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Abstract. This paper proposes a new model of communication in mul-
tiagent systems according to which the semantics of communication de-
pends on their pragmatics. Since these pragmatics are seen to result from
the consequences of communicative actions as these have been empiri-
cally observed by a particular agent in the past, the model is radically
empirical, consequentialist and constructivist. A formal framework for
analysing such evolving semantics is defined, and we present an exten-
sive analysis of several properties of different interaction processes based
on our model. Among the main advantages of this model over traditional
ACL semantics frameworks is that it allows agents to reason about the
effects of their communicative behaviour on the structure of commu-
nicative expectations as a whole when making strategic decisions. Also,
it leads to a very interesting domain-independent and non-mentalistic
notion of conflict.

1 Introduction

One of the main challenges in the definition of speech-act based [1] agent com-
munication language (ACL) semantics is explaining the link between illocution

and perlocution, i.e. describing the effects of utterances (those desired by the
sender and those brought about by the recipient of the message) solely in terms
of the speech acts used. Various proposed semantics suggest that it is necessary
to either resort to the mental states of agents [4, 3, 20] or to publicly visible com-
mitments [5, 6, 8, 15, 19, 10, 21] in order to capture the semantics of speech acts,
i.e. to aspects of the system that are external to communication itself.

In the context of open large-scale multiagent systems (MAS) characterised by
dynamically changing populations of self-interested agents whose internal design
is not accessible to others, it is not clear how specifications of mental attitudes
or systems of commitments can be linked to the observed interactions. How
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can we make predictions about agents’ future actions, if the semantics of their
communication is defined in terms of mental states or commitments not related
to the design of these agents?

In this paper, we suggest a view of communication that is a possible re-
sponse to this problem. This view is based on abandoning the classical notion
of “meaning” of utterances (in terms of “denotation”) and the distinction be-
tween illocution and perlocution altogether in favour of defining the meaning of
illocutions solely in terms of their perlocutions.

Our view of communication is

1. consequentialist, i.e. any utterance bears the meaning of its consequences
(other observable utterances or physical actions),

2. empirical, since this meaning is derived from empirical observation, and
3. constructivist, because meaning is always regarded from the standpoint of a

self-interested, locally reasoning and (boundedly) rational agent.

By grounding meaning in interaction practice and viewing semantics as an emer-
gent and evolving phenomenon, this model of communication has the capacity
to provide a basis for talking about agent communication that will prove useful
as more and more MAS applications move from closed to open systems. Its prac-
tical use lies in the possibilities it offers for analysing agent interactions and for
deriving desiderata for agent and protocol design. At a more theoretical level,
our framework provides a very simple link between autonomy and control and
introduces a new, powerful notion of conflict defined in purely communicative
terms, which contrasts mentalistic or resource-level conflict definitions such as
those suggested in [12]. As a central conclusion, “good” protocols are proven
to be both autonomy-respecting and contingency-reducing interaction patterns,
which is shown through an analysis of example protocols with our framework.

The remainder of this paper is structured as follows: section 2 presents the
assumptions underlying our view of communication, and in section 3 we lay
out requirements for agents our model is suitable for. Sections 4 and 5 describe
the model itself which is defined in terms of simple consequentialist semantics
and entropy measures. An analysis of several interaction scenarios follows in
section 6, and we round up with some conclusions in section 7.

2 Basics

To develop our model of communication, we should first explain the most im-
portant underlying assumptions.

Firstly, we will assume that agents are situated in an environment that is co-
inhabited by other agents they can communicate with. Agents have preferences
regarding different states of the world, and they strive to achieve those states
that are most desirable to them. To to this end they deliberate, i.e. they take
action to achieve their goals. Also, agents’ actions have effects on each other’s
goal attainment – agents are inter-dependent.



Secondly, we will assume that agents employ causal models of communica-
tive behaviour in a goal-oriented fashion. In open, dynamic and unpredictable
systems, it is useful to organise experience into cause-and-effect models (which
will depend much more on statistical correlation rather than on “real” causal-
ity) of the behaviour of their environment in order to take rational action (in a
“planning” sense of means-ends reasoning). This is not only true of the physical
environment, but also of other agents.

In the context of this paper, we will consider the foremost function of com-
munication to be to provide such a causal model for the behaviour of agents in

communication. These communicative expectations can be used by an agent in a
similar way as rules that it discovers regarding the physical environment.

