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Abstract

We present an integrated approach for reasoning about
and learning conversation patterns in multiagent communi-
cation. The approach is based on the assumption that in-
formation about the communication language and proto-
cols available in a multiagent system is provided in the
form of dialogue sequence patterns, possibly tagged with
logical conditions and instance information. We describe
an integrated social reasoning architecture that is capa-
ble of (i) processing such patterns, (ii) making communica-
tion decisions in a boundedly rational way, and (iii) learn-
ing patterns and their strategic application from observa-
tion. Our method combines decision-theoretic utility max-
imisation, case-based reasoning methods, hierarchical re-
inforcement learning and cluster validation techniques to
yield a comprehensive model of communicative decision-
making and learning that can be practically implemented.
The adequacy of the approach is illustrated through experi-
mental results in complex negotiation scenarios.

1. Introduction

Compared to the long-established areas of interaction
protocol and agent communication language (ACL) re-
search [7, 3], the development of agent architectures suit-
able for dealing with provided communication mechanisms
in practical terms has received fairly little attention.

As yet, there exists no uniform framework for defining
the interface between the inter-agent communication layer
and intra-agent reasoning, i.e. to define how specifications
of interaction protocols and communication semantics in-
fluence agent rationality or, in turn, are influenced them-
selves by agents’ rational decision-making processes.

Moreover, there is a growing concern that most specifi-
cation methods for ACLs and interaction protocols do not
provide sufficient guidance as to which part of theseman-
tics of communication should be specified at a supra-agent
level and which part of them is only a result of agents’ men-
tal processing and cannot be captured without knowledge
of their internal design. Clearly, concentrating on eitherof
these two sides may lead to over-constraining agent auton-
omy (as agents would merely “execute” centralised com-
munication procedures that directly modify their internal
states) or to uncertainty about the consequences of commu-
nication (e.g. in terms of adherence to previously created
commitments) and loss of social structure altogether.

In this paper, we attempt to tackle this problem from a
very pragmatic perspective. We make very weak assump-
tions regarding the specification method used for defining
the available means of communication in a multiagent sys-
tem (MAS), namely that it provides (i) descriptions of the
surface structure of communication processes (in the sim-
plest case, traces of possible message and action sequences
in agent conversations) that are tied to (ii) some form of log-
ical constraints (represented in a tractable logical language,
if they are to be used by reasoning agents). We refer to such
pairs of surface structure and logical constraints asconver-
sation patternsin the following.

On the agent side, we shall assume a rather simple
decision-theoretic design by which agents are striving for
long-term utility maximisation. We assume that they dis-
pose of a utility estimation method which helps them pri-
oritise (their own or others’) actions based on the immedi-
ate utility provided by these actions. Also, we endow en-
dowed with knowledge about a set of conversation patterns
in the above sense to guide their communication behaviour.
In an autonomy-respecting fashion, however, we donot as-
sume that agents will always adhere to these patterns, i.e. in
principle they can violate existing patterns both in terms of
using them even if the respective logical conditions are not



met as well as deviating from the message sequences spec-
ified by the patterns.

In the remaining sections, we define an architecture for
reasoning about such conversation patterns (section 2), ap-
plying them in communication situations (section 3), and
adapting conceptions of these patterns from experience
(section 4). We illustrate its applicability with examplesand
experimental results in section 5. Section 6 concludes.

2. Conversation Patterns and Frames

Although there exists a multitude of methods for speci-
fying ACL semantics and interaction protocols, their great-
est common denominator is that they describe thesurface
structureof dialogues (i.e. a set of admissible message se-
quences) and logicalconstraintsfor the applicability of
these message sequences (which may include statements
about environmental conditions, mental states of the partic-
ipating agents, the state of commitment stores, etc.). In the
most simplistic case, these structure/constraint pairs may be
represented as a set of combinations of a conversation trace
and a set of conditions. For example,

〈request(a, b, pay($100))→ do(b, pay($100)),

{can(b, pay($100))}〉
(1)

can be used to express that a request of agenta is followed
by an action if the requesteeb is able to execute the action,
i.e. paya an amount of $100.

