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Abstract. This paper introduces “micro-scalability” as a novel design objective
for social reasoning architectures operating in open multiagent systems. Micro-
scalability is based on the idea that social reasoning algorithms should be de-
vised in a way that allows for social complexity reduction, and that this can
be achieved by operationalising principles of interactionist sociology. We first

present a formal model ofInFFrA agents calledm
2

InFFrA that utilises two corner-
stones of micro-scalability, the principles ofsocial abstractionandtransient so-
cial optimality. Then, we exemplify the usefulness of these concepts by present-
ing experimental results with a novel opponent classification heuristic ADHOC

that has been developed using theInFFrA social reasoning architecture. These re-
sults prove that micro-scalability deserves further investigation as a useful aspect
of socionic research.

1 Introduction

The development of methods to improve the scalability of multiagent systems (MAS) is
one of the central themes on the Socionics [11] research agenda. With the rapid growth
of the Internet and of mobile communication technologies in recent years, large-scale
open systems[5, 7] are becoming reality, and since scalability is a major concern in this
kind of systems, it has the potential of becoming a key issue in MAS research in the next
years. Roughly speaking, the various aspects of complexity in MAS that call for scala-
bility fall into two categories [16]: (i) quantitative aspects that depend on the number of
agents, interactions, etc. in a system and (ii) qualitative aspects such as the complexity
of interactions and the heterogeneity of agents. According to the definition of Paetow,
Schmitt and Malsch [16], scalability can be understood as the “operationalisation of
complexity”, i.e. the capacity of a system to manage complexity. Thus, a system scales
well if it is capable of responding to increasing complexity appropriately, rather than
“degrading ungracefully” or even collapsing. When complexity management is effec-
tive, it might even be possible to exploit increasing complexity rather than suffer from
it.

A core theme in our own research has been to study the impact of using different
social theories such as Luhmann’s systems theory [10] and symbolic interactionism [2,
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6, 12] as a “construction manual” for building different kinds of MAS with a partic-
ular focus on scalability properties of the resulting systems. While work on system-
theoretic MAS architectures [14] can comment on arbitrary aspects of scalability, be it
at the micro-, meso- or macro-level of social systems, multiagent research that seeks
to exploit the principles of interactionism [15] has to focus on more specific aspects.
Interactionist theories are, generally speaking, concerned with how social structures af-
fect interaction between humans in a society, how individuals process social knowledge
and how social sense is continually re-produced and potentially re-constructed through
ongoing interaction. Interaction is seen as an exchange of symbols whose meaning is so-
cially pre-determined, but needs to be re-affirmed by the actors who use these symbols
to communicate. In a constant “struggle over signs”, it also undergoes changes. Quite
naturally, as interactionism is concerned with how actors deal with social meaning, its
focus lies not in the study of “mass phenomena”, the functioning of entire societies,
or macro-characteristics of social life. So how can such a theory contribute to the con-
struction of scalable MAS?

In this paper, we claim that MAS built using interactionist principles can provide
substantial contributions to solving scalability problems through the concept ofmicro-
scalability. Micro-scalability is the capacity of social reasoning methods to deal with
heterogeneity and complexity in the social behaviour of other agents appropriately.
Thus, micro-scalable agent architectures operationalise aspects of the complexity of in-
teraction situations by using social cognition as an instrument to manage it. To achieve
micro-scalability, we have to improve the ways social knowledge is processed at the
cognitive level, and we discuss two principles that serve this purpose and that are both
inspired by interactionism: the first one issocial abstraction, a transition from the “op-
ponent modelling” attitude (one of the main social reasoning perspectives traditionally
assumed in MAS research) to a “modelling interaction situations” stance that abstracts
from the mental properties of agents interacted with in favour of categorising situations
and developing learning strategies to cope with these. The second istransient social op-
timality, which somewhat contradicts classical agent research principles of (constant)
optimality. It means that in order to be comprehensible, socially intelligent agents have
to abandon optimal strategies from time to time (in the long run, of course, their be-
haviour should still converge to optimal strategies). Both these methods were developed
using interactionist theories, and they pave the way for further research on the subject.

The remainder of this paper is structured as follows: in section 2 we provide an
overview of the social reasoning architectureInFFrA that serves as a general framework
for developing micro-scalable agents. Section 3 introduces a formal model ofInFFrA
that is useful to formally describe social abstraction and transient social optimality.
Then, in section 4, we present the opponent classification heuristic ADHOC based on
InFFrA and discuss experimental results that prove the usefulness of the two principles
empirically. Some conclusions are drawn in section 5.

2 The InFFrA social reasoning architecture

The Interaction Frames and Framing ArchitectureInFFrA is a framework for building
social learning and reasoning architectures based on the notions of “interaction frames”



and “framing”. Both are central concepts in the micro-sociological works of Erving
Goffman [6], andInFFrA is an attempt to operationalise them for use with computa-
tional agents. Essentially, interaction frames describe classes of interaction situations
and provide guidance to the agent about how to behave in a particular social context.
Framing, on the other hand, signifies the process of applying frames in interaction situa-
tions appropriately. As Goffman puts it, framing is the process of answering the question
“what is going on here?”in a given interaction situation – it enables the agent to act in
a competent, routine fashion. Since theInFFrA framework has been described in detail
elsewhere [15, 19, 21], we shall restrict ourselves to a fairly superficial description here.