Thirdly, there are some important differences between physical action exe-
cuted to manipulate the environment and communicative interaction, i.e. mes-
sages exchanged between agents:

1. The autonomy of agents stands in contrast to the rules that govern physical
environments – agents receive messages but are free to fulfil or disappoint
the expectations [2] associated with them. An agent can expect his fellow
agents to have a model of these expectations, so he can presume that they are
deliberately violating them whenever they are deviating from expectations.
This stands in clear contrast to the physical environment which may ap-
pear highly non-deterministic but is normally not assumed to reason about
whether it should behave the way we expect it to behave.

2. Communication postpones “real” physical action1: it allows for the establish-
ment of causal relationships between messages and subsequent messages or
physical actions.
This enables communicating agents to use messages as symbols that “stand
for” real2 action without actually executing it. Hence, agents can talk about
future courses of action and coordinate their activities in a projective fash-
ion before these activities actually occur. This can be seen as a fundamental
property of communication endowing it with the ability to facilitate cooper-
ation.

With this in mind, we make the following claims:

1. Past communication experience creates expectations for the future.
2. Agents employ information about such expectations strategically.
3. Communicative expectations generalise over individual observations.
4. Uncertainty regarding expectations should be reduced in the long run.
5. Expectations that hinder the achievement of agent goals have to be broken.

1 Of course, communication takes place in physical terms and hence is physical action.
Usually, though, exchanging messages is not supposed to have a strong impact on
goal achievement since it leaves the physical environment virtually unmodified.

2 Note that “real” action can include changes of mental states, e.g. when an agent
provides some piece of information to another and expects that agent to believe him.
For reasons of simplicity, we will restrict the analysis in this paper to communicative
patterns that have observable effects in the physical environment.



Claim 1 states that causal models can be built by agents from experience and
used for predicting future behaviour. Many representations for these models can
be conceived of, like, for example, expectation networks which we have suggested
in [13]. Statement 2 is a consequence of 1 and the above assumptions regarding
agent rationality: we can expect agents to use any information they have to
achieve their goals, so this should include communicative expectations.

The first claim that is not entirely obvious is statement 3 which points at
a very distinct property of communicative symbols. It implies that in contrast
to other causal models, the meaning of symbols used in communication is sup-
posed to hold across different interactions. Usually, it is even considered to be
identical for all agents in the society (cf. sociological models of communication
[9, 11]). The fact that illocutions (which usually mark certain paths of interac-
tions) represented by performatives in speech act theory are parametrised with
“sender” and “recipient” roles conforms with this intuition. Without this gener-
alisation (which is ultimately based on a certain homogeneity assumption among
agents [11]), utterances would degenerate to “signals” that spawn particular re-
actions in particular agents. Of course, agents may maintain rich models of indi-
vidual partners with whom they have frequent interactions and which specialise
the general meaning of certain symbols with respect to these particular agents.
However, since we are assuming agents to operate in large agent societies, this
level of specificity of symbol meaning cannot be maintained if the number of
constructed models is to be kept realistically small – agents are simply forced
to abstract from the reactions of an individual agent and to coerce experiences
with different agents into a single model.

Claims 4 and 5 provide a basis for the design criteria applied when build-
ing agents that are to communicate effectively. Unfortunately, though, the goals
they describe may be conflicting. Item 4 states that the uncertainty associated
with expectations should be kept to a minimum. From a “control” point of view,
ideally, an agent’s peers would react to a message in a mechanised, fully pre-
dictable way so that any contingency about their behaviour can be ruled out.
At the same time, the agent himself wants to be free to take any decision at
any time to achieve his own goals. Since his plans might not conform with ex-
isting expectations, he may have to break them as stated by statement 5. Or he
might even desire some other peer to break an existing expectation, if, for exam-
ple, the existing “habit” does not seem profitable anymore. We can summarise
these considerations by viewing any utterance as a request, and asking what is
requested by the utterance: the confirmation, modification or novel creation of
an expectation.

These considerations lead to several desiderata for semantic models of com-
munication:

– The meaning of a message can only be defined in terms of its consequences,
i.e. the messages and actions that are likely to follow it. Two levels of effects
can be distinguished:

1. The immediate reactions of other agents and oneself to the message.



2. The “second-order” impact of the message on the expectation structures
of any observer, i.e. the way the utterance alters the causal model of
communicative behaviour.

– Any knowledge about the effects of messages must be derived from empirical

observation. In particular, a semantics of protocols cannot be established
without taking into account how the protocols are used in practice.

– Meaning can only be constructed through the eyes of an agent involved in
the interaction, it strongly relies on relating the ongoing communication to
the agent’s own goals.

