
Towards Social Complexity Reduction in
Multiagent Learning: the ADHOC Approach

Michael Rovatsos and Marco Wolf�
rovatsos,wolf � @cs.tum.edu

Institut für Informatik
Technische Universität München

80290 München, Germany

Abstract

This paper presents a novel method for classifying adver-
saries that is designed to achieve social complexity reduction
in large-scale, open multiagent systems. In contrast to
previous work on opponent modelling, we seek to generalise
from individuals and to identify suitable opponent classes.
To validate the adequacy of our approach, we present initial
experiments in a multiagent Iterated Prisoner’s Dilemma sce-
nario and we discuss directions for future work on the subject.

Keywords: Opponent modelling, model-based learning, so-
cial learning, Iterated Prisoner’s Dilemma.

Introduction
In artificial societies that consist of self-motivated, possi-
bly antagonistic and non-benevolent agents, it has long been
recognised that modelling the “other” agent is essential to
achieving fruitful coordination, if no a priori reliable infor-
mation is available to predict others’ strategies. Very often,
learning opponent models (Vidal & Durfee 1997; Carmel
& Markovitch 1996a; Bui, Kieronska, & Venkatesh 1996;
Balch 1997; Rovatsos & Lind 2000; Stone 2000) may be
the only way to derive useful information about others’ fu-
ture actions by acquiring a model of their behaviour, by re-
constructing their internal reasoning mechanism and, possi-
bly, by deliberately “massaging” them into their most coop-
erative stance (Freund et al. 1995).

However, in large-scale MAS in which agents have only
occasional encounters with peers they are acquainted with,
learning models of individual opponents may be inefficient,
because the cost of acquiring and maintaining an adequate
model of the other may outweigh its potential benefits if the
probability of interacting with that same agent in the future
is not very high. Therefore, it seems inappropriate to dis-
criminate between each and every peer agent.

One way to overcome this problem is to lay a greater fo-
cus on behaviour repeatedly observed across several peers
than on that of the individual, e.g. by restricting the number
of potential “models of others” to a relatively small num-
ber of opponent behaviour “types” or “classes”. Particular
agents are then mapped to these classes according to the be-
haviour they exhibit, and optimal strategies of how to act

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

toward other agents are learned with respect to agent types
rather than agents.

By means of such social complexity reduction (which
is a common phenomenon in human societies, if we only
think about stereotypes, prejudice against social groups,
etc.) learning agents exploit regularities which quite natu-
rally exist across agents in a MAS, and which may stem from
different “configurations” of agent motivations, of types of
access to resources, etc. Besides the advantages that this
approach has with respect to computational cost (compared
to that of granting each peer its own model), it also has the
capacity to speed up the individual opponent modelling sub-
processes, because these are provided with more “training
data-per-model”, as they make use of encounters with more
than one agent.

In this paper, we present the ADaptive Heuristic for
Opponent Classification ADHOC which evolves � models of
“peer classes” in settings in which the modelling agent in-
teracts with � peer agents, where, typically, ����� .

The number of necessary classes is computed on-line dur-
ing the learning and interaction process as well as the agent-
class membership function, and both are subject to constant
revision. For each class, the agent learns an optimal strat-
egy using some opponent modelling method (OMM)1 and
employs it in encounters with members of that class.

Experiments in multiagent Iterated Prisoner’s Dilemma
(IPD) (Axelrod 1984) simulations demonstrate that ADHOC
agents succeed in learning arbitrary sets of given opponent
strategies and in correctly classifying their peers, and that
their overall performance during the game simulations lies
above that of “unboundedly rational learning agents” which
are capable of constructing one model per adversary.