The question that serves as a point of departure for our
research is how we can build agents capable of processing
a set of such (conditioned) conversation patterns in a goal-
oriented and adaptive fashion, given that the reliability of
these specification is contingent on other’s (and the agent’s
own) adherence to their prescriptive content.

For developing such an agent design, the social reason-
ing meta-architectureInFFrA (Interaction Frames and Fram-
ing Architecture) [13] is ideally suited. InInFFrA, commu-
nication processes are conceptually described by so-called
interaction frames. Each of these interaction frames repre-
sents a particular category of interactions by describing at-
tributes of the respective category. These attributes concern
the

• trajectory, i.e. surface structure of the interaction,

• roles of interacting parties andrelationshipsbetween
them

• contextandbelief conditions that constrain the appli-
cability of the frame to certain situations.

Using such frames as central data models,InFFrA describes
a reasoning cycle (calledframing) which includes

• situation interpretationto match the currently per-
ceived interaction against existing frame conceptions

(that are assumed to be contained in a locally main-
tainedframe repository),

• frame assessmentto determine whether the currently
active frameshould be retained (and guide the agent’s
interaction behaviour in the current situation),

• re-framing, i.e. selection of a better alternative or adap-
tation of existing frame conceptions, and

• frame enactmentwhich results in applying the active
frame as a normative model of the current interaction
situation in one’s decision making.

In m
2

InFFrA, which is a concrete instance ofInFFrA sug-
gested by Fischer and Rovatsos [5] frame trajectories
are modelled as linear sequences of message patterns
(i.e. speech-act like messages which may contain vari-
ables for the participating agents and content elements)
which represent discrete, turn-taking communicative en-
counters between two agents. These trajectories are com-
bined with sets of variable substitutions and logical con-
ditions which provide instance and applicability informa-
tion. Also, the frequencies of these substitutions and the
frequency with which prefixes of the perceived conversa-
tion sequence matched a frame in the past are recorded in-
side the frame.

Formally, an m
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InFFrA frame is a tuple F =
(T, Θ, C, h, hΘ), where

• T = 〈p1, p2, . . . , pn〉 is a sequence of message pat-
ternspi ∈ M, thetrajectoryof the frame,

• Θ = 〈ϑ1, . . . , ϑm〉 is an ordered list ofvariable sub-
stitutions,

• C = 〈c1, . . . , cm〉 is an ordered list ofcondition sets,
such thatcj ∈ 2L is the condition set relevant under
substitutionϑj ,

• hT ∈ N
|T | is a trajectory occurrence counterlist

counting the occurrence of each prefix of the trajec-
tory T in previous encounters, and

• hΘ ∈ N
|Θ| is a substitution occurrence counterlist

counting the occurrence of each member of the substi-
tution listΘ in previous encounters.

In this definition,M is a language of speech-act like mes-
sage and action patterns of the formperf(A, B, X) or
do(A,Ac). In the case of messages (i.e. exchanged textual
signals),perf is a performative symbol (request, inform,
etc.),A andB are agent identifiers or agent variables and
X is the content of the message taken from a first-order lan-
guageL. In the case of “physical” actions (i.e. actions that
manipulate the physical environment) with the special “per-
formative” do, Ac is the action executed byA (a physical
action has no recipient as it is assumed to be observable
by any agent in the system). BothX andAc may contain



non-logical substitution variables that are used for general-
isation purposes. We further useMc ⊂ M to denote the
language of ground (up to variable identifiers of the con-
tent language) messages that agents use in communication.
To illustrate the semantics of a frame, consider the follow-
ing example1:

F =
〈〈 5
→ request(A, B, X)

3
→ do(B, X)

〉
,

〈
{can(B, X)},

{can(B, pay(S)}
〉

〈 2
→ 〈[A/a], [B/b], [X/pay($100)]〉,
1
→ 〈[A/b], [B/a], [X/pay(S)]〉

〉〉

(2)

This frame reflects the following interaction experience:A
askedB five times to perform (physical) actionX , out of
which B actually did so in three instances. In two of suc-
cessful instances, it wasa who asked andb who headed
the request, and the action was to pay $100. In both cases,
can(b, pay($100)) held true. In the third case, roles were
swapped betweena andb and the amountS remains un-
specified (which does not mean that it did not have a con-
crete value, but that this was abstracted away in the frame).