Following these principles, we have developed a framework to describe and anal-
yse communication in open systems that will be introduced in the following
sections.

3 Assumptions on Agent Design

3.1 The InFFrA social reasoning architecture

In order to present the view of communication that we propose in this paper,
we first need to make certain assumptions regarding the type of agents it is
appropriate for. For this purpose, we shall briefly introduce the abstract social
reasoning architecture InFFrA that has previously been described in full detail
in [18]. We choose InFFrA to describe this view of communication, because it
realises the principles laid out in the previous section, while making only fairly
general assumptions about the kind of agents our models are suitable for.

InFFrA is based on the idea that agents organise the interaction situations
they find themselves into so-called interaction frames [7], i.e. knowledge struc-
tures that represent certain categories of interactions. These frames contain in-
formation about

– the possible interaction trajectories (i.e. the courses the interaction may take
in terms of sequences of actions/messages),

– roles and relationships between the parties involved in an interaction of this
type,

– contexts within which the interaction may take place (states of affairs before,
during, and after an interaction is carried out) and

– beliefs, i.e. epistemic states of the interacting parties.

While certain attributes of the above must be assumed to be shared knowledge
among interactants (so-called common attributes) for the frame to be carried
out properly, agents may also store their personal experience in a frame (in the
form of private attributes), e.g. utilities associated with previous frame enact-
ments, etc. What makes interaction frames distinct from interaction protocols
and conversation policies is that

(i) they provide comprehensive characterisations of an interaction situation
(rather than mere restrictions on the range of admissible message sequences),



(ii) they always include information about experience with some interaction pat-
tern, rather than just rules for interaction.

Apart from the interaction frame abstraction, InFFrA also offers a control flow
model for social reasoning and social adaptation based on interaction frames,
through which an InFFrA agent performs the following steps in each reasoning
cycle:

1. Matching: Compare the current interaction situation with the currently ac-
tivated frame.

2. Assessment: Assess the usability of the current frame.
3. Framing decision: If the current frame seems appropriate, continue with 6.

Else, proceed with 4.
4. Re-framing: Search the frame repository for more suitable frames. If candi-

dates are found, “mock-activate” one of them and go back to 1; else, proceed
with 5.

5. Adaptation: Iteratively modify frames in the repository and continue with 4.
6. Enactment: Influence action decisions by applying the current frame. Return

to 1.

This core reasoning mechanism called framing that is supposed to be performed
by InFFrA agents in addition to their local goal-oriented reasoning processes (e.g.,
a BDI [16] planning and plan monitoring unit) is reasonably generic to cater for
almost any kind of “socio-empirically adaptive” agent design.

Using the InFFrA architecture, we can specify a “minimal” set of properties for
agent design to be in accordance with the principles laid out for our framework
in section 2.

3.2 “Minimal” InFFrA agents

The simplest InFFrA-compliant agent design that can be conceived of is as fol-
lows: we consider agents that engage in two-party turn-taking interactions that
occur in discrete time and whose delimiting messages/actions can always be de-
termined unambiguously. This means that agents always interact only with one
peer at a time, that these encounters consist of a message exchange in which
agents always take turns, and that an agent can always identify the beginning
and end of such an encounter (e.g. by applying some message timeout after which
no further message from the other agent is expected anymore).

We also assume the existence of some special “deictic” message performative
do(A, X) that can be sent by agent A to indicate it is executing a physical (i.e.
non-communicative) action X in the environment. More precisely, do(A, X) is
actually a shortcut for an observation action of the “recipient” of this message
by which he can unambiguously verify whether A just executed X and which he
interprets as part of the encounter; it need not be some distinguished symbol
that has been agreed upon.

Further, we assume that agents store these encounters as “interaction frames”
F = (C, w, h) in a (local) frame repository F where C is a condition, w is a
message sequence and h is a vector of message counters.



The message sequence of a frame is a simple kind of trajectory that can be
seen as a word w ∈ Σ∗ from some alphabet of message symbols Σ (which include
the do-symbols that refer to physical actions). Although agents may invent new
symbols and the content language of messages (e.g. first-order logic) may allow
for an infinite number of expressions, Σ is finite, since it always only contains
symbols that have already occurred in previous interactions.

Since specific encounters are relevant/possible under particular circumstances
only, we assume that the agent has some knowledge base KB the contents of
which are, at any point in time, a subset of some logical language L, i.e. KB ∈ 2L.
Then, provided that the agent has a sound inference procedure for L at its
disposal, it can use a condition (expressed by a logical formula C ∈ L) to restrict
the scope of a message sequence to only those situations in which C holds:

(C, w, h) ∈ F ⇔ (KB |= C ⇒ w can occur )

In practice, C is used to encode any information about roles and relationships,
contexts and beliefs associated with a frames as described in section 3.1.