Since the heuristic does not rely on any particular choice
of OMM, we have reason to believe that it carries over to
more complex applications and that its elaboration deserves
further study. More generally, we believe that the princi-
ple of social complexity reduction that it realises is crucial
to overcome the mentalistic AI tradition (that is very much
concerned with optimally modelling the mental processes of

1The OMM is not part of the heuristic itself; here, we use a
combination of Carmel and Markovitch’ (Carmel & Markovitch
1996b; 1996a) method for learning deterministic finite automata
(DFA) and Q-learning (Watkins & Dayan 1992) as described be-
low.

individuals) in order to build highly adaptive MAS with a
particular focus on scalability and bounded rationality (Rus-
sell & Wefald 1991).

The remainder of this paper is structured as follows: in the
next section, we introduce the heuristic and explain the intu-
ition behind it as well as the underlying assumptions. Then,
we describe the simulation scenario and the particular OMM
used in our experiments. The subsequent section discusses
our empirical results, and the final section rounds up with
some conclusions and directions for future work.

The ADHOC Classification Method
ADHOC is a generic adaptive classification heuristic that
maintains a bounded number of opponent classes

���
�������	�
�	���
� � for a society of agents � �������
�	�	����� � together
with a (crisp) agent-class membership function ������ �
that denotes which class any known agent

���
pertains to

from the perspective of a modelling agent
���

. It is assumed
that some OMM is used to derive a particular model of op-
ponent behaviour

�
and that this model can be used to de-

rive an optimal strategy for
� �

when interacting with agents
that pertain to this class. We further assume that interaction
takes place between only two agents at a time in discrete en-
counters � ��� �"!
��$ #�% �
�	�	� �"!
& � $ &'%�(

of length) where
! �

and$*�
are the actions of

���
and

� �
in each round, respectively.

Each pair
�+! �*� $*� %

is associated with a real-valued utility , �
for agent

���
2.

The top-level ADHOC algorithm operates on the follow-
ing inputs:

- an opponent
�-�

that
� �

is currently interacting with,

- the behaviour of both agents in the current encounter �
(we assume that ADHOC is called after the encounter is
over) and

- an upper bound � on the maximal size of
�

.

It maintains and modifies the values of

- the current set of opponent classes
��� ��� � �	�
�	��� ��.0/ �

(initially
�1�32

) and

- the current membership function �4��5� �76 �98 � (ini-
tially undefined (

8
) for all agents).

Thus, assuming that an OMM is available for any
� � � � ��� %

(obtained via the function :<; � � %
) which provides

� �
with

methods for optimal action determination, the agent can use
that model to plan its next steps.

Similarity Measure and OPTALTCLASS procedure
The algorithm strongly relies on the definition a similarity
measure = � �>� � %

that reflects how accurate the predictions
of

�
regarding the past behaviour of

�
are. In our proto-

type implementation, the value of = is computed as the ra-
tio between the number of encounters with

�
correctly pre-

dicted by the class and the number of total encounters with
2Any encounter can be interpreted as a fixed length iterated

two-player normal-form game (Fudenberg & Tirole 1991), but the
OMM we use here does not require that ?A@ be a fixed function
that returns the same payoff for every enactment of a joint actionB'CED"FHGHDJI

.

�
(where only entirely correctly predicted action sequences

count as “correct” predictions).
This similarity measure is primarily used to decide

whether to alter the classification of an agent, and also to
determine the best alternative classification in that case, a
task which is performed by the OPTALTCLASS procedure
shown in Algorithm 1.

The OPTALTCLASS procedure proceeds as follows: if
�

is empty, a new class is created whose opponent model is
consistent with � (function NEWCLASS). Else, a set of max-
imally similar classes

��KMLEN
is computed, the similarity of

which with the behaviour of
� �

must be at least O (we explain
below how this bound is used in the top-level heuristic).

If this set is empty, a new class is generated for
���

if the
size of

�
does not exceed � . Else, OPTALTCLASS is called

with O ��PRQ
, so that the side-condition of = � � � � � %TS O can

be dropped if necessary.
If

�AKMLEN
is not empty, i.e. there exist several classes with

identical (maximal) similarity, we pick the best class accord-
ing to the heuristic function QUALITY, which may use any
additional information regarding the reliability or computa-
tional cost of classes.