2.1 Interaction Frames

In InFFrA, a frame is a data structure that contains information about

– possible courses of interaction (so-calledtrajectories) that are characteristic of the
class of interactions described by the frame,

– roles and relationshipsbetween the parties involved in an interaction of this type
(actors that fill certain roles, groups, representatives, etc.),

– contextswithin which the interaction may take place (states of affairs before, dur-
ing, and after an interaction is carried out) and

– beliefs, i.e. epistemic states of the interacting parties.

A graphical representation of an interaction frame is given in figure 1, with examples
for possible contents of the four “slots” of information listed above. The “roles and
relationships” slot contains, for example, graphical representations of groups (boxes)
and relationships (arrows). The trajectory is represented by a protocol-like model of
concurrent agent actions (in principle, though, trajectories may be given in any form
of behavioural description). In the “context” slot, the trajectory model is “embedded”
in boxes that contain preconditions, postconditions and maintenance conditions – these
are propositions about properties of the environment that have to hold before, during, or
after execution of the trajectory. A semantic network and a belief network are shown as
two possible representations of ontological and causal knowledge in the “beliefs” slot,
where shaded boxes define which parts of the networks are known to which participant
of the frame.

It is characteristic of frames that certain attributes of the above must be assumed to
be shared knowledge among interactants (so-calledcommon attributes) for the frame
to be carried out properly while others may be private knowledge of the agent who
“owns” the frame (private attributes). Private attributes are mainly used by agents to
store their personal experience with a frame, e.g. utilities associated with previous frame
enactments and instance values for the variables used in generic representations that
describe past enactments (“histories”), inter-frame relationships (“links”) etc.

An important thing to stress about the semantics of such a frame is that the trajec-
tory slot constitutes its core element, because it describeshow interactions following
this frame will be carried out. All the other elements of the frame serve only as “side
information” about conditions that will hold when this type of interaction occurs.

For example, a frame that describes wedding ceremonies contains information about
the participating actors (bride, groom, best man, parents, guests, priest, etc.) and their



Fig. 1.An interaction frame.

relationships with each other (e.g. kinship between parents of bride and groom), con-
ditions (pre-conditions: groom proposed to bride, invitations were sent out, etc. post-
conditions: legal fact of “being married”, honeymoon; maintenance conditions: neither
groom nor bride abandon the scene during the ceremony), and beliefs (love among
bridal pair, agreement of parents, etc.). But although all this information is supplied,
the ultimate use of the frame is to correctly interpret the actions that are observed in the
ceremony, and – if in the position of one of the “active” participants – to act appropri-
ately.

2.2 Framing

The second main element ofInFFrA is the framing control flow model for social reason-
ing and social adaptation. It maintains interaction frames, modifies them with incoming
observations if necessary, and applies the most suitable frame in a given interaction
situation. In order to describe the steps performed in each framing cycle, some data
structures need to be introduced. These are

- theactive frame, the unique frame currently activated,
- theperceived frame, an interpretation of the currently observed state of affairs,
- the difference modelthat contains the differences between perceived frame and

active frame,
- thetrial frame, used when alternatives to the current frame are sought for,
- and theframe repository, in which the agent locally stores its frame knowledge.

Using these frame data structures, the framing component performs the following steps
in each reasoning cycle during an interaction encounter:



Fig. 2.An overview of the framing process inInFFrA with sub-processes and data structures.

1. Interpretation & Matching:Update the perceived frame, and compare it with the
active frame (the normative picture of what the interaction should be like).

2. Assessment:Assess the usability of the current active frame in terms of
(i) adequacy (compliance with the conditions of the active frame),

(ii) validity (the degree to which the active frame trajectory matches the perceived
encounter) and

(iii) desirability (depending on whether the implications of the frame correspond to
the agent’s private goals).

3. Framing decision:If the active frame seems appropriate, continue with 6. Else,
proceed with 4. to find a better frame.

4. Re-framing:Search the frame repository for better frames. “Mock-activate” them
as trial frames iteratively and go back to 1; if no suitable frame is found, proceed
with 5.

5. Adaptation:Iteratively modify frames in the frame repository and continue with 4.
6. Enactment:Influence action decisions by applying the active frame. Return to 1.

The entire framing process is visualised in figure 2. Apart from linking functional mod-
ules for each of the steps to the data structures on which these are performed, it connects
the sub-social reasoning (e.g. BDI [18]) level to theInFFrA layer by taking agent’s goals
and preferences into consideration in theframe assessmentphase.

InFFrA provides a unifying view for various perspectives on social learning at the
interaction level, and has many features that allow to focus on the core aspects of de-
veloping social reasoning architectures. In particular, it assists the designer of such
algorithms in focusing on the core issues, such as

– what representation to use for frames in a given application domain,
– how to store, retrieve and modify frames efficiently,



– how to intertwine local goal-directed reasoning with social commitment,
– which operators to provide for creative construction of frames by agents them-

selves,

and allows for integrating different outlooks on interaction, such as the machine learn-
ing perspective [21] and the agent communication semantics perspective [20].

2.3 Social Abstraction and Transient Social Optimality

Before describing the concepts ofsocial abstractionandtransient social optimalityin
terms of a formal model ofInFFrA, we should informally explain the intuition behind
them using the above elements ofInFFrA.

The principle ofsocial abstractionis fairly obvious in the above framework, since
it is embodied by the very notion of interaction frames. By definition, these are thought
to abstract from particular situations so as to capture the central distinctions between
classesof these situations. More specifically, they abstract from particular interaction
partners, specific world states, and may even coerce different actions in the trajectories
into action types (e.g. by varying the content in speech acts with the same performative).

