agent receives.

Formally, the interdependence modalities learning task
L™ in repeated games is completed, if an explicit repre-
sentation 7 : S — R of agent ¢’s private payoff function is
learned that is identical to the true (unknown) payoff func-
tion of the game:

Vse S. m(s) =wu(s)

Opponent behaviour is a concept that is somewhat comple-
mentary to that of interdependence modalities, since it de-
termines what the enacted interaction will be like given the
strategies that opponents pursue. Quite naturally, it is im-
portant for an agent not only to know how its opponents
might affect its own standing in theory, but to be able to
infer in one way or another what choices they will make
in the future (knowing that the agent’s own success de-
pends on the future actions of opponents). In the case of
repeated games, such opponent behaviour might for exam-
ple be characterised by some meta-strategy such as the max-
imin principle, or it might simply be some fixed pattern of
behaviour that is implemented by the opponent “mechani-
cally”.

Formally, an opponent behaviour prediction learner ide-
ally would solve the task LOBF by learning a function

f:8" xS — S

(where St denotes any t-long sequence of strategies), i.e. f
is a function that predicts for any sequence St of joint
strategies already played and any future sequence S;?? of
strategies played by agent ¢ (the learner) what strategies
(Stfi) the opponents of 4 will play in the next ¢, rounds.

Hence, the perfect OBP learner would be able to predict
what others will do for any future sequence of own strategy
choices and any past set of action observations.

The cooperation potential of an interaction situation, fi-
nally, is the most complex of the three proposed concepts.
Basically, it combines the knowledge of the interdependen-
cies and opponents’ anticipated behaviour to reason about
whether and how the interaction situation can be exploited
to the benefit of all participants, i.e. whether there are ways
to achieve fruitful cooperation. Knowledge about such po-
tentials can be used to “massage” the opponent into its most
cooperative stance by finding ways to alter opponent be-
haviour in the long term. So while opponent behaviour is
considered to be fixed when predicted, a cooperation poten-
tial learner would strive to determine the reasoning princi-
ples of an opponent and how they might be used to its own
benefit2.

It is a quite complex undertaking to define the corre-
sponding learning task L formally. We have found the
definition of a function

(s(-tlﬂ), .

h(S™) = sty e

Vj > t1 + t2.Jopt € OPT.sgg = opt_;

to be a suitable target function for the cooperation poten-
tial learner. St denotes a past sequence of ¢; joint actions
as before, and sgtlﬂ), ey s§t1+t2) is a sequence of subse-
quent actions of agent ¢ until round ¢5. For any past se-
quence of joint strategies, the function A will return a se-
quence of own future action decisions that will make the
opponents N — {i¢} play their part in some optimal strategy
opt forever after round ¢, (one may additionally require that
t2 be minimal).

Thus, h will suggest a series of future actions for the
learner 4 that will make others behave optimally, so that a
perfect coalition will be established (and never be left again)
forever after.

It is quite clear that the three target functions defined
for the learning sub-problems are probably unsolvable in
their strict formulation. However, they provide us with rigid
mathematical definitions of problems so that we can devise
approximate solution algorithms for them. The particular
machine learning algorithms we use in our prototype con-

2The distinction between opponent behaviour and cooperation poten-
tial is best illustrated by considering sub-intentional opponents, e.g. envi-
ronmental variables that exhibit a fixed behaviour and are devoid of any
reasoning capabilities — in their case, cooperation potential learning is use-
less, because there is no possibility of influencing their “choices”.

stitute the central part of the system and will be described
in more detail in the following paragraphs.

4. The LAYLA agent architecture

The Layered Learning Agent architecture is a rather sim-
ple instance of the more generic view of layered learning
laid out in [13] (which, in turn, borrows a lot from the
methodology put forward in [16]) especially designed for
game-learning players. It is and extension of the hybrid In-
teRRaP architecture in the sense that the three InteRRaP
layers are extended by learning components, one for each
of the learning tasks described above.