In our implementation, this function is defined as follows:

QUALITY
� � %U� VXWZY CORRECT []\H^Y ALL [_\H^ `ba WZY corr []\H^Y all []\H^

` c W Y agents []\H^Y known agents

` �*dMPeVfP a P c %gW �
COST(C)

where

- h ALL
� � %

is the total number of all predictions of class
�

in all past games,

- h CORRECT
� � %

is the total number of correct predictions
of class

�
in all past games,

- h all
� � %

is the total number of all predictions of class
�

in
the current encounter,

- h correct
� � %

is the total number of correct predictions of
class

�
in the current encounter,

- h agents
� � %i�kj ���7l j � � � %m� � � j ,

- h known agents be the number of known agents,

- COST(C) is a measure for the size of the model :<; � � %
and

-
V `ban`ocXp d

.

Thus, we consider those classes to be most reliable and ef-
ficient that are accurate in past and current predictions (usu-
ally,

Vrq a), that account for a great number of agents, and
that are small in size.

Top-level heuristic

Given the OPTALTCLASS function that provides a mecha-
nism to re-classify agents, we can now present the top-level
ADHOC heuristic. In addition to the inputs and output data
structures already described in the previous paragraphs, it
uses the following internal parameters:

Algorithm 1 procedure OPTALTCLASS

inputs: Agent ��� , Encounter � , Set � , Int k, Int �
outputs: Class �
begin
if ���	�
 then�

Compute the set of classes that are most similar to � � , at
least with similarity ��������� 	 � ��� � B � F � I 	��������! #"%$ � B � F �'& I)(� B � F � I�* �+
if � �,�+� �	�
 then�

Return the “best” of the most similar classes
return arg ����� �-"%$+.0/-1 QUALITY

B � I
else�

Create a new class, if � �0� permits; else, the “high similar-
ity” condition is dropped
if � �0��243 then

return NEWCLASS(�)
else

return OPTALTCLASS
B � F 3 F+576XI

end if
end if

else
return NEWCLASS(�)

end if
end

- an encounter comprehension flag ecf(c) that is true, when-
ever the opponent model of some class

�
“understands”

(i.e. would have correctly predicted) the current en-
counter;

- an “unchanged” counter , � � %
that counts the number of

past encounters (across opponents) for which the model
for

�
has remained stable;

- a model stability threshold 8 that is used to determine very
stable classes;

- similarity thresholds 9 �-:A� and
:<;

that similarities = � �>� � %
are compared against to determine when an agent needs
to be re-classified and which classes it might be assigned
to.

During a given encounter with opponent
� �

, it proceeds as
presented in the pseudo-code description of Algorithm 2.

At the beginning, we set the current class
�

to the value
of the membership function for the opponent

���
. Then, we

update all classes’ current similarity values with respect to� �
as described above, i.e. by dividing the number of past

encounters with
� �

that would have been correctly predicted
by class

�
(
�>=�?�? � �E$ � � � � � %) by the total number of past en-

counters with
� �

(
�)") � � � %).

If
� �

has just been encountered for the first time, � � � � %
is

undefined (
� � 8

) , and
� �

is put into the best class that cor-
rectly predicts the data in the current encounter � . Since only
one sample � is available for the new agent, setting O ��d

in
OPTALTCLASS amounts to requiring that candidate classes
correctly predict � . However, this condition is dropped in-
side OPTALTCLASS, if necessary. In that case, that class
will be chosen for which QUALITY

� � %
is maximal.

So for the case of encountering a new agent, the algorithm
ensures that the agent is either assigned to a (reasonably gen-
eral and cheap) model that is consistent with current experi-

ence if one such model exists or that it is used to form a new
category unless no more “agent types” can be stored.