What is important to note aboutm
2

InFFrA frames in con-
trast to general conversation patterns (cf. example 1) is that
they allow for storingempirical information about past in-
stances of conversations that followed a certain pattern and
also to distinguish between different sets of conditions that
held during theseenactmentsof a frame. Thus, apart from
surface structure and logical constraints, frames also allow
for storinginstance information.

3. Applying Interaction Frames

The ability of frames to capture instance information
provides agents with a facility to reason about communi-
cation semantics in an adaptive fashion. In accordance with
theempirical semanticsview [12] that considers the mean-
ing of communication as a function of its consequences
as experienced through the eyes of a subjective observer,
agents can adapt existing frame conceptions with new ob-
servations of encounters and project past regularities into
the future. As we will see, this may help improve their
strategic communication abilities decisively inopen sys-
tems, in which agents may or may not obey pre-defined con-
versation patterns.

1 For ease of presentation, we will writeT (F ), C(F ), etc. to de-
note the respective elements of a frameF and use the com-
pact notation〈Th(F ), C(F ), Θh(F )〉 instead of(T, Θ, C, h, hΘ),

where Th(F ) =
h(F )[1]
→ p1

h(F )[2]
→ p2 · · ·

h(F )[n]
→ pn and

Θh(F )[i] =
hΘ(F )[i]

→ Θ(F )[i].

3.1. Frame semantics

According to theprobabilistic interpretationof frame se-
mantics that underlies them2

InFFrA model, the semantics of
a set of framesF = {F1, . . . , Fn} is as follows: Given an
encounter prefixw ∈ M∗

c , i.e. a sequence of messages al-
ready uttered in the current encounter (possibly the empty
sequence) and theknowledge baseKB ∈ 2L of beliefs2 the
reasoning agent currently holds, we can compute the set of
possiblecontinuationsw′ ∈ M∗

c by

1. filtering out all those frames whose trajectories do not
prefix-matchw,

2. considering the postfixes ofw in the remaining frames
under the remaining possible substitutions (given that
w has already committed certain variables to instance
values), and

3. applying those substitutions whose corresponding con-
dition sets are fulfilled underKB .

For each of these possible continuations, we can then com-
pute acontinuation probabilityby virtue of similarity, fre-
quency and relevance considerations. The resulting proba-
bility distribution over continuationsw′ is thesemanticsof
w underF .

Formally, letϑf (F, w) = unifier(w, T (F )[1:|w|]) the
most general unifier ofw and the corresponding trajec-
tory prefixT (F )[1:|w|] of F (whereunifier(·, ·) returns the
most general unifier for two message patterns or sequences
thereof, or⊥ if they cannot be unified). This can be used to
define

Θposs(F,KB , w) =
{
ϑ
∣
∣∃ϑ′.ϑ = ϑf (F, w)ϑ′

∧ ∃i.KB |= C[i]ϑ
}

as the set ofpossible substitutionsunder frameF , beliefs
KB , and conversation prefixw (Sϑ denotes application of
substitutionϑ to a (set or list of) logical formula(e) or mes-
sage(s)S depending on the context). In other words,Θposs

is the set of substitutions that are extensions ofϑf for which
at least one condition inC(F ) is satisfied.

This allows us to specify which continuationsw′ of w
should be expected to occur with non-zero probability ac-
cording toF underKB , namely exactly those that result
from applying any possible substitution to the postfix of
the trajectory. Now the question arises how the quantities
of these probabilities should be determined, i.e. what the
probabilityP (ϑ|F, w) under a frameF and a given prefix
w should be.

Using asimilarity measureσ(·, ·) defined on message
pattern sequences as used in the area ofcase-based rea-
soning[6], we can determine the similarity of any possi-

2 For notational convenience, we assume that knowledge bases use the
same logical language as is used in the content language of messages.



ble substitution to a frame taking into account the frequen-
cies of previous cases and the relevance of their correspond-
ing condition sets in a single frame by defining

σ(ϑ, F ) =

|Θ(F )|
∑

i=1

(
similarity

︷ ︸︸ ︷

σ(T (F )ϑ, T (F )Θ(F )[i]) ·

frequency
︷ ︸︸ ︷

hΘ(F )[i]

· ci(F, ϑ,KB)
︸ ︷︷ ︸

relevance

)

to assess to which extentϑ is “applicable” toF .3 This can
be used to assign a probability

P (ϑ|F, w) ∝ σ(ϑ, F ) (3)

to all ϑ ∈∈ Θposs(F,KB , w) and a probability of zero to
all otherϑ.