As a last element of the frame format we use, agents employ “usage counters”
h ∈ N

|w| for each message in a frame trajectory. The counter values for all
messages in some prefix trajectory sequence w ∈ Σ∗ is incremented in all frames
who share this prefix word whenever w occurs, i.e.

(w has occurred n times ∧ |w| = i) ⇒
∀(C, wv, h) ∈ F .∀i ≤ |w|.hi = n

(for some v ∈ Σ∗). This means that h is an integer-valued vector that records,
for each frame, how often an encounter has occurred that started with the same
prefix w (note that during encounters, hi is incremented in all frames that have
shared prefixes w if this is the message sequence just perceived until the ith
message). Therefore, count(F )[i] ≥ count(F )[i + 1] for any frame F and any
i ≤ |traj (F )| (we use functions cond(F ), traj (F ) and count(F ) to obtain the
values of C, w and h in a frame, respectively). To keep F concise, no trajectory
occurs twice, i.e.

∀F, G ∈ F .traj (F ) 6= traj (G)

and if a message sequence w = traj (F ) that has been experienced before occurs
(describing an entire encounter) under conditions C ′ that are not compatible
with cond(F ) under any circumstances (i.e. cond(C)∧C ′ |= false), F is modified
to obtain F ′ = (cond(F ) ∨ C ′, w, h).

As a final element in this agent architecture, we assume the existence of a
utility function

u : 2L × Σ∗ → R

which will provide to the agent an assessment of the utility u(KB , w) of any mes-
sage/action sequence w and any knowledge base content KB . Note that while
it appears to be a rather strong assumption that the utility of any message se-
quence can be numerically assessed in any state of belief, this is not intended
as a measure for how good certain messages are in a “social” sense. Rather, it



suffices if u returns estimates of the “goodness” of physical do-messages with re-
spect to goal achievement and assigns a small negative utility to all non-physical
messages that corresponds to the cost incurred by communication.

Minimal InFFrA agents who construct frame repositories in this way can use
them to record their interaction experience: In any given situation, they can
filter out those frames that are irrelevant under current belief and compute
probabilities for other agents’ actions and for the expectations others towards
them given their own previous behaviour. They can assess the usability of certain
frames by consulting their utility function, and they use the trajectories in F
both to determine the frames that are applicable and to pick their next actions.

4 Empirical Semantics

As mentioned before, the semantic model we want to propose is purely conse-

quentialist in that it defines the meaning of utterances in terms of their effects.
Let 2 ·H ∈ N be some upper bound on the possible length of encounters, and

let ∆(ΣH) be the set of all discrete probability distributions over all words from
Σ∗ no longer than H .

We define the interpretation IF induced by some frame repository F as a
mapping from knowledge base states and current encounter sequence prefixes to
the posterior probability distributions over all possible postfixes (conclusions) of
the encounter. Formally, IF ∈ (2L × ΣH → ∆(ΣH)) with

IF (KB , w) = λw′.P (w′|w)

where
P (w′|w) = α ·

∑

F ∈ F , traj (F ) = ww′,

KB |= cond(F )

count(F )[|traj (F )|]

for any w, w′ ∈ ΣH and some normalisation constant α.
This means that, considering those frames only whose conditions hold under

KB , we compute the ratio of experienced conclusions w′ to the already perceived
prefix encounter w and the number of all potential conclusions to w.

The intuition behind this definition is that during an interaction encounter, if
the encounter started with the initial sub-sequence w, the interpretation function
IF will yield a probability distribution over all possible continuations w′ that
may occur in the remainder of the current interaction sequence.

Finally, given this probability distribution, we can also compute the expected
“future utility” of any message sequence w by computing

ū(w) =
∑

w′∈ΣH

IF (KB , w)(w′) · u(KB ′, w′)

if KB ′ is the state of the knowledge base after w′ has occurred3.
3 This is because w′ might involve actions that change the state of the environment.

Unfortunately, this definition requires that the agent be able to predict these changes
to the knowledge base a priori.



The definitions in this section resemble the framework of Markov Decision
Processes (MDPs) very much, and to capture the fact that probabilities of com-
munication effects are affected by the decision-making agent herself, the MDP
model would have to be modified appropriately. For the purposes of the present
analysis, though, defining some simple measures on expectation structures will
suffice.