Algorithm 2 ADHOC top-level heuristic
inputs: Agent �%� , Encounter � , Integer 3
outputs: Set � , Membership function @
begin�BAC@ B �%� I�

The similarity values of all classes are updated depending on
their prediction accuracy regarding �%
for all �EDF� do
� B �%� F � I A �HGJIKIKLH�!MON ��P'Q �!R� D D N ��P R

end for
if � 	TS then�

Unknown �%� is put into the best sufficiently similar class that
understands at least � , if any; else, a new class is created, if3 permits @ B � � I A OPTALTCLASS

B � F 3 F � � F�UEI
if @ B �%� I �DV� then�VAW�YX � @ B �%� I
end if

else� � is incorrect wrt � � or very stable
if � B �%� F � I�Z4[]\ ? B � I�*�^ then�

Re-Classify �%� to a highly similar � , if any; else create a
new class if 3 permits @ B �%� I A OPTALTCLASS

B � F 3 F �%� F!_a`*I
if @ B ��� I �DV� then�VAW�YX � @ B � � I
end if

else�
The agent is re-classified to the maximally similar (if also

very stable) class �'&aA OPTALTCLASS
B � F 3 F � � F!_�b�I

if � & DV� (? B � & I�c�^ then@ B � � I AC�'&
end if

end if
OM-LEARN

B @ B � � I F � I�
Model of @ B ��� I was modified because of �%

if ecf
B @ B � � I I 	 true then�

Reset similarities for all non-members of �>
for all � & Ded do

if @ B � & I �	 � then� B � & F � I Agf
end if

end for
end if�VAW� 5h� �'&H� i �aj @ B � I �	 �-&#

end if

Next, consider the interesting case in which � � ��� %Fk� 8
.

In this case, we enter the re-classification routine to improve
the classification of

� �
is possible. To this end, we choose

to assign a new class to
� �

, if the similarity between agent�9�
and its current class

�
falls below some threshold 9 or if

the model
�

has remained stable for a long time (, � � % S 8)
(which implies that it is valuable with respect to predictions
about other agents). Also, we require that candidate classes
for this re-classification be highly similar to

���
(O � : �

). As
before, if no such classes exist, OPTALTCLASS will gener-
ate a new class for

� �
, and if this is not possible, the “high

similarity” condition is dropped – we simply have to classify� �
one way or the other.
In the counter-case (high similarity and unstable model),

we still attempt to pick a new category for
� �

. This time,
though, we only consider classes that are very stable, very
similar to

� �
(
: ; � :A�

), and we ignore classes output by
OPTALTCLASS that are new (by checking “if

��� l � �	�
�
”).

The intuition behind this is to merge similar classes in the
long run so as to obtain a minimal

�
.

After re-classification, we update the class � � � � %
by

calling its learning algorithm OM-LEARN and using the
current encounter � as a sample. The “problem case” occurs
if � has caused changes to model

�
because of errors in the

predicted behaviour of
� �

(ecf
� � � � � %�% �

true), because in
this case, the similarity values of � � � � %

to all agents are
no more valid. Therefore, we choose to set the similarities
of all non-members of

�
with that class to � , following the

intuition that since
�

has been modified, we cannot make
any accurate statement about the similarity of other agents
with it (remember that we do not store past encounters for
each known agent and are hence unable to re-assess the
values of =). Finally, we erase all empty classes from

�
.

What this heuristic actually does is to create new classes
for unknown agents or to put them into suitable classes
if creating new ones is not admissible. After every en-
counter, the best candidate classes for the currently encoun-
tered agent are those that are able to best predict past en-
counters with it that have been stored in = . At the same time,
good candidates have to be models that have been reliable in
the past and low in computational cost. As far as action se-
lection is concerned, a twofold strategy is followed: in the
case of known agents, agent

�A�
simply uses :<; � � � � � %�%

when interacting with agent
� �

, and the classification proce-
dure is only called after an encounter � has been completed.
If an unknown agent is encountered, however, the most suit-
able class is chosen for action selection in each turn using
OPTALTCLASS. This reflects the intuition that the agent
puts much more effort into classification in case it interacts
with a new adversary, because it knows very little about that
adversary.

Although all this may look fairly simple from a theoretical
point of view, it turns out to be very effective in practice,
even given a naive choice of the COST and = functions and a
fairly ad hoc determination of the parameter values 9 �-: � �J: ;
and 8 .