4.1. Extending InteRRaP to a layered learning ar-
chitecture

The original InteRRaP [11] architecture is based on the
idea that each agent consists of three layers, the lowest of
which implements low-level situation-action patterns of be-
haviour and also manages the agent’s sensing and action
(Behaviour-Based Layer), while the intermediate layer en-
capsulates the agent’s long-term planning capabilities and
individual goals (Local Planning Layer). The topmost
layer (Social Planning Layer) is concerned with negotia-
tion, communication and coordination, i.e. any social activ-
ities of the agent.

The idea in LAYLA is to add a learning component to
each of the three layers in compliance with their abstrac-
tion levels. For the particular task of game-learning, this
can be done in a straightforward manner: the LM learner
is added to the Behaviour-Based layer, because it is con-
cerned with gathering knowledge about the nature and ef-
fects of atomic “black-box” actions and is thus at the lowest
level of interaction learning. The LOB¥ learning compo-
nent, on the other hand, is closely related to “local plan-
ning”, because predicting opponent behaviour is used to de-
velop optimal strategies (which are equivalent to plans in
the context of repeated games). LE?, finally, reflects a so-
cial learning process — meta-strategies that are supposed to
yield desirable behaviours on the opponents’ side are noth-
ing else but social plans that aim at achieving coordinated
decision-making in the society.

In the prototypical implementation of game-learning
LAYLA agents that we have provided, the respective learn-
ing modules are called the Utility Engine, the Strategy En-
gine and the Social Behaviour Engine, each named after
the primary target of their learning activity. In the follow-
ing paragraphs, we explain what learning algorithms were
chosen for the learning layers and how they were integrated
to a coherent agent architecture.

4.2. The Utility Engine

The Utility Engine is the simplest of the three learning
layers. It uses multi-layer feed-forward neural networks that
are consecutively fed “joint action/private payoff”-pairs as
learning samples and approximate the agent’s own payoff
function u; in the course of the game. We use standard
back-propagation as an update algorithm for these networks
(cf., e.g., [10]) and provide them with 1/O pairs

t uf”
B(s™), ———m
maxtlgt U,

in round ¢ which consist of a binary representation 3(s®)
of the current joint action s and the fraction of the newly
obtained payoff ugt) divided by the maximally experienced
payoff as yet. The conversion of actions into binary tuples
is simply a result of fine-tuning decisions in our particular
application scenario (cf. Section 5).

Squashing the data for the output layer (which consists
of a single unit) to the interval [0;1] is necessary to conform
with the output range of common sigmoid units in neural
networks. (More specific design choices based on the of the
resource-load balancing scenario can be found in [13].)

Quite clearly, the data needed to update these neural nets
is readily available from the percepts that are issued by the
Simulation Engine, so each new round that is played pro-
vides the Utility Engine learning algorithm with a new sam-
ple. The training strategy consists of training the network on
all samples yet received once after each round.

4.3. The Strategy Engine

The Strategy Engine uses a combination of genetic al-
gorithms (GAs) and nearest-neighbour learning (cf. [10])
that is similar to that of classifier systems (see for example
[14]).

In order to predict future opponent actions, current op-

ponent actions s(_tz are seen as a consequence of (i) the pre-
vious joint action s(fz._l) and (ii) the previous action of the
learning agent i (s(*~1)) itself. Such a relationship between
two consecutive joint actions can be written as a rule

S(t=D)
s(_ti_l) — s(_tz

so that, if one sample set D is constructed for every s; (a
total of |.S;| sample sets), observed pairs of subsequent op-
ponent actions can be stored as symmetric bit-strings

By B(s™)

in round ¢ as an instance in the sample set D(sgtfl))).

The idea is now to construct |.S;| corresponding GA popu-
lations G(s;) of some pre-defined size, and to allow them
to reproduce according to the fitness function

fitness(h) = 1 Z mu(h,d)

|D(3i)| deD(s;)

where muw(h, d) is a “match value” from the interval [0;1]
that is proportional to the number of matching bits be-
tween any hypothesis h € G(s;) and any known sample
d € D(s;) (again, we refer the interested reader to [13] for
details).