There are two principal arguments in favour of permitting such abstraction. Firstly,
the argument from “pre-structuration” states that even though the possibilities for differ-
ent interactions abound, there is only a certain number of relevant categories of interac-
tions that occur over and over again. These are determined by the action and reasoning
capabilities of the agents in a society, by the distribution of resources and by the avail-
able communication channels. By the second (much more practical) argument from
“bounded rationality”, agents have no otherchoicethan to generalise from particular
interactions for two reasons: (1) It is not reasonable to assume that they have arbitrarily
elaborate reasoning capabilities to store all interaction experience and to consider all of
that information to act optimally in a new encounter. (2) Even if this were the case, it
seems unlikely that information could be directly re-used, given that (especially in open
systems) encounters with the same interaction partners under the same circumstances
are only occasional (in the best case – in the worst, they are one-time experiences).

As concernstransient social optimality, this point is somewhat harder to make.
From theInFFrA architecture, it is obvious that optimal social decisions strongly rely
on making the right assessments regarding the adequacy, validity and desirability of a
candidate frame at the right time. However, in making the right framing choices, there
are two conflicting goals that the agent needs to balance, namely (1)predictabilityand
(2) optimalutility. On the one hand, anInFFrA agent wants to be able to predict others’
imminent actions, and, on the other hand, it cannot stick to a particular predictable
pattern of interaction if this is sub-optimal utility-wise.

In terms of the framing process outlined above, this conflict arises when adequacy,
validity and desirability measures in frame assessment yield contradictory values. A
standard way to proceed in that case would be to somehow weigh the importance of
these measures so as to achieve an overall evaluation of candidate frames.

But since the agent’s own framing choice also affects the reactions of other parties
involved in the interaction, things are not that simple. If we assume that other agents are
at least as socially intelligent as the agent in question, they will also record interaction



experience and apply it strategically. So if wedeviatefrom a given, established expec-
tation (in the form of a “safe”, well-known, stable frame), because its consequences
are not desirable in the current state of affairs for the sake of “trying something new”,
it is very probable that we will not obtain predictable results. This is because peer in-
teractants will be confused and unable to figure out how the interaction will turn out.
So, even if – in the best case – others react in a way that is profitable for oneself, this
will only happen at haphazard, i.e. it is not something the agent can rely on in decision
making.

Transient social optimality is one answer to this problem that is based on neglecting
promising alternatives occasionally for the sake of being “socially comprehensible” for
others. In the framing process, this simply means that we trade desirability for validity
and adequacy. Thus, the agent can hope to ensure predictability by sacrificing short-
term utility, because it is better to have predictable opponents who maybe do not act as
nicely as one would wish, rather than constantly trying to make optimal moves while
the other might apply the same kind of strategic reasoning.

Goffman, in fact, stresses the strategic aspect of interaction, but it is taken to a
level different from, e.g. the traditional decision-theoretic notion of “strategy optimi-
sation” by assuming that agentsadopt socially established procedures in a strategic
fashion rather than to select particular actions in a utility-maximising fashion. To put it
differently, behaviour during interactions is only rarely optimised by an individual by
completely deviating from expectations; but choosing which of the different expecta-
tion patterns to activate is a highly strategic process in which agents compute optimal
strategies before taking action.

In the formal model we will now present (section 3), we shall see that this can be
formalised by avoiding “redundant” framing cycles unless major problems arise during
an encounter. In section 4, the effectiveness of this approach will be underpinned by
experimental results.

3 A Formal Model of InFFrA

m
2

InFFrA is a full formal model of a specific kind of “simple”InFFrA agents that extends
the model of “minimal” agents introduced in [20]. One of its most important aspects is
that it enables us to formalise framing as a two-level Markov Decision Process (hence
the m2 in the name), through which the concept of transient social optimality can be
defined more precisely. For lack of space, we will not present the model in full detail
here (the interested reader should consult [4]) but focus on its core elements.

3.1 Basics

For starters, we assume the existence of two formal languagesL andM. L is a propo-
sitional logical language consisting of (i) atomic propositionsp, q(X, s), . . . that may
contain (implicitly universally quantified) variables and (ii) the usual connectives∨,
∧, → and¬, the logical constants “true” and “false”, and braces() for grouping sub-
expressions together. Interpretations of formulae and entailment|= in aknowledge base
KB ∈ 2L are defined in the usual way. We assume thatm

2

InFFrA agents maintain such



a local knowledge base that is revised with incoming percepts and that they have sound
and complete inference mechanisms for this logic at their disposal.

M, on the other hand, is a language of message patterns (or templates). As in [20],
messages observed in the system can be either physical messages (“real” actions) of the
formatdo(a, ac) wherea is the executing agent andac is a symbol used for a physical
action, or “non-physical” messagesperformative(a, b, c) sent froma to b with content
c. Both sender/recipient and content slots of messages may contain variables for agents,
physical actions and content, but not for performatives. As we will soon show, this
is useful to abstract from different observed messages. To discriminate between these
patterns and actual messages, we writeMc for the language ofconcrete, variable-free
messages.

As to the contentc of a non-physical action, this can either be (i) an atomic propo-
sition, (ii) a message term or physical action term, or (iii) a logical formula formed
out of these elements. Effectively, this yields a variant ofL as a content language that
contains “propositions” for messages/actions (in the sense of “events”). Note that mes-
sages inMc may, of course, still contain variables in the content slot that are variables
in the sense of logical propositions. For the remainder of this paper, we will exclude
this kind of logical variables from our considerations when talking about “variables” in
the InFFrA sense. The interested reader can find full definitions of the languagesL, M
andMc in [13] in this volume.