Finally, this allows for computing continuation probabil-
ities4 for w over the entire set of framesF as

P (w′|w) =
∑

F∈F ,ww′=T (F )ϑ

P (ϑ|F, w)P (F |w) (4)

whereP (F |w) is the numberh(F )[|h(F )|] of successful
completions ofF normalised over all frames that prefix-
matchw.

3.2. Decision making with frames

In the introductory section, we assumed a decision-
theoretic agent design by which agents strive for long-term
expected utility maximisation. Further assuming that agents
are equipped with autility estimateu(w,KB) ∈ R that al-
lows them to assess the usefulness of a message (and action)
sequencew in belief stateKB (e.g. by assigning substantial
positive/negative utility values todo-messages that repre-
sent physical actions in the environment and a small nega-
tive utility to messages to express the communication cost
incurred by them), they could in principle use continuation
probabilities (cf. equation 4) to make utility-maximisingde-
cisions in each reasoning cycle.

However, this contradicts the intuition behindInFFrA
which relies on breaking down the whole network of ex-
pectations into manageable “chunks” i.e. frames, and is also
counter-intuitive with respect to the ways in which conver-
sation pattern specifications are usually available in most
MASs (different protocols are specified for different pur-
poses, and need not all be constantly be reasoned over at

3 An easy way to defineci(F, ϑ, KB) is to assign a value of 1 to this
quantity ifKB |= C(F )[i]Θ(F )[i] and 0, else.

4 Note thatP (w′|w) will not be a real probability distribution overM∗
c

unless we extend it to thosew′ for which no frame postfix caters. This
can be done, for example, by assigning small uniform probabilities to
all thesew′.

the same time while engaging in a particular kind of inter-
action).

Instead we will assume in a boundedly rational fashion,
and in accordance with the generalInFFrA reasoning cycle,
that an agent only activates a single frame at a time within
which it searches for an optimal action while engaging in a
communicative encounter. It will onlyre-frameif this is re-
quired because the current frame is not applicable anymore
or does not seem desirable in terms of utility expectations.

The decision-making procedure ofm
2

InFFrA can be out-
lined as follows:

1. If a messagem is received, update the encounter pre-
fix: w ← wm; if no encounter is running, consider
starting one

2. If no active frameF has been selected, go to 8.

3. Validity check:If |T (F )| = w, go to 7.;
if unifier(T (F )[1 : |w|], w) = ⊥, go to 8.

4. Adequacy check:If Θposs(F, w,KB) = ∅, go to 8

5. Compute the expected utility for eachown substitution
ϑs:

E[u(ϑs, F, w,KB)] =
∑

ϑp

(

u(postfix(T (F ), w)ϑsϑp,KB)

· P (ϑp|ϑs, F, w)
)

Desirability check:Determine the optimal substitution

ϑ∗ = argmax
ϑs

E[u(ϑs, F, w,KB)]

If u(postfix(T (F ), w)ϑ∗ϑp,KB) < b, go to 8.

6. Performm∗ = T (F )[|w|+ 1]ϑ∗, updatew← wm

7. Wait for next message until deadline; after that, termi-
nate encounter

8. Re-frameto selectF , then go to 3.

The framing reasoning cycle is bracketed by steps 1 and 7
which cater for initiating encounters and ending them if no
more messages are received (if the other agent is not reply-
ing at all when he is expected to, and to make sure we pro-
cess additional messages sent by the other party after we
considered the encounter completed (coming from step 3)).

We assume that encounter initiation on the side of the
agent is spawned by some sub-social reasoning layer, e.g. a
BDI [10] engine, which determines whether and about what
to converse with whom, depending on the possibility of fur-
thering some local goal through such interaction.