In the following section we turn to the scenario we have
chosen for an empirical validation of the heuristic and to
the details of combining ADHOC with an OMM for a given
application domain.

ADHOC in Multiagent IPD Simulations
The scenario we have chosen to test the adequacy of our
approach is fairly common and well-studied in the field
of MAS research: the Prisoners’ Dilemma (Luce & Raiffa
1957), a normal-form game for two players with action op-
tions C (cooperate) and D (defect) for both players and a
payoff distribution as shown in Table 1. More precisely,
our version of the multiagent Iterated Prisoners’ Dilemma

� �
C D���

C (3,3) (0,5)
D (5,0) (1,1)

Table 1: Prisoners’ Dilemma payoff matrix. Matrix entries� , � � , � % contain the payoff values for agents
� �

and
�-�

for
a given combination of row/column action choices, respec-
tively.

C D

D

C

DC

Figure 1: A DFA representing the TIT FOR TAT strategy in
the PD game. Edge labels represent “own” action choices
and state labels the other’s reactions to these actions.

is based on a toroidal grid within which � agents move ran-
domly and play with peers they happen to be in the same
caret with (if more than two agents are co-located, all of
them play with each other in a random order). Such a game
consists of) iterations, and a total of � steps (meaning
discrete moves on the grid) are executed in one simulation
(where the number of iterated games depends on how often
agents meet).

This simulation scenario, albeit simple, is complex
enough to illustrate the necessity of strategy adaptation for
every agent, and it also bears a potential for cooperation that
has to be exploited if self-interested agents intend to collab-
orate effectively. Also, its simplicity enables us to conduct
simulations with large numbers of agents, so that the emer-
gence of “social complexity reduction” can be verified (if
� � � does not hold, one model can easily be maintained
for every peer).

As far as finding an adequate opponent modelling method
for the task of learning to play an IPD optimally against a
single opponent is concerned, a combination of the DFA
learning algorithm proposed by Carmel and Markovitch
(Carmel & Markovitch 1996b; 1996a) and standard Q-
learning (Watkins & Dayan 1992) is chosen, the details of
which we can only sketch here for lack of space. During any
encounter � ,

���
attempts to learn the automaton that repre-

sents the strategy of
� �

, where states are labelled with the
actions of

�-�
and state transitions depend on

� �
’s own ac-

tions. Figure 1 depicts one such automaton for the famous
TIT FOR TAT (Axelrod 1984) strategy.

Apart from the data stemming from � , the DFA stores a
set of past encounters with that same class to provide for
sufficient learning data.

In parallel with the evolution of the DFA, a table of Q-
values is learned whose state space is the current set of DFA
states. Optimal action selection then depends on the current
state as tracked by the DFA of

� � � � %
during an encounter

with a known agent
� �

(with additional Boltzmann explo-
ration to guide the search).

In the case of encountering a new agent for which no DFA
and Q-table are available, a modified version of the OP-
TALTCLASS function is used, where = � �Z��� %

is defined in
terms of correctly vs. incorrectly predicted turns (i.e. indi-
vidual actions) rather than entire encounters. This modifica-
tion is necessary, since during the first iterated game with a
stranger the modelling agent does not possess data regarding
entire encounters.

Also, the first action in an encounter with an unknown
agent is chosen randomly, and this is also the case if OP-
TALTCLASS outputs a new class that is only consistent with
a small initial portion of this encounter.

Of course, there exists a wide range of alternatives to this
opponent modelling and strategy selection algorithm, e.g. to
model opponents in a probabilistic fashion. However, the
chosen OMM is capable of learning an adequate represen-
tation of the opponent’s strategy in principle, and it meets
certain criteria that should be warranted by any method that
is to be used in combination with the ADHOC heuristic:

1. The OMM should be capable of learning a model that
adequately represents the opponent’s strategy and which
can be used to derive an optimal policy for the modelling
agent.
In our scenario, this can be ensured as long as the rep-
resentational power of deterministic automata is not ex-
ceeded by opponents. Further, the use of reinforcement
learning provides safe convergence characteristics so that,
if the learned DFA is correct, the modelling agent will
converge to an optimal policy.