5 Entropy measures

With the above definitions at hand, we can now return to the principles of
communication laid out in section 2. There, we claimed that an agent strives to
reduce the uncertainty about others’ communicative behaviour, and at the same
time to increase his own autonomy.

We can express these objectives in terms of the expectation entropy EE and
the utility deviation UD that can be computed as follows:

EEF(w,KB ) =
∑

w′∈ΣH

−P (w′|w) log2 P (w′|w)

UDF(w,KB ) =

√

∑

w′∈ΣH

(u(w′,KB) − ū(w′,KB))
2

Total entropy EF (w,KB) of message sequence w is defined as follows:

EF(w,KB ) = EEF(w,KB ) · UDF (w,KB )

How can these entropy measures be interpreted? The expectation entropy as-
sesses the information-theoretic value of having performed/perceived a certain
sequence w of messages. By computing the information value of all potential
continuations, EE (again, we drop subscripts and arguments whenever they are
obvious from the context) expresses the entropy that is induced by w in terms
of potential continuations of this encounter prefix: the lower EE , the higher the
value of w with respect to its ability of reducing the uncertainty of upcoming
messages/actions. Thus, by comparing expectation entropies for different mes-
sages in the process of selecting which message to utter, the agent can compare
their values or regard the system of all possible messages as an “encoding” for
future reactions.

Utility deviation, on the other hand, is defined as the standard deviation
between the utilities of all possible continuations of the encounter given w so
that the importance of the potential consequences of w can be assessed. Its
power lies in being closely related to the expected utility of the encounter, while
at the same time providing a measure for the risk associated with the encounter
sequence perceived so far.

Returning to the observation we made regarding the “request” nature of any
communicative action in section 2, we can now rephrase this view in terms of
the mathematical tools introduced in the above paragraphs: Any message v ∈ Σ



considered in the context of an encounter has an expectation entropy associated
with it, so that EE (wv,KB ) can be used to predict how much using v will help
to “settle” the communication situation, i.e. to reduce the number of potential
outcomes of the entire encounter. At the same time UD(wv,KB ) can be used
to check how “grave” the effects of different outcomes would be.

By combining these two measures into E , the agent can trade off the reduction
of uncertainty against sustainment of autonomy depending on its willingness to
conform with existing expectations or to deviate in order to pursue goals that
contradict the expectations held towards the agent.

6 Analysis

To see how the above framework may help interpret the meaning of utterances
and guide the agent’s behaviour, we will compare three different interaction
scenarios, in which the frame repositories of some agent a1 have been compiled
into the trees shown in figures 1, 2 and 3, respectively (we use trees of interaction
trajectories as defined in [2] instead of sets of sequences as a more compact
representation). The nodes which represent messages are connected by edges that
are labelled with transition probabilities in italics (computed using count(F )).
We use variables A, B, X etc. to capture several “ground” situations by a single
tree. The substitutions that are needed to reconstruct past interactions using the
tree are not displayed in the examples, but form part of the private attributes
(cf. section 3.1).

Where the direct utility associated with an action is not zero, the in-
crease/decrease in total utility is printed on top of the action in bold face in
square brackets [] (if communication preceding these “utility nodes” comes at a
cost, this has been already considered in the utility of the leaf node). For sim-
plicity, we also assume the trees presented here to be the result of combining all
frames that are consistent with the current knowledge base, i.e. frame conditions
have already been checked.

6.1 Interaction scenarios

The repository shown in figure 1 summarises experience with a “simple-request”
protocol (SRP) where one agent starts by requesting an action X and the other
may simply execute the requested action or end the encounter (the ⊥ symbol is
used to denote encounter termination whenever termination probability is below
1.0) – in a sense, this is the most “minimal” protocol one can think of. So far,
only 30% out of all requests have been fulfilled, all others went unanswered.

We now picture a situation in which agent a1 is requested by agent a2 to
execute some action, but this action has a utility of −10 for a1. Note that the
probabilities in the tree are derived from observing different interactions where
a1 may have held both participating parties’ roles in different instances, but the
utility decrease of 10 units is computed on the grounds of the current situation,



request(A,B,X)

do(B,X)
[−10]

0.3

0.7

Fig. 1. SRP (simple-request protocol) frame repository tree.
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Fig. 2. RAP (request-accept protocol) frame repository tree.
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do(A,Y)
[−5]
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Fig. 3. RCOP (request-counter-offer protocol) frame repository tree.



by instantiating variable values with agent and action names (e.g. A = a2,
B = a1 and X = deliver(quantity = 100 )).