3.2 Interaction Frames

m
2

InFFrA agents are agents that engage in discrete, turn-taking conversations between
two parties, and maintain a frame repositoryF = {F1, . . . , Fn} in which they record
knowledge about past interactions to apply this knowledge strategically in future en-
counters. These frames are defined as follows:

Definition 1. A frameis a quadrupleF = (T,C,Θ, h), where

– T = 〈p1, p2, . . . , pn〉 is the trajectoryof the frame, a sequence of message terms
(patterns)pi ∈M;

– Θ = 〈ϑ1, . . . ϑm〉 is an ordered list of substitutionsϑj = 〈[v1/t1], . . . , [vk/tk]〉
where eachϑj substitutes variablesvl by termstl;

– C = 〈c1, . . . cm〉 is an ordered list of condition sets (sets of logical formulae) such
that cj ∈ 2L is the condition set relevant under substitutionϑj ;

– h ∈ N|T | is anoccurrence counterlist counting the occurrence of each member of
the trajectoryT in previous encounters.

The semantics of such a frame can be informally described as follows: the agent who
“owns” F has experiencedh(p1) encounters which started with a message matching the
first element of the trajectoryp1 = T (F )[1] (we writeT (F ), Θ(F ), C(F ) andh(F ) for
functions that return the respective elements ofF ). h(p2) of these encounters continued
with a message matchingp2, and so on. (This implies that there was no encounter with
prefix p1 · · · pn that continued afterpn according toF .) We will sometimes use the

abbreviated syntaxTh(F ) =h1→ p1
h2→ p2 · · ·

hn→ pn (wherehn = h(pn)) to combine
T (F ) andh(F ) in one expression.



Out of thehn encounters that included the whole trajectory, exactly one substitution
ϑj and one condition setcj held true in thejth of these encounters. This means that
C(F ) andΘ(F ) capture the history of past encounters, in which the frame was executed
as a whole; it also keeps track of “prefix-matching encounters” that ended after some
initial portion of the trajectory, but does not maintain conditions and substitutions for
these.

Note that the elements of frames introduced in Section 2 are present in this model,
even if it has been simplified somewhat to admit formally rigorous treatment: Roles
and relationships, context and beliefs are all captured in the condition sets inC. The
trajectory is reduced to a simple sequenceT of message templates; the history of the
frame (and of its previous successful completions) is stored inC, Θ andh, and links
between frames are implicitly maintained by cross-counting occurrence of prefixes of
T .

Instead of going into the details of the formal semantics, an example shall illustrate
what a frame means:

F =
〈〈 5→ propose(A,B, X) 3→ accept(B,A,X) 2→ do(A,X)

〉
,〈

{self (A), other(B), can(A,X)},
{agent(A), agent(B), action(X)}

〉
,〈

〈[A/agent_1], [B/agent_2], [X/pay_price]〉,

〈[A/agent_3], [B/agent_1], [X/deliver_goods]〉
〉〉

According to this frame (we use the syntax〈Th(F ), C,Θ〉 instead of(T,C,Θ, h) for
convenience), 5 encounters started with a message matchingpropose(A,B,X), three
of them continued withaccept(B,A,X) and two out of these were concluded by
agentA performing physical actionX. Thus, another two encounters may have ter-
minated after the first message or were continued with a message that does not match
accept(B,A,X), as is the case for the encounter that turned out differently after the
second message. Also, the agent has stored the two conditions and respective substitu-
tions under which this frame has occurred (h(T )[|h(T )|] = |C(T )| = |Θ(T )|).

3.3 Frame Semantics

The semantics of a frame inm
2

InFFrA are given by the so-calledenactment constraint,
which is assumed to hold whenever a frameF = (T,C,Θ, h) exists. This constraint
can be interpreted in two different ways: as aretrospectiveenactment constraint, that
states how often certain transitions between messages have occurred in past encounters,
and as aprospectiveenactment constraint, that provides an estimate for the probability
with which an arbitrary message sequence is going to occur in the future.

Since the retrospective view is only used to make knowledge base inferences, we
will restrict ourselves to a description of the prospective enactment constraint. Roughly
speaking, it should express that we expect the future probability of a message sequence
to be equal to the frequency with which it has been observed in the past. This could be
achieved by simply computing transition frequencieshi+1/hi in all frames, and keeping
track of the total number of encounters experienced so far. However, this would preclude



any ability to generalise, since the probability of any message sequence never experi-
enced before would be zero. Therefore, we introduce a real-valuedsimilarity measure
on message (pattern) sequencesσ : M∗ ×M∗ → R that adds a “case-based” flavour
to frames and postulate that

σ(ϑ, F ) =
1

|Θ(F )|
∑

i

σ(T (F )ϑ, T (F )Θ(F )[i]) (1)

P (ϑ|F ) =
σ(ϑ, F )∑
χ σ(χ, F )

(2)

So the probability with which an arbitrary substitutionϑ is expected to occur ifF is
enacted is the expected similarity ofϑ determined using the past frequencies of the
cases stored inF , normalised over all other possible substitutionsχ. In other words, the
more similar a substitution is to previous “samples” ofF , the more likely it is to occur.
This very much resembles the logic of case-based reasoning [8], because previous cases
are combined and weighed according to their similarity with the current case in a way
that resembles “nearest neighbour” heuristics.