2. Defining a similarity measure between any agent and any
existing opponent model should be feasible.
Here, we have used a very simple method to derive
the values for = � �>� � %

that is based on weighing correct
against false behaviour predictions.

3. Opponent models should allow for the definition of a
“cost” function.
In our case, the cost is simply defined as the number
of DFA states, so as to prefer simpler automata for re-
classification.

Experimental Results
We have conducted two series of experiments with the
present implementation: first, simulations in which an AD-
HOC agent plays against a number of opponents with fixed
strategies: “ALL C” (always cooperate), “ALL D” (always
defect), “TIT FOR TAT” (cooperate in the first round; then
play whatever the opponent played in the previous round)
and “TIT FOR TWO TATS” (cooperate initially; then, co-
operate iff opponent has cooperated in the two most recent
moves). These strategies can be represented by very simple
automata, and hence these simulations served as a starting
point to verify whether the ADHOC agent was capable of
performing the task in principle, i.e. to generate four classes
and to converge to optimal strategies against all of them.

Figure 2: Number of agent classes an ADHOC agent cre-
ates over time (bold line) in contrast to the total number
of known (fixed-strategy) opponents (which is increased by
40 in rounds 150, 300 and 450). The number of identified
classes converges to the actual (four) strategies.

To obtain an adequate and fair performance measure for
the classification heuristic, we compared the performance of
the ADHOC agent to that of an agent who learns one model
for every opponent it encounters and to that of an agent who
learns a single model for all opponents.

The results of these simulations are shown in Figures 2
and 33. They prove that the agent is indeed capable of iden-
tifying the existing classes, and that convergence to a set of
opponent class is robust against entry of new agents into the
system.

This is an important scalability result, because it means
that in the long run, the agent exhibits satisficing behaviour
even in very large-scale MAS, as long as the set of possible
strategies is relatively small.

Next, let us turn to performance results. Here, interest-
ingly, the ADHOC agent not only does better than an agent
who maintains a single model for all opponents (which is
easy to understand), but also significantly outperforms an al-
legedly “unboundedly rational” agent that is capable of con-
structing a new opponent model for each adversary – even
though it is steadily increasing, that agent’s performance re-
mains below that of the ADHOC agent even after 40000 en-
counters. The reason for this is that the ADHOC obtains
much more learning data for every class model it maintains
by “forcing” more than one agent into that model, thus be-
ing able to learn a better strategy against every class within
a shorter period of time.

This nicely illustrates another aspect of “social complex-
ity reduction”: the ability to adapt to adversaries quickly by
virtue of creating “stereotypes”.

3Each graph depicts the average of 100 simulations on a
U f �U f -grid. Parameter settings where:

[f j � , ^ 	 U��
,
_ ` 	 f j � ,_ b 	 f j � , 3 	�� f and � 	 U f . 6 samples where stored for each

class in order to learn automata.

Figure 3: Comparison of cumulative rewards between AD-
HOC agent, an agent that maintains one model for each op-
ponent and an agent that has only a single model for all op-
ponents in the same setting as above.

An issue that deserves analysis is, of course, the appro-
priate choice of the upper bound � for the number of pos-
sible opponent classes. Figure 4 shows a comparison be-
tween ADHOC agents that use values 10, 20, 40 and 80 for
� , respectively, in terms of both number of opponent classes
maintained and average reward per encounter. Quite sur-
prisingly, even though there seems to be not much differ-
ence between the time-spans that are necessary to converge
to the optimal number of opponent classes, there seem to be
huge differences with respect to payoff performance. More
specifically, although a choice of � � � � instead of � ���

�
seems to have little or no impact on performance, values of
10 and 20 are certainly too small. How can we explain this
result? On the one hand, it is certainly the case that, the
more models are maintained, the more exploration will be
carried out per model in order to learn an optimal strategy
against it. On the other hand, the fewer models we are al-
lowed to construct, the more “erroneous” will these models
be in predicting the behaviour of adversaries that pertain to
them (until we gather enough training data), since we are not
allowed to make many distinctions.