In running the GAs, we use standard one-point crossover
and standard fixed-probability mutation. Additionally, we
allow for wildcards # in GA bit-strings with “don’t care”-
semantics, so that beyond the simplistic “if s(fz._l) then

s(_t%"—rules generalized statements can be generated about
opponent behaviour.

The nearest-neighbour method comes in at the point at
which we want to use the trained populations to predict the
next opponent action. This is necessary because we can-
not expect the precondition part of any individual in the GA
population to match the actual previous joint action com-
pletely. We therefore compute the distance between indi-
vgdua)ls (bit-strings) h and the actual previous joint action

t—1
s_; ’as

Ipre(h)|

> x(lu, Blai)[1])?

=1

distance(h,s_;) =

where

= { 8 K==

is the distance between two bit values, which is zero if they
are both equal or if the value of h in bit [is ‘#’; |pre(h)| is
simply the number of bits in the “first half” of bit-string A.
Using this function, we can determine the n nearest neigh-
bours of s(_ti’l) in every population G(s;) and take a major-
ity vote amongst their postconditions to determine the most
probable value of every bit in the next opponent action.
Since this is always done for every s;, we can compare the
opponent actions that are predicted under any choice of s;
with respect to the payoffs that would be achieved if the
predictions actually occurred by using the w-approximator
of the Utility Engine. This allows for the computation of an
individual action-value function

m:S; = [0;1]

defined by

7T(§,,', S,’)
ZS,‘ €S; 7T(§_,L', Si)

where 5_; is the predicted next opponent action, provided
that 4 plays s; (the denominator is simply a normalising con-
stant).

If the prediction of next opponent actions is accurate
enough, a greedy player s may simply choose to play that s;
for which m is maximal, because this particular s; is noth-
ing but the best-response strategy. However, we have argued
before that such individual best-reply behaviour might not
be socially rational, and this calls for the construction of a
third component on top of the Strategy Engine.

m(s;) =

4.4, The Social Behaviour Engine

Social reasoning in LAYLA is guided by the following
ideas (given that agent 7 is conducting the reasoning):

1. Assess the value of “help” that is provided to ¢ by peer
j by particular strategies that agent may choose.

2. Likewise, determine how valuable certain actions of ¢
might be for j.

3. On the grounds of 1. and 2., compute that probability
with which j will play s; if i plays s;, forevery s; € S;
and s; € Sj.

4. Determine the expected gain g;(s;) of every action s;
taking into account the probabilities of all actions s;
under the assumption that s; will be played by using
the results of 3.

5. If there exist actions s; for which
m(s;) + - gi(si) > mazs,es,m(s;)

holds, include them in the set of socially feasible ac-
tions L; (y € [0;1] is the so-called compromise fac-
tor).

6. Repeat 1.-5. for every peer j in a neighbourhood N; C
N —{i}.

7. Construct the union of all socially feasible action
sets L = U,en, Lj- If it is empty, choose
argmaxg, cs, m(s;) (the greedy best-response action)
to be played in the next round. Else, choose s} =
argmaxs,er) ;e n; 95(si) to be played in the next
round, i.e. that action that maximises the sum of peers’
expected gains g;.

Although the technicalities of the underlying formalisms
that are used to perform these steps are far too complex to
be described here in detail (cf. [13] or [12] for a full ac-
count), we shall attempt to make some points more precise.
Steps 1. and 2. are essentially conducted by using gain mod-
els, i.e. approximations of two-player payoff dependencies
in n-player games. These gains are computed by combining
best-case and worst-case payoffs obtained under two-player
action combinations (s;, s;). The amount of “help” that is
granted by a certain action s; to 1 if it is playing s; is then
computed by comparing the outcome of (s;, s;) for ¢ to that
of the worst alternative that j might have chosen instead of
s;. Also, the overall risk that ¢ runs when playing s; is taken
into account.