Steps 3, 4 and 5 are used to evaluate the usefulness of
the currently active frameF . Steps 3 and 4 are straight-
forward: If the frame has been completed, if it does not
prefix-match the encounter prefixw or if Θposs(F, w,KB)
becomes empty,F cannot be used any longer.



For step 5, we have to assess the expected utility
E[u(ϑs, F, w,KB)] of any “own” substitutionϑs. To this
end, we have to conduct an adversarial search over substi-
tutions jointly determined by the agent and her opponent,
as each of the two agents commits certain variables to con-
crete values in their turn-taking moves. Using the definition
of σ(ϑ, F ) and equation 3, we can estimate the probabil-
ity for opponent substitutionϑp in the remaining steps as

P (ϑp|ϑs, F, w) =
P (ϑp ∧ ϑs|F, w)

P (ϑs|F, w)

=
σ(ϑf (F, w)ϑsϑp, F )

∑

ϑ σ(ϑf (F, w)ϑsϑ, F )

whereϑp∧ϑs denotes the event of the peer choosingϑp and
the reasoning agent choosingϑp after having committed to
the fixed substitutionϑf (F, w), so that the final “joint” sub-
stitution will beϑf (F, w)ϑsϑp.

With this, we can useu to compute the utility of the post-
fix that results fromT (F ) and prefixw (which implies ap-
plication of ϑf (F, w)) with ϑp andϑs applied to obtain a
ground sequence of actions and messages still to be exe-
cuted along the remaining trajectory. If the utility of the
postfix under the optimal substitutionϑ∗ is below some
thresholdb, we pick a new frame. Otherwise, we perform
the next stepm∗ along the trajectory ofF and enter the
next reasoning iteration.

It should be mentioned that we have omitted from this
description the process offrame repository updateupon en-
counter termination (whether after successful frame com-
pletion or due to frame selection failure). The previous
frame repositoryF has to be updated by computing new
trajectory and substitution lists/counters for the respective
(matching) frames or by adding a new frame if no exist-
ing frame trajectory matches the encounter just observed.
Moreover, we applycluster validationtechniques as sug-
gested in [4] to decide whether (and how) new observa-
tions should be merged into existing ones or whether they
should be used to create a new frame. What remains to be
specified is step 8, that is search strategy between different
frames. Effectively, it is this search strategy that determines
the degree of complexity reduction achieved by restricting
the search space to a single active frame while looking for
the next optimal action. One way to shape this search strat-
egy is through long-term learning of the usefulness of par-
ticular frames.

4. Learning to Frame

For learning an optimal re-framing strategy, we usehier-
archical reinforcement learning(RL) [2] techniques. In hi-
erarchical RL, actions available in a general Markov Deci-
sion Process (MDP) are combined to yield macro-operators
that can be applied over an extended number of decision

steps, the general idea being that compound time-extended
policies, which (hopefully) optimally solve sub-problems
of the original MDP, help to reduce the overall size of the
state space. Using such macro-actions, an agent can use
Semi-MDP (i.e. state history dependent) variants of learn-
ing methods such as Q-learning [14] to optimise its long-
term “meta”-strategy over these macro-policies.

An intuitive hierarchical RL approach that lends itself
to an application to interaction frames particularly well is
theoptionsframework [8]. In this framework, anoption is
a triple o = (I, π, β) consisting of an input setI ⊆ S of
MDP states, a (stationary, stochastic) policyπ : S × A →
[0, 1] over primitive actionsA and statesS, and a stochas-
tic termination conditionβ : S → [0, 1]. Optiono is admis-
sible in a states iff s ∈ I. If invoked,o will behave accord-
ing toπ until it terminates stochastically according toβ. We
can use this definition to re-interpretm
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InFFrA frames as op-
tions, whereπ is the (deterministic) strategy defined by de-
terminingm∗, andI andβ are defined by the validity, ade-
quacy and desirability checks performed during the reason-
ing process of the previous section.