Although it is certainly true that we have to trade off these
two aspects against each other (both extremely high and
extremely low values for � seem to be inappropriate), our
results here (that are in favour of large values for �) con-
trast the previous observation that “creating stereotypes” in-
creases efficiency. Allowing some diversity during learning
seems to be crucial to achieve effective learning and interac-
tion.

In the second series of experiments, we conduct simula-
tions with societies that consist entirely of ADHOC agents.
With the algorithms presented in the previous sections,
agents seem to exhibit random behaviour throughout these
simulations. This is, in fact, quite understandable consider-
ing that they have fairly random initial action selection dis-

Figure 4: Comparison between ADHOC agents using differ-
ent � values. The upper plot shows the number of oppo-
nent classes the agents maintain, while the plot below shows
the average reward per encounter. The number of opponent
classes remains stable after circa 5000 rounds.

tributions (when Q tables are not filled yet and automata un-
settled) and that, hence, no agent can strategically adapt to
the strategies of others (since they do not have a strategy,
either).

With a slight modification to the OMM, however, we ob-
tain interesting results: we simply add the following rule to
the decision-making procedure:

If the automaton of a class
�

is constantly modified dur-
ing

?
consecutive games, we play some fixed strategy �

for
? �

games; then we return to the strategy suggested
by :<; � � %

.

Applying this rule implies that if an agent identifies a com-
plete lack in strategy on the side of its peers, it takes the
initiative to “come up” with one (being “creative”), main-
tain it for a while, and the return to adaptation. The re-
sults of these simulations, where � �

TIT FOR TAT are
shown in Figure 5, and illustrate that ADHOC here seems to
be capable of exploiting, at least partially, the cooperation
potential that exists in the IPD (the sum of agents’ payoffs
clearly exceeds that of a random mixed strategy combina-

Figure 5: Average payoff per encounter (10 PD iter-
ations) among 10 ADHOC agents. It lies clearly above
25 (=(50+0)/2 for (C,D) combinations) but below 30
(=(30+30)/2 for (C,C) combinations).

tion (
d � � WZd

� ` d � � W
� ` d � � W�� ` d � � W��e����� � �

), yet
without being able to guarantee the establishment of stable
cooperation, either.

Although � was hand-crafted here and although this last
result will surely require further investigation, we believe
that adding additional reasoning capabilities to the OMM is
possible in order to identify and maintain such “adaptation-
viable” strategies and this is an issue that will have to be
looked at in the future.

Still, our experiments prove that ADHOC is at least capa-
ble of “trying out” new strategies without jeopardising long-
term performance.

Conclusion
This paper summarises initial work on a new opponent clas-
sification heuristic called ADHOC which is based on the in-
tuition of “categorising” adversaries in multiagent interac-
tions so as to achieve social complexity reduction in open
MAS that consist of self-interested, potentially malevolent
agents. To our knowledge, the work presented here con-
stitutes the first attempt to tackle the problem of opponent
modelling in the face of occasional encounters in large-scale
multiagent systems.

First empirical results prove the adequacy of our approach
for domains where agents with regular strategies interact in
discrete two-player encounters. We showed how boundedly
rational ADHOC agents outperform “unboundedly rational
ones”, which they achieve by combining learning samples
from all class members during opponent (class) modelling.
At the same time, the experiments suggest that best perfor-
mance results can be achieved if we allow for a great number
of classes in the early phases of learning, so that an initial
lack in the quality of the models can be alleviated by using
a great variety of sub-optimal models. More generally, we
might infer from this observation that using stereotypes is

only highly effective if those stereotypes are good – other-
wise, it is better to rely on modelling individuals considered
different from each other.