To determine the conditional probabilities in step 3., re-
cursive gain models are combined (down to “level 3” in the
terminology of [17]), because it is clear that reasoning about
how one might help the other (if the other helped him in
turn, if it had helped the other in the first place, etc.) is
inherently recursive.

While own gain models can be gradually obtained
through payoff and action observation, peer gain models
have to be guessed. To this end, we have devised a formal-
ism called Probabilistic Ordering Model (POM) together
with appropriate update functions that enables agents to rea-
son about the orderings that govern opponent gain mod-
els, rather than try to determine the precise quantities in the
(sj,s;) matrices (again, see [12] for details).

Step 4. is pretty straightforward: in the same fashion as
expected payoffs are usually computed, expected gains can
be derived from the gain models and the conditional proba-
bilities obtained in 3.

Step 5. constitutes the central “social reasoning” step in
the procedure. It allows strategies to be considered for fu-
ture decisions if their individual action-value m plus their
expected gain (weighted by a compromise factor) is higher
than the individual action-value of the “greedy” action al-
ternative. Thus, compromiseful strategies might be selected
if the gain expected from the compromise outweighs their
sub-optimality with respect to individual action values.

Finally, steps 6. and 7. perform the same reasoning for
each peer in some neighbourhood and combine the results
in one big set of socially feasible actions. Action selection
is ultimately made according to the principle “choose that
socially feasible action that is best for most of the neigh-
bours” if L is non-empty. If L is empty, agent ¢ chooses
the best-reply strategy that was suggested by the Strategy
Engine.

It should be remarked that agents which employ this
kind of reasoning do not apply any built-in cooperativeness.
They remain self-interested individual utility maximisers,
but they additionally have the ability to detect potentials for
cooperation. Only if the benefits expected from such co-

operation appear to outweigh the possible risks in initiating
the cooperation will the agents be willing to deviate from
“socially ignorant” best-response behaviour.

Before proceeding to the empirical evaluation of the ar-
chitecture, we briefly discuss some issues that arise in the
process of integrating the three layers.

4.5. Integration

Interaction between the Strategy Engine and the Social
Behaviour Engine has already been implicitly discussed in
the previous paragraph — whenever compromise is possible,
Strategy Engine choices will be overruled by Social Be-
haviour Engine choices. This line of downward commit-
ment is continued toward the Utility Engine in terms of ex-
ploration: as soon as payoff prediction accuracy has reached
a satisfactory level (as = approaches u;) exploration choices
made by the Utility Engine will be overruled by Strategy
Engine choices. On the other hand, upward activation is
realised in that higher-level learning does not start before
lower-level learners have made sufficient progress.

5. Evaluation

To evaluate the performance of the architecture, we test
it on a resource-load balancing problem (cf. also [15] and
in particular [3]), in which n agents have access to R re-
sources Ry, R, - - - R,, whose total “value” decreases with
the number of accessors. In each round, every agent may
choose to access some arbitrary subset of R and gets some
non-negative utility for each accessed resource which de-
pends on the global “load” of that resource.

The payoff function we choose (cf. [13, 12]) exhibits the
features that were put forward for “social dilemmata” in the
introductory section: a single, strict Nash Equilibrium (the
situation in which all agents greedily access all resources
in every round) and a (family of) pareto-optimal solution(s)
(the situation in which every agent gets a maximal equal
share of the resources) which yield a higher payoff than
the equilibrium for all agents. This brings up the question
of how we can make agents “move away” from the allur-
ing equilibrium to reach the much more desirable, pareto-
optimal solution.

We have conducted extensive empirical experiments
with the LAYLA architecture to analyse its performance.
Due to space limitations, we can only report here on the
general overall performance that was observed for various
problem (game) sizes (an extensive account of other tests
can be found in [13]) .