Rather than knowing how probableϑ is, we would like to know the probability
of particular message sequences, ifF is to provide any concrete guidance. For this
purpose, we can compute

P (w) =
∑

F∈F,w=T (F )ϑ

P (ϑ|F )P (F ) (3)

whereP (F ) is the posterior probability with which an encounter has matched an en-
counter.

With these definitions, we have formally defined a way to apply the principle ofso-
cial abstractionwhen forming expectations about social behaviour. However, the above
constraints only provide “observer semantics”, and do not explain whatm

2

InFFrA agents
who are actively involved in encounters should actuallydo.

3.4 Framing Agents

The following definitions provide the basis for describing the decision-making algo-
rithm of a “framing” m

2

InFFrA agent:

Definition 2. Anagentis a structurea = (L,M, E ,n, u, f, κ, σ) where

– L,M are the formal languages used for logical expressions and messages,
– E is a set of encounter identifiers,n ∈ N is the total number of encounters so far,
– u : 2L ×M∗

c → R is the agent’s utility function estimate, whereu(KB , w) is the
estimated utility ofw being executed with knowledge baseKB ;

– f : Φ × M∗
c → Φ transforms any possible frame repositoryF ∈ Φ to a new

repository upon experience of an encountere ∈ M∗ (Φ is the set of all frame
repositories);

– κ : 2L ×M∗
c → 2L transforms knowledge base contents after an encounter;

– andσ : M∗ ×M∗ → R is asimilarity measurefor variable substitutions.



These rather complex definitions express that an agent is given by formal languages
it uses for communication and reasoning and by utility estimates of communication
(and action) sequences depending on his state of knowledge. Further, definition of an
agent should specify how the agent transforms his frame repository and knowledge
base upon experience of a new encounter, and what similarity functionσ he uses to
make predictions about future communications.

Given this agent design, the framing state[a] of an agent who is currently experienc-
ing an encounter starting with sequencew is a probability distribution over all potential
consequences envisaged bya given his knowledge base and frame repository contents.
Defining [a] is, of course, a prerequisite for application of decision-theoretic princi-
ples (such as expected utility maximisation) in the design ofm

2

InFFrA agents. Also,
the definition of[a] embodies the empirical, constructivist and consequentialist view of
communication semantics proclaimed in [20] in a single formula.

Definition 3. Let a = (L,M, u, f, κ, σ) an agent. Aframing stateof agenta is a
function[a] : Φ× 2L ×M∗

c → ∆(M∗
c) which maps every

– frame repositoryF ∈ Φ,
– current encounter prefix sequencew ∈M∗

c ,
– currentknowledge baseKB ∈ 2L

to a finite-support probability distributionP ∈ ∆(M∗
c) over future message sequences.

To define[a] in such a way that allows computation of an agent state in accordance
with the semantics ofm

2

InFFrA frames, we exploit

– the fact that only frames whose trajectories match recently perceived messages need
to be considered,

– current knowledge base contents to reduce the search space to those frames that are
applicable in the current situation,

– information about substitutions already applied during the current encounter that
restricts degrees of freedom in substituting variables,

– similarities of these substitutions to past cases stored in frames

to derive probabilities for future message sequences.
For lack of space, we cannot present the details of the derivation of[a] here and have

to refer the interested reader to [4]. However, we can briefly sketch some general ideas:
If the sequencew has just been observed, this implies that under anyF ∈ F that prefix-
matchesw some substitution has to be applied to perform this matching. For any such
matchingF , this will restrict “still possible” substitutions to a setΘposs(F,KB , w).
These are all substitutions that provide values for the variables still free in the remaining
steps ofT (F ), under which

1. the remaining steps ofT (F ) can still be (physically) executed,
2. there is at least onec = C(F )[i] that can be satisfied by the contents ofKB ,

and which contain the smallest number of variables with this respect (this is necessary
to implement a least commitment strategy).



With this, we can redefine equation 1 to obtain

P (ϑ|F,w) =
σ(ϑ, F )∑

χ∈Θposs(F,KB,w) σ(χ, F )

where
ϑ 6∈ Θposs(F,KB , w) ⇒ σ(ϑ, F ) = 0

such that the probability estimate is never positive ifϑ cannot be applied anymore.
Thus, afterw,

P (w′|w) =
∑

F∈F,ww′=T (F )ϑ

P (ϑ|F,w)P (F |w) (4)

yields the probability with which an encounter that started withw will be concluded
with w′. As concerns estimates forP (F |w), we can use the frequency with which the
frame was carried out as a whole given all runs ofF :

P (F |w) =

{
h(F )[|h(F )|]

h(F )[|w|] if w can be unified with the first|w| messages ofT (F )

0 else
(5)

Note that, ifw = ε, the agent can also use this formula to check whether it is profitable
to start an encounter, and what the best choice would be.

3.5 Transient Social Optimality in m
2

InFFrA

The main advantage ofm
2

InFFrA is that it enables us to describe how frame-based design
implements transient social optimality, and this is done by re-interpreting action selec-
tion in encounters as a Markov Decision Process (MDP) (see, e.g. [17]) and identifying
two levels of decision-making in this MDP.