As far as interaction among ADHOC agents is concerned,
we are currently working on a more elaborate and more gen-
eral heuristic than the one presented above (i.e. occasionally
playing fixed, hand-crafted strategies). The central problem
we are faced with here is the fact that ADHOC agents cannot
be modelled as DFAs themselves. First experiments with
heuristics that are based on the idea of sticking to own past
behaviours in case the opponent exhibits random behaviour
(in order to promote the establishment of stable interaction
patterns) appear to produce promising results, and deserve
further research.

Many issues remain to be examined in the future: first of
all, some limitations of the algorithm need to be done away
with, most importantly: the restriction to “post-encounter
classification”. Ideally, we would like to classify constantly
throughout the encounter in order to fine-tune classification
choices and to have the option of whether to modify a model
or to re-classify the agent. Further, restricting ourselves to
two-agent interactions is clearly unrealistic with respect to
real-world applications. Also, domains more complex than
that of IPD should be examined, and generic rules for the
choice of ADHOC parameters should be derived. Surely,
complex domains will also require more elaborate similar-
ity and model cost measures.

Secondly, the very important issue of partner selection
should be looked at, since dealing with various types of peer
agents will normally imply that interactions with them will
differ in usefulness (and these differences, again, may de-
pend on the current goals of the agent). Therefore, it is only
natural to consider agents that have the ability to choose
which agent they interact with, at least under certain con-
ditions. This will not only have effects on the performance
of ADHOC agents, but also on the learning and classification
process as such.

Finally, as we are looking at social phenomena, the poten-
tial of using communication to achieve better coordination
has to be explored – since messages are actions with little
cost and no immediate utility, their availability is expected
to increase the adaptability and strategic rationality of intel-
ligent, opponent classifying ADHOC agents vastly.

References
Axelrod, R. 1984. The evolution of cooperation. New
York, NY: Basic Books.

Balch, T. 1997. Learning roles: Behavioral diversity in
robot teams. In Collected Papers from the AAAI-97 Work-
shop on Multiagent Learning. AAAI. 7–12.

Bui, H.; Kieronska, D.; and Venkatesh, S. 1996. Learn-
ing other agents’ preferences in multiagent negotiation. In
Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, 114–119. Menlo Park, CA: AAAI Press.

Carmel, D., and Markovitch, S. 1996a. Learning and using
opponent models in adversary search. Technical Report
9609, Technion.

Carmel, D., and Markovitch, S. 1996b. Learning models
of intelligent agents. In Thirteenth National Conference
on Artificial Intelligence, 62–67. Menlo Park, CA: AAAI
Press/MIT Press.
Freund, Y.; Kearns, M.; Mansour, Y.; Ron, D.; Rubin-
feld, R.; and Shapire, R. E. 1995. Efficient Algorithms
for Learning to Play Repeated Games Against Computa-
tionally Bounded Adversaries. In 36th Annual Symposium
on Foundations of Computer Science (FOCS’95), 332–343.
Los Alamitos, CA: IEEE Computer Society Press.
Fudenberg, D., and Tirole, J. 1991. Game Theory. Cam-
bridge, MA: The MIT Press.
Luce, R. D., and Raiffa, H. 1957. Games and Decisions.
New York, NY: John Wiley & Sons.
Rovatsos, M., and Lind, J. 2000. Hierarchical common-
sense interaction learning. In Durfee, E. H., ed., Proceed-
ings of the Fifth International Conference on Multi-Agent
Systems (ICMAS-00). Boston, MA: IEEE Press.
Russell, S., and Wefald, E. 1991. Do the right thing:
Studies in limited rationality. Cambridge, Mass.: The MIT
Press.
Stone, P., ed. 2000. Layered learning in multiagent sys-
tems. A winning approach to robotic soccer. Cambridge,
MA: The MIT Press.
Vidal, J. M., and Durfee, E. H. 1997. Agents learning about
agents: A framework and analysis. In Collected papers
from AAAI-97 workshop on Multiagent Learning. AAAI.
71–76.
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8:279–292.