Figure 2 shows a “request-accept” protocol (RAP) that leaves some more op-
tions to the requestee as he may accept or reject the request. After confirmation
of the requesting agent (which is certain), the requestee executes the request
with a probability of 90%; in 10% of the cases, the agent who agreed to fulfil the
request is unreliable.

The “request-counter-offer” protocol (RCOP) in figure 3 offers more pos-
sibilities still: it includes “accept” and “reject” options, but it also allows for
making a proposal Y that the other agent may accept or reject in turn, and if
this proposal is accepted, that other agent is expected to execute action Y if
the first agent executes X . The distribution between accept/propose/reject
is now 0.3/0.2/0.5, because it is realistic to assume that in 20% of the cases in
which the initial offer would have been rejected in the RAP, the requestee was
able to propose a compromise in the RCOP. As before, the requestee fails to
perform X with probability 0.1, and this unreliability is even larger (23%) for
the other agent. This is realistic, because the second agent is tempted to “cheat”
once his opponent has done his duty. In the aforementioned scenario, we as-
sume that the “compromise” actions X and Y (e.g. X = deliver(quantity = 50 ),
Y = pay bonus) both have utility −5.0, i.e. the compromise is not better than
the original option deliver(quantity = 100 ).

Now let us assume a1 received the message

request(a2, a1, deliver(quantity = 100 ))

from a2 who starts the encounter. The question that a1 finds herself in is whether
he should perform the requested action despite the negative utility just for the
sake of improving the reliability of the frame set or not4.

6.2 Entropy decrease vs. utility

First, consider the case where he chooses to perform the action. In the SRP,
this would decrease UD(request) from 5.39 to 5.365, but it would increase
EE (request) from 0.8812 to 0.8895. The total entropy E(request) would in-
crease from 4.74 to 4.76. In case of not executing the requested action utility
deviation would rise to 5.40, expectation entropy would decrease to 0.8776, and
the resulting total entropy would be 4.73.

How can we interpret these changes? They imply that choosing the more
probable option ⊥ reduces entropy while performing the action increases it. Thus,
since most requests go unanswered, doing nothing reassures this expectation.
Yet, this increases the risk (utility deviation) of request, so a1’s choice should

4 Ultimately, this depends on the design of the agent, i.e. in which way this reliability
is integrated in utility computation.

5 The small changes are due to the fact that the frame repository is the product of
100 encounters – a single new encounter induces only small changes to the numerical
values.



depend on whether he thinks it is probable that he will herself be in the position
of requesting an action from someone else in the future (if e.g., the utility of
do becomes +10.0 in a future situation and a1 is requesting that action). But
since the difference in ∆E (the difference between entropies after and before the
encounter) is small (0.02 vs. -0.01), the agent should only consider sacrificing
the immediate payoff if it is highly probable that the roles will be switched in
the future.

Let us look at the same situation in the RAP case. The first difference to
note here is that

UD(accept) = UD(confirm) = 6.40 > 4.76 = UD(request)

This nicely illustrates that the “closer” messages are to utility-relevant actions,
the greater the potential risk, unless occurrence of the utility-relevant action
is absolutely certain. This means that the 0.9/0.1 distribution of do/⊥ consti-
tutes a greater risk than the 0.7/0.3 distribution of reject/accept, even though
EE (confirm) < EE (request)!

If a1 performs the requested action, the total entropy of request increases
from 4.86 to 4.89, if he doesn’t (by sending a reject), it decreases to 4.84. Since
this resembles the entropy effects in the SRP very much, what is the advantage
of having such a protocol that is more complex?

6.3 External paths and path criticality

The advantages of the RAP become evident when looking at the entropies of
accept and confirm after a reject, which remain unaffected (since they are
located on different paths than reject). So RAP is, in a sense, superior to SRP,
because it does allow for deviating from a certain expectation by deferring the
expectations partly to messages on unaffected external paths. Effectively this
means that after a reject, a request becomes riskier in future encounters, but
if the agent waits until the accept message in a future interaction, he can be
as certain of the consequences as he was before. Of course, in the long run this
would render request almost useless, but if used cautiously, this is precisely the
case where autonomy and predictability can be combined to serve the needs of
the agents.

The most dramatic changes to entropy values will be witnessed if the agent
doesn’t perform the action, but promises to do so by uttering an acceptmessage:
E(request) increases from 4.86 to 5.05, E(accept) and E(confirm) both increase
from 3.00 to 3.45. This is an example of how our analysis method can provide
information about path criticality: it shows that the normative content of accept
is very fragile, both because it is closer to the utility-relevant action and because
it has been highly reliable so far.