Formally, a (single-level)Markov Decision problemis given by a finite set of states
S, a finite set of actionsA, reward functionR : S×A → R and atransition probability
functionP ∈ ∆(S × A × S). The intuition is as follows: in a sequence of stages,
an agent observes the current states ∈ S, executes an actiona ∈ A and receives an
immediate payoffR(s, a). With probability P (s′|s, a), the next state the agent finds
himself in will bes′. A (so-calledstationaryandstochastic) policy is a mappingπ ∈
∆(S × A) which specifies that the agent executes actiona in states with probability
π(s, a). The goal of an agent in an MDP is to maximise its long-term payoff, and a
criterion that is often applied to define this goal is that ofinfinite-horizon expected
utility maximisation, i.e. maximisation of the quantity

V π(s) = E

[ ∞∑
i=0

γirt+i

∣∣∣π, st = s

]
(6)

whereγ < 1 is a discount factor a,E[·] denotes the expected value, andrt is the reward
achieved at thet-th step by applyingπ.



The MDP formalism has been very popular in recent years, and has to lead to the de-
velopment ofreinforcement learning[23] methods which provide algorithms for learn-
ing optimal policies from experience (i.e. executing actions and observing feedback val-
uesR(s, a) and state transitions(s, a, s′)). However, for realistic application domains
it suffers from the problem of having to deal with huge state spacesS which leads to
long convergence times for learning algorithms since every action has to be executed in
every state (at least once) to be able to discern policies that are optimal.

Hierarchical reinforcement learning methods ([1] provides a survey of the state of
the art), on the other hand, attempt to abstract from the state space of the “core” MDP
in such a way that smaller state spaces are obtained at a higher level of abstraction.

With the concept of transient social optimality in mind, it only seems natural to view
frames in a similar way, as “macro”-actions during the execution of which agents do not
truly optimise overall their possible action choices in each step. So while equation 4 in
the previous section can be basically decomposed to obtain a transition model similar
to that of a (“flat”) MDP, we can also use a frame as ahierarchical abstraction of a rea-
sonable course of interaction. This view not only reduces decision-making complexity
but also makes the decision-making agent comprehensible for its peers.

To develop this view, we have found theoptionsframework [22] to be most suitable
for application tom
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InFFrA. In short, the framework considers “options”〈I, π, β〉where
I ⊆ S is the so-calledinitiation set, π is the policy of the option, andβ : S+ → [0; 1]
is a stochastic termination condition. The idea is that an option is available at timet if
and only if st ∈ I. If it is chosen, thenat+1 is selected according toπ, andβ(st+1)
determines whether execution of the option is terminated (whereupon the agent gets to
choose a new option).

The concepts used to define options carry over to frames quite naturally:

– I is the set of states in which a frame can be used, which depends on its conditions
and on whether it matches the current encounter prefix;

– π is given by the messages/actions the agent is supposed to execute according to
the frame at specific points in time; of course, because ofΘposs , each frame is not
a single strategy, but asetof strategies, which are quite similar to each other;

– β is the criterion for “re-framing” – it depends on whether
• the active frame still matches the perceived encounter,
• the remaining active frame steps are still (physically) executable, and
• on whether these remaining steps still appear desirable.

Looking at frames as options now enables us to apply standard reinforcement learning
techniques such as Q-learning [24] to learn aframing strategy, while the freedom of
choice at the level of substitutions fromΘposs allows us to optimise during frame ex-
ecution to find an optimalactionstrategy within the boundaries of a frame. Again, we
are not able to go into the details of how this is achieved in practice. They can be found
in [4].

To summarise, viewed from a decision-theoretic perspective, the concept of tran-
sient social optimality leads to a hierarchical view of decision-making and learning.
Trying to stick to a “routine” so that others can understand what one is doing is, in
other words, just a simplification of the process of making optimal decisions, since we



aj C D
ai

C (3,3) (0,5)
D (5,0) (1,1)

Table 1.Prisoner’s Dilemma payoff matrix. Matrix entries(ui, uj) contain the payoff values for
agentsai andaj for a given combination of row/column action choices, respectively. C stands
for each player’s “cooperate” option, D stands for “defect”.

deliberately disregard information which is available from experience for the sake of
promoting stable patterns of interaction.

We believe it is one of the most interesting aspects of the work reported on here that
the application of sociological concepts in the design of socially intelligent agents can
be shown to parallel existing AI notions, such as “being hierarchical” about MDPs.

4 Micro-scalability in ADHOC

The ADaptive Heuristic for Opponent Classification ADHOC is an implementation of
InFFrA that addresses the problem of learning opponent models in the presence of large
numbers of opponents in game-theoretic interaction situations. It constitutes a first im-
plementation ofInFFrA in which we studied how agents can classify opponents they
confront in fixed-length Iterated Prisoners’ Dilemma ((I)PD) [9] games so as to learn
optimal strategies against these opponent classes. If they succeed in classifying oppo-
nents quickly during the encounter, this would guarantee that they can behave optimally
against unknown opponents.

A detailed description of ADHOC can be found in [21]. Here, we only provide an
informal overview of the algorithms and concentrate on its relationship tom
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InFFrA and,
in particular, on social abstraction and transient social optimality.

4.1 Overview

In the ADHOC interaction setting, agents from a growing population are randomly
matched in pairs to play a fixed number (say, 10) of PD iterations. No agent knows
the duration of each encounter, and, initially, all agents are unknown to each other. The
goal of these agents is to maximise their cumulative utility over time, where one-shot
payoffs are as in table 1. To this end, they evolve a (bounded) number of opponent
classes from scratch that are the interaction frames of ADHOC. Each of these classes
contains

1. A deterministic finite automaton (DFA) that represents the opponent’s strategy in
“strategic” mode, and the agent’s own strategy in “comprehensible” mode.