Let s : M∗
c × 2L → S be some state abstraction func-

tion5 that returns a state for each pair(w,KB) of perceived
encounter prefixw and beliefKB . If we regard each frame
F ∈ F as an option in the above sense, we can apply the
Semi-MDP Q-learning update rule

Q(s, F )←(1− α)Q(s, F )+

α

[

R̂(s, F ) + γτ max
F ′∈F

Q(s′, F ′)

]
(5)

wheres = s(w,KB) ands′ = s(ww′,KB ′) are the states
resulting from the encounter sequencesw andww′ and the
corresponding knowledge base contentsKB and KB ′ as
perceived between two re-framing decisions,α is an ap-
propriately decreasing learning rate andτ is the number of
steps during whichF was the active frame (i.e.τ = |w′|).
Further,R̂(s, F ) is the discounted reward accumulated in
stepst + 1, . . . t + (τ − 1).

Using the long-term utility estimates represented byQ,
we can determine the optimal re-framing choice as

F ∗(w,KB) = arg max
F∈F

Q(s(w,KB), F ) (6)

while applying a “greedy in the limit” infinite exploration
strategy to avoid running into local minima. Note that learn-
ing re-framing Q-values in this way will allow for optimis-
ing framing decisionswithin encounters as well asbetween
subsequent encounters, at least if there is some utility-
relevant connection between them. Also, this re-framing
strategy is not in itself sufficient to preclude infinite re-
framing loops in the algorithm of section 3.2.6

5 It is unrealistic to assume thatM∗
c × 2L itself could be used as state

space due to its unmanageable size, see also section 5.



5. Evaluation

The adequacy of our approach was tested in the Link Ex-
change Simulation systemLIESON [1]. In this system, agents
represent Web site owners who hold different views of the
contents of other Web sites represented by numericalpri-
vate ratings. At the same time, they can express their opin-
ion about others’ sites by attaching numerical weight labels
to links laid toward these sites, so that these link weights
function aspublic ratings. The physical actions available to
an agentA areaddLink (A, B, R), deleteLink (A, B) and
modifyRating(A, B, R′) to add a link with public ratingR
to agentB, delete an existing link, or modify its current rat-
ing value to a new valueR′.

The primary goal of agents inLIESON is to increase
the dissemination of their own opinion through appropri-
ate linkage structures, and for this purpose they negotiate
with each other over mutually beneficial linkage.

The utility function inLIESON computes the popularity
of each site on the grounds of a hypothetical model of Web
user behaviour, according to which the probability of fol-
lowing a link is proportional to the numerical weight at-
tached to a link. What is interesting about this utility func-
tion is that it yields very low utilities to all agents for empty,
full negative and full positive linkage. This means that if
agents do not lay any links at all, or if they lay links to ev-
ery other site using uniformly maximal or uniformly mini-
mal rating values for all links their performance will be very
poor. On the other hand, if they truthfully link to every agent
and display their true private rating of that site with every
link (“honest linkage”) or use a “politically correct” (PC)
linkage scheme which is identical to honest linkage except
that no links with negative rating values are laid, their per-
formance is very high. Interestingly, PC linkage provides
a substantially higher average utility than honest linkage,
i.e. agents are better off concealing their discontent toward
other sites.

LIESON agents reason about their actions along the fol-
lowing lines: Using their local link network knowledge,
they project the usefulness of a number of physical actions
and prioritise them using a goal/action queue in a BDI-
like fashion. Then, they choose the topmost queue element
for execution (unless its consequences have already been
achieved or it is not applicable under current circumstances)
and either (i) execute it themselves if this is possible or (ii)
request its execution by an agent who can perform it (in the
linkage scenario, this agent can always be uniquely identi-
fied). After such a request, them2

InFFrA component takes
control of agent action until the initiated dialogue is termi-

6 This problem can be easily resolved by prohibiting repeated trial in-
stantiation (validity/adequacy/desirability testing) of the same frame
in a single re-framing iteration.

nated and processes the frame repository and the perceived
messages as described in the previous sections.

5.1. Proposal-based negotiation

In a first series of experiments, we ran simulations us-
ing a set of simpleproposal-based negotiation framesthat
all agents were equipped with at the beginning and which
allow for accepting and rejecting requests, making counter-
proposals (“I can’t doX as requested, but I can doY for you
instead”) and reciprocally conditional proposals (“I willdo
X as you requested, if you doY in return”).