In the actual experiments, it was observed that agents
converge to optimal behaviour in about 80% of the simu-
lations in the two-player case, while they did substantially

better than equilibrium in larger games. Given that this be-
haviour emerges in a setting of purely selfish agents that
have no prior knowledge of the game this is quite surpris-
ing as it proves that cooperation can be learned in principle
among socially rational agents. Figure 2 shows sample plots
for a two-player two-resource game and ten-player/fifty-
player five-resource games. The cumulative agent pay-
offs are shown as solid curves (“Agent”), while cumula-
tive payoffs of the optimal (“Fair”) and equilibrium strate-
gies (“Greedy”) that can be determined through a math-
ematical analysis of the underlying payoff function are
shown as dotted lines. A fact that cannot be seen in these
plots is that agent behaviour actually continues to improve
in the ten/fifty-player case, if only by quantities of 0.2%
and 0.05% every hundred rounds, respectively. This illus-
trates that the learning process actually continues, and given
that these are games with strategy spaces of (roughly) size
10%%(~ 2°'°) and 1075 (= 25°°) this is an impressive result.

However, these positive results are subject to a very care-
ful choice of 4. Not surprisingly, it turned out that agents
who are overtly cooperative or overtly egoistic will fail to
achieve optimal cooperation and the fact that we had to de-
rive the optimal compromise factors for the resource-load
balancing game mathematically (rather than allow it to be
learned by the agents as well) is probably the most severe
drawback of the architecture. Here we see a clear need for
the development of a meta-reasoning component that will
enable agents to adapt their “attitude” to the current situa-
tion.

6. Conclusions, future wor k

This paper provided an overview of our approach on in-
teraction learning that is based on a hierarchical common-
sense decomposition of the “coordination problem”. For
the specific class of coordination problems that are reflected
by repeated n-player games, a layered learning architecture
was devised that complies with this decomposition. Par-
ticular learning algorithms for the individual layers were
presented, followed by some remarks on their integration
in the LAYLA architecture. Subsequently, experimental re-
sults in a resource-load balancing application scenario were
reported that proved the adequacy of our approach.

What are the conclusions we can draw from our efforts?
Firstly, and most importantly, that the common-sense inter-
action learning policy implemented by our decomposition
principle appears very promising, because it enables purely
selfish agents to benefit from (otherwise possibly undiscov-
ered) cooperation potentials. At the same time, it illustrates
that in very large, hard games we should look for satisficing
rather than optimal behaviour — their huge strategy spaces
make it impossible to converge to optimal patterns of be-

Cumulative Payoff
4000

Fair
mog | Greedy
Agent —

3000

2600

2000

1500

1000

GO0

]

o 100 200 200 400 500 EOO 700 800 00 1000
Round

Cunulative Payoff
5000

Fair +
Grzedp o

5000 Agent —
B
4000 ot et
s -

3000

® +
B
® ++*
* 4 +
o S Lt
2000 n Vot
B
. o
o B
- Lt
(e

1000

0 50 100 150 200 250 300 350 400 450 500
Round

Cunulative Payoff
7000

Fair
Geedy o
B0 b Agent —

SO0

4000

3000

2000

1000

Round

Figure 1. Performance plots for a two-player
simulation (top), a ten-player game (middle)
and a fifty-player society (bottom).

haviour within a reasonable numbers of interactions. Yet it
is obviously possible to do much better than equilibrium
within very little time, and “continuous (although some-
times only marginal) improvement” throughout the interac-
tion can be ensured. This is quite reassuring considering the
complex character of the underlying interactions.

We have already discussed the need of a meta-layer to
make the interplay between the learning layers in LAYLA
more flexible and also to make the on-line adaptation of
parameters possible (especially that of «). Other benefits
that could be accrued from adding such a component to the
system would include the on-line management of reason-
ing resources, adaptation to changes in the game (which is
not yet possible) and a more flexible control of exploration
policies, social attitudes and non-determinism in action se-
lection. These are certainly issues that should be looked at
in the future.