2. A “support” of agents that belong to this class, i.e. that have played according to
the DFA in past encounters.



3. A set of past encounters (“samples”) with members of this class that is used to train
the DFA. To learn a DFA from sequences of actions, we apply the model-based
learning methodUS-L* proposed by Carmel and Markovitch [3].

4. A table of Q-values [24] that is updated using received payoffs in order to learn an
optimal strategy against the DFA, as inUS-L*.

Also, ADHOC agents maintain a similarity function between agents and opponent classes
that guides re-classification.

The ADHOC algorithm proceeds as follows: Given an opponent that the framing
agent is currently interacting with, the behaviour of both agents in the current encounter
(we assume that ADHOC is called after the encounter is over) and an upper bound on the
maximal number of frames, the agent matches the current sequence of opponent moves
with the behavioural models of the frames (situation interpretation and matching). It
then determines the most appropriate class for the adversary (assessment) using the
similarity function between adversaries and classes. After an encounter, the agent may
have to revise its framing decision: If the current class does not cater for the current
encounter, the class has to be modified (frame adaptation), or a better class has to be
retrieved (re-framing). If no adequate alternative is found or frame adaptation seems
inappropriate, a new class has to be generated that matches the current encounter. In
order to determine its own next action, the agent applies the counter-strategy learned
for this particular opponent model (behaviour generation). Feedback obtained from the
encounter is used to update the hypothesis about the agent’s optimal strategy towards
the current opponent class.

In “strategic” mode (the normal case), actions are selected in the following way: if
an unknown peer is encountered, the agent determines the optimal class to be chosen
after each movein the iterated game, possibly revising its choice over and over again
in every step of the encounter. Else, the agent uses its experience with the peer by
simply applying the counter-strategy suggested by the class this peer had previously
been assigned to. This reflects the intuition that the agent puts much more effort into
classification in case it interacts with a new adversary it knows very little about.

“Comprehensible” mode, on the other hand, is relevant when an agent discovers
that the opponent is not pursuing any discernible strategy whatsoever, i.e. appears to be
behaving randomly. This can be verified by checking whether the automaton of a class
is constantly modified during many consecutive games. In this case, the ADHOC agent
plays some fixed strategy for a fixed number of games, and then returns to strategic
mode. So an agent takes the initiative to come up with a reasonable strategy, if his
adversary’s behaviour makes no sense. In other words, he tries to become “learnable”
himself in the hope that an adaptive opponent will develop some strategy that can be
learned in turn.

4.2 ADHOC and m
2

InFFrA

Although ADHOC complies with the formal model ofm
2

InFFrA for the most part, some
aspects ofInFFrA have been realised in it at a higher level of complexity (marked with
⊕ below) and some in a much simpler fashion (marked with	). These deviations from
the formal model are due to the properties of the interaction scenario:



	 Mc is reduced to two actions C(ooperate) and D(efect), since there are no more
actions in the (I)PD game. Both of these messages are also physical actions that
always yield payoffs to the players.

⊕ Trajectories are modelled as deterministic finite automata (DFA) rather than simple
trajectories. This way, trajectory models are much more expressive1, and this is
computationally feasible because there are only two actions. Note, however, that
these DFA only define the strategy ofone party while the other party isfree to
behave in arbitrary ways without breaking a frame.

	 Condition sets in frames are only used to discriminate between “strategic” and
“comprehensible” mode, i.e. any frame can only be activated in one of these modes.
Otherwise, there are no restrictions as to when an opponent class/frame might be
assigned to an opponent.

	 Substitutions only refer to agent names (since messages C and D cannot be pa-
rametrised), and all substitutions of a frame/opponent class are identical. Conse-
quently, the similarity measureσ can be re-defined to directly compare an opponent
to an entire opponent class.

⊕ Private attributes are more elaborate than in standardm
2

InFFrA. Apart from a fixed
number of encounter samples that agents store with each frame, they also maintain
a membership function that assigns each agent to a class. Moreover, all agents’
similarity with all classes it constantly tracked. Utility experience is stored in a
Q-table, which is also used to guide action in strategic mode.

⊕ ADHOC agents generate frames (opponent classes) from scratch, and the architec-
ture not only defines how frames are modified with experience, but also when new
frames should be created, merged or deleted.

⊕ In comprehensible mode, the agent plays the fixed strategy represented by the DFA
of the frame activated. In strategic mode, however, the agent is free to optimise its
behaviour, and selects actions according to the exploration/exploitation factors of
the Q-table that belongs to the class the opponent has been assigned to.

Placing ADHOC in them
2

InFFrA context in this way allows for a more precise identifi-
cation of the social abstraction and transient social optimality properties of ADHOC.

Social Abstraction. This is achieved by viewing frames (opponent classes) as possible
social behaviours that do not depend on the particular agent who employs them. Exper-
imental results prove that this is not only a reasonable strategy in the light of bounded
rationality that allows agents to maintain a bounded number of opponent models al-
though they are faced with huge numbers of opponents. Much more than this, coercing
different opponents into the same class even leads to anacceleratedlearning process.
As shown in figure 3, ADHOC agents converge much more quickly to high payoffs than
agents who maintain one model per opponent.

This is yet another advantage of social abstraction: by categorising interaction situ-
ations appropriately, an agent can learn optimal strategies for his own behaviour much

1 Note that, since encounters have a fixed length, the DFA-frame could be replaced by a number
of frames with sequence trajectories that are semantically linked with each other to express
that they pertain to the same strategy.