6.4 Trajectory entropy shapes

Let us now look at the RCOP and, once more, consider the two alternatives
of executing the request right away or rejecting the request. Now, the total



entropy decreases from 14.41 to 14.38 and 14.35 in the case of accept/reject,
respectively. This is similar to the SRP and the RAP, even though the effects of
different options are now less clearly visible (which due to the fact that refusal
and acceptance are now more evenly distributed). Also, the total entropy of
request that is more than three times higher than before (with comparable
utility values). This suggests that it might be a good idea to split the RCOP
into two frames that start with different performatives, e.g. request-action
and request-proposal.

Of course, the propose option is what is actually interesting about the RCOP,
and the final step in our analysis will deal with this case. If a1 analyses the
possible runs that include a propose message, he will compare the effects of the
following encounters on the frame tree with each other:

Short name Encounter

“success”: request(A, B, X) . . . → do(A, Y )
“A cheats”: request(A, B, X) . . . → do(B, X)
“B cheats”: request(A, B, X) . . . → accept-proposal(A, B, Y )
“rejection” : request(A, B, X) → reject-proposal(B, A, X)

Figures 4 and 5 show the values of E(w) and ∆E(w) (the change in total entropy
before and after the encounter) computed for the messages along the path

w = propose(A, B, X) → . . . → do(A, Y )

A first thing to note is the shape of the entropy curve in figure 4 which is typical
of meaningful trajectories. As illustrated by the boxed “perfect” entropy curve,
reasonable trajectories should start with an “autonomy” part with high entropy
which gives agents several choices, and then continue with a “commitment” part
in which entropy decreases rapidly to make sure there is little uncertainty in the
consequences of the interaction further on.

Secondly, figure 5 which shows the changes to the node entropies before
and after the respective interaction proves that as in the RAP, cheating has a
negative impact on entropies. Moreover, the effects of “A cheats” appear to be
much worse than those of “B cheats” which reassures our intuition that the
closer utterances are to the final outcome of the encounter, the more critical will
the expectations about them be.

Thirdly, as before, the “rejection” dialogue and the “success” dialogue are
acceptable in the sense of decreasing entropies of propose and accept-proposal

(note that the small entropy increase of request is due to the 0.1/0.23 probabil-
ities of cheating after accept-proposal and do(B, X)). The fact that “success”
is even better than “rejection” suggests that, in a situation like this, there is
considerable incentive to compromise, if the agent is willing to sacrifice current
payoff for low future entropies.

6.5 Conflict potential

Looking at the plots in figure 5, a more general property of communication
becomes evident: we can imagine an agent reckoning what to do in an ongoing
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encounter who evaluates the potential entropy changes to relevant paths after
each message.

For this purpose, let F ′ be the result of adding a new encounter w′ to the cur-
rent repository F (we assume count(w) and cond(w) are computed as described
in section 3). The entropy change induced on trajectory w ∈ Σ∗ by performing
encounter w′ ∈ Σ∗ is defined as

∆EF(w, w′) = EF ′(w) − EF(w)

This quantity provides a measure of the expectation-affirmative or expectation-

negating character of an utterance. In other words, it expresses to which degree
the agents are saying “yes” or “no” to an existing expectation.

The conflict potential of an encounter can be derived by comparing the ex-

pected entropy change to the occurred entropy change, and thus revealing to
which degree the agents exceeded the expected change to expectation struc-
tures. We can define the conflict potential exerted by the occurred encounter w′′

on encounter w if the expected encounter was w′ as

CPF (w′′, w′, w) =

∫ w[|w|]

w[1]

∆EF(w, w′′) − ∆EF (w, w′)dwi

This is the area under the “conflict curve” in figure 5, that computes

∆E(“success”, “A cheats”) − ∆E(“success”, “success”)

This curve shows how the difference between expected and actual entropy change
grows larger and larger, until the encounter is terminated unsuccessfully. This
increases the probability that the participating agents will stop trusting the
expectation structures, and that this will inhibit the normal flow of interaction,
especially if CP is large for several paths w.

A noteworthy property of this view of conflict is that in cases where, for
example, entirely new performatives are tried out, the conflict potential is 0
because the expected entropy change (which is very large, because the agents
know nothing about the consequences of the new performative) is identical to
that actually experienced. So what matters about conflict is not whether the
expectations associated with a message are clear, but rather whether the ef-
fect of uttering them comes close to our expectations about that effect on the
expectation structures – a property we might call second-order expectability.