Another possible direction for future work would be
to evaluate system performance for different (classes of)
games, to extend the approach to settings in which commu-
nication is available, or even to allow for sequential, stateful
interactions.

In our opinion, research towards further concepts of
common-sense reasoning about interaction and interaction
learning is needed. It might include (but is not limited to) an
analysis and adaptation of concepts from the social sciences
(such as social metaphors) and symbolic models of interac-
tion knowledge and inference that can be used to explicitly
reason about coordination in con-inhabited environments.

We believe that what is still missing in DAI research is a
social level characterisation [9] of intelligent systems that
describes global system behaviour on the grounds of local
agent interactions — our work can be seen as a contribution
to these.

References

[1] R.J. Aumann, M. B. Maschler. Repeated Games with
Incomplete Information. MIT Press, 1995.

[2] R. Axelrod. The Evolution of Cooperation. Basic
Books, 1984.

[3] C.Bichhieri, M. E. Pollack, and C. Rovelli. The poten-
tial for Evolution of Cooperation among Web Agents.
Working Notes for the AAAI Symposium on Adapta-
tion, Co-evolution and Learning in Multiagent Sys-
tems (ed. Sen, S.): 6-11, 1996.

[4] K. Fischer, C. RuR}, and G. Vierke. Decision Theory
and Coordination in Multiagent Systems. Research
Report RR-98-02, German Research Center for Artifi-
cial Intelligence, DFKI GmbH, 1998.

[5] Y. Freund, D. Ron, M. Kearns, R. Rubinfeld, Y. Man-
sour, and R. E. Schapire. Efficient Algorithms for
Learning to Play Repeated Games Against Compu-
tationally Bounded Adversaries. Proceedings of the
36th Annual Symposium on Foundations of Computer
Science, 1995.

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Fudenberg, J. Tirole. Game Theory. MIT Press,
1991.

M. R. Genesereth, M. L. Ginsberg, and J. S. Rosen-
schein. Cooperation without Communication. Pro-
ceedings of the 5th National Conference on Artificial
Intelligence (eds. Kehler, T. and Rosenschein, S.), vol.
1: 51-57, Morgan Kaufmann, 1986.

P. J. Gmytrasiewicz. An Approach to User Modeling
in Decision Support Systems. Proceedings of the Fifth
International Conference on User Modeling, User
Modeling, 1996.

N. R. Jennings, J. Campos. Towards a Social Level
Characterization of Socially Responsible Agents.
IEEE Proceedings on Software Engineering: 11-25,
1997.

T. Mitchell. Machine Learning. McGraw-Hill, 1997.

J. P. Miiller. The Design of Intelligent Agents: A
Layered Approach, Lecture Notes in Artificial Intel-
ligence, vol. 1177, 1996.

M. Rovatsos, J. Lind. Learning Cooperation in Re-
peated Games. Proceedings of the Workshop on
Agents learning about, from and with other Agents
(IJCAI-99), Stockholm, Sweden (ed. J. M. Vidal),
1999.

M. Rovatsos. LAYLA — An InteRRaP extension for
Layered Learning in Repeated Games. Diploma The-
sis, Universitat des Saarlandes, 1999.

S. Sen, M. Sekaran. Multiagent Coordination with
Learning Classifier Systems. In Lecture Notes in Com-
puter Science, vol. 1042, Springer, Berlin.

A. Schaerf, Y. Shoham and M. Tennenholtz. Adaptive
load balancing: A study in multi-agent learning. Jour-
nal of Artificial Intelligence Research, (2):475-500,
1995.

P. Stone. Layered Learning in Multi-Agent Systems.
Ph.D. Dissertation, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA. Available
as technical report CMU-CS-98-187.

J. M. Vidal, E. H. Durfee. Learning nested models
in an information economy. Journal of Experimental
and Theoretical Artificial Intelligence: Special Issue
in DAI Systems, 1998.

J. Weibull. Evolutionary Game Theory. MIT Press,
1995.