Fig. 3.Comparison of cumulative rewards between an ADHOC agent, an agent that maintains one
model for each opponent and an agent that has only a single model for all opponents.

easier, because more “data-per-model” is available (in ADHOC, this means that the
Q-tables are updated much more often, and thus converge to optimal strategies more
quickly). This plot also shows, however, that it is not possible to combine all the be-
haviours into just one opponent model, as long as more than one strategy is around.
Figure 4 provides further evidence for the facts that ADHOC learns exactly as many
classes as are present in the long term. Here, ADHOC agents are shown to converge
to four opponent classes in a setting where opponent agents use any one of four fixed
strategies (ALL C, ALL D, TIT FOR TAT or TIT FOR TWO TATS). In terms of scala-
bility, this is a very important result, because it means that ADHOC agents are capable
of evolving a suitable set of opponent classes regardless of the size of the agent popula-
tion, as long as the number of strategies employed by adversaries is limited (and in most
applications, this will be reasonable to assume). A particular challenge in developing
the heuristic in a way that guarantees this convergence is, of course, to ensure that sim-
ilar classes are merged in the long run, so that unnecessary “temporary” classes can be
erased (these are generated when encountering new agents or when the DFA-learning
algorithm makes a wrong guess).

Transient Social Optimality. This aspect of micro-scalability appears in ADHOC in a
twofold way. Firstly, it is embodied in the strategy of “blindly” selecting a frame that
an agent has been assigned to, if that agent is encountered again (which is followed
until that opponent deviates from his previous strategy). Assuming that the ADHOC

agent has been using this frame for a while, he will learn to play an optimal strategy
against it, and his own behaviour towards this class of opponents will be stable. Thus,
implicitly, he can “inform” his opponents about the strategy he will settle on if they
keep behaving the same way, so that he becomes more predictable for these agents in
turn. If an unknown agent is encountered, this strategy (e.g. picking an arbitrary frame)



Fig. 4.Number of agent classes an ADHOC agent creates over time in contrast to the total number
of known (fixed-strategy) opponents (which is increased by 40 in rounds 150, 300 and 450). As
can be seen, the number of identified classes converges to the actual (four) strategies.

would be too risky, so transient optimality cannot be applied in this case, and the agent
must select the best-matching class in each round to make an optimal move.

In terms ofm
2

InFFrA, this means that the criterion of whether to activate the frame
with the highest expected utility is “in each move” if the opponent is unknown and “only
at the beginning of the encounter” if the agent is acquainted with the current adversary.

But there is a second, much more important aspect of transient optimality in AD-
HOC, and this is the process of switching between strategic and comprehensible modes.
This process has been elaborated after initial experiments with ADHOC agents play-
ing agents each other (rather than playing against simple agents with fixed strategies
as above), where agents appeared to behave randomly throughout. This was due to the
fact that, if they want to learn optimal strategies, this will involve some form of explo-
ration. Unfortunately, whenever agents perform exploratory actions their behaviour can
no more be represented as a DFA, and can therefore not be classified by their opponents.

To alleviate this problem, agents were made to switch to a fixed strategy for a while,
whenever they cannot understand what their opponent is doing. As the results in figure 5
show, this was sufficient to achieve effective patterns of interaction in the “ADHOC

vs. ADHOC” case. So, by abandoning optimality as a foremost goal in certain situations,
an ADHOC agent becomes comprehensible, his opponents settle on a counter-strategy,
and so does the first agent after he switches back to strategic mode.

Returning to them
2

InFFrA model, we can see that frame activation does not depend
on (payoff) optimalityat all in this case. Instead, some heuristic is used to determine
the activated frame, and this frame remains activated without making a new framing
decision for a while. A final interesting property of these simulations is that, although
TIT FOR TAT outperformed other strategies as a choice for the comprehensible strategy



Fig. 5. Comparison of agent performance in “ADHOC vs. ADHOC” simulations and different
selection methods for the strategy chosen if the opponent exhibits random behaviour. TIT FOR
TAT can be shown to perform slightly better when chosen as an interim fixed strategy, while
other heuristics were based on generating random DFA, choosing the DFA from the opponent
class with maximum payoff, or that with highest “quality” (a heuristic function).

(which is not surprising because TIT FOR TAT is very powerful against a variety of
counter-strategies), the result of achieving fruitful coordination does not depend on the
interim fixed strategy choice. This suggests that being comprehensible at all is much
more important for framing agents than the short-term payoffs ensured by following an
effective comprehensible strategy.

5 Conclusions

This paper introduced “micro-scalability” as a new concept for social reasoning ar-
chitectures based on the principles ofsocial abstractionand transient social optimal-
ity. Micro-scalability constitutes the central contribution of MAS architectures derived
from interactionist social theories to the scalability aspect of the Socionics endeavour.
Starting from the social reasoning architectureInFFrA that is inspired by Goffmanian
concepts, we provided an informal description of these notions. Then, they were made
precise by introducing a formal model ofInFFrA, and set into the context of simula-
tion experiments obtained in the development of the opponent classification heuristic
ADHOC.

Eventually, we hope that learning algorithms that are currently being developed us-
ing them

2

InFFrA model will prove scalable in more realistic applications, and we are
currently working toward this goal. Other interesting implications are the evolution of
stable empirical agent communication semantics using frame-learning, and a deeper
investigation into the macro-effects of using micro-scalable social reasoning architec-
tures.
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