7 Conclusions

This paper presented a novel model for defining and analysing the semantics of
agent communication that is radically empirical, consequentialist and construc-

tivist. Essentially, it is based on the idea that the meaning of communication
lies in the expectations associated with communicative actions in terms of their
consequences. This expectations always depend on the perspective of an observer
who has derived them from his own interaction experience.



By relying on a simple statistical analysis of observed communication that
makes no domain-dependent assumptions, the proposed model is very generic. It
does impose some restrictions on the design of the agents by assuming them to be
capable of recording and statistically analysing observed interaction sequences.

A common critique of such “functionalist” semantics of agent communica-
tion that has to be taken seriously is that there is more to communication than
statistical correlations between messages and actions, because the purpose of
communication is not always physical action (but also, e.g., exchange of infor-
mation) and that many (in particular, normative) aspects of communication are
neglected by reducing semantics to an empirical view. We still believe that such
empirical semantics can serve as a “greatest common denominator” for diver-
gent semantic models of different agents, if no other reliable knowledge about
the meaning of messages is available. If, on the other hand, such knowledge
is available, our framework can still be used “on top” of other (mentalistic,
commitment-based) semantics.

Using very general entropy-based measures for probabilistic expectation
structures, we performed an analysis of different empirically observed interaction
patterns. This analysis proved that useful expectation structures are structures
that leave enough room for autonomy but are at the same time reliable once
certain paths are chosen by interactants – they are autonomy-respecting and
contingency-reducing at the same time.

Such structures are characterised by the following features:

- external paths whose entropies remain fairly unaffected by agent’s choices in
the early phases of an encounter;

- low expectation entropy where utility deviation is high – the higher the po-
tential loss or gain of a path, the more predictable it should be (esp. towards
the end of an encounter);

- alternatives for different utility configurations; paths that are likely to have
a wider range of acceptable outcomes for the partners (e.g. by containing do-
actions for all parties, cf. RCOP) are more likely to become stable interaction
procedures, as they will be used more often.

One of the strengths of our framework is that empirical semantics suggest in-
cluding considerations regarding the usefulness of “having” a certain semantics
in the utility-guided decision processes of agents. Agents can compute entropy
measures of message trajectories prior to engaging in actual communication and
assess the first- and second-order effects of their actions under current utility
conditions or using some long-term estimate of how the utility function might
change (i.e. which messages they will want to be reliable in the future). The
fact that agents consider themselves being in the position of someone else (when
computing entropy changes) links the protocol character of communication to
the self-interested decision-making processes of the participating agents, thus
making communication truly meaningful.

As yet, we have not formalised an integrated decision-theoretic framework
that allows these long-term considerations to be included in social “message-
to-message” reasoning, but our model clearly provides a foundation for further



investigation in this direction. Also, we have not yet dealt with the question
of how an agent can optimally explore existing communicative conventions in a
society so as to obtain a good expectation model as quickly as possible and how
to balance this exploration with the exploitation in the sense of utility maximisa-
tion. Our use of information-theoretic measures suggests that information value

considerations might be useful with this respect.
Another novelty of our framework is the definition of conflict potential as

a “decrease in trust towards the communication system”. Sudden, unexpected
“jumps” in entropies that become bigger and bigger render the expectation struc-
tures questionable, the meaning of communicative acts becomes more and more
ambiguous. This definition of computational conflict is very powerful because
it does not resort to domain-dependent resource or goal configurations and is
defined solely in terms of communicative processes. However, we have not yet
suggested resolution mechanisms for such conflict interactions. We believe that
reifying conflict in communication (i.e. making it the subject of communica-
tion) is of paramount importance when it comes to conflict resolution and are
currently working in this direction.

Future work will also focus on observing and influencing evolving expecta-
tions at different levels. In [13], we have recently proposed the formalism of
expectation networks that is suitable for constructing large-scale “communica-
tion systems” from observation of an entire MAS (or at least of large agent
sub-populations) through a global system observer. There, we have also anal-
ysed to which degree the frame repositories of locally reasoning InFFrA agents
can be converted to global expectation networks and vice versa. This paves the
way for developing methods that combine (i) a priori designer expectations that
are represented through expectation structures [2] with (ii) emergent global com-
munication patterns at the system level and (iii) agent rationality, creativity and
adaptation through strategic application of communicative expectations.

We strongly believe that this approach has the capacity to unify the different
levels addressed in the process of engineering open MAS via the concept of
empirical semantics. The material presented in this paper can be seen as a first
step in this direction.
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