More precisely, frame repositories are initialised with
frames that have the following trajectories:

〈request(A, B, X) → accept(B, A, X) → confirm(A,B, X)

→ do(B,X)〉

〈request(A, B, X) → propose(B, A, Y ) → accept(A, B, Y )

→ do(B,Y )〉

〈request(A, B, X) → propose-also(B, A, Y )

→ accept(A,B, Y ) → do(B, X)

→ do(A,Y )〉

〈request(A, B, X) → reject(B, A, X)〉

〈request(A, B, X) → propose(B, A, Y ) → reject(B, A, Y )〉

〈request(A, B, X) → propose-also(B, A, Y )

→ reject(B,A, Y )〉

Here, frame condition sets only require that actionsX and
Y can be physically executed whereverdo-messages are in-
volved; substitution lists are initially empty, and all trajec-
tory occurrence and substitution counters are initialisedto
0. The state abstraction functions(w,KB) is defined us-
ing thesubjectof a conversation in terms of the link mod-
ification action(s) that are talked about (for details, please
refer to [11]). Also, we use a very simple, strictly syntac-
tical similarity measureσ that does not take any domain-
specific similarities between actions or propositions intoac-
count [4]. Finally, the desirability thresholdb (section 3.2)
uses theentropy-based heuristicsdefined in [12] to trade off
self-interested utility increase against conflict avoidance.

Selected results are shown in the plots of figure 1, in
which the utility-per-round of the best/worst agent and the
average utility of all agents is compared to the PC and hon-
est linkage average agent utilities (shown as constant thresh-
old lines labelled as “upper benchmark” and “lower bench-
mark”). The topmost plot illustrates what happens if non-
adaptive (non-m2

InFFrA) agents take the fulfilment of the
requests they issue for granted. These naively communicat-
ing BDI agents discover after a while that what others can
do for them is better than what they can do themselves and
cease all link modification activity. As in this sample run
(the other plots are averaged over 100 runs each), all they do
after a certain point in time is to issue requests toward oth-
ers, and the system ends up in a deadlock state because no



Figure 1. Performance plots: proposal-based
negotiation. Top to bottom: naively commu-
nicating BDI agents, m2InFFrA agents with-
out/with frame learning capabilities

agent is executing the actions others request him to. So, al-
though these agents are rational in the sense that they give
priority to those actions that seem more promising, they are
bound to perform very poorly in open MAS in which adher-
ence to pre-specified conversation patterns cannot be taken
for granted.

In the two lower plots, we see thatm
2

InFFrA agents suc-
ceed in doing better than the lower benchmark even if they
are not endowed with frame learning capabilities, i.e. they
choose a frame randomly when re-framing (middle plot).
Added frame learning capabilities help attain the upper
benchmark level on the average, and although this frame

learning is only an additional optimisation method, it does
make a difference. These results are quite impressive con-
sidering that the agents have no prior knowledge about the
effectiveness of the PC and honest linkage schemes. Also,
they prove thatm2

InFFrA manages to integrate frame appli-
cation and learning capabilities in a coherent social reason-
ing architecture that is able to operate successfullyin con-
junction withother (sub-social) agent activity in open MAS.

5.2. Interest-based negotiation

Despite the fact that the above results obtained with
proposal-based negotiation frames are quite reassuring,
these frames do not really qualify as complex knowledge-
level conversation patterns thatm

2

InFFrA is supposed to be
useful for.

To investigate more complex interaction scenarios, we
have therefore conducted a second series of simulations
using interest-based negotiation(IBN) as proposed by [9]
which is a specific approach to argumentation-based ne-
gotiation. In IBN, agentschallengeother agents’ propos-
als (in our case, requests or rejections of requests) by ask-
ing for reasons so that the other party is forced tojustify
her offer by proving that it does not concern unreachable
or already achieved goals. The “challenger” party may in
turn attackthe justification by counter-arguments (suggest-
ing wrong assumptions, threats to other goals, alternative
means of achieving the same goal, etc.) in order to force
their opponent to accept an alternative offer.

Based on IBN theory, Rovatsos [11] has designed two
sets of frames for (i) single-shot argument exchange (i.e. ne-
gotiations that consist of just one challenge-justify-attack-
concession iteration) and (ii) iterative IBN with several ar-
gument iterations. For lack of space, we shall only give a
few examples for the single-shot case here.

Consider the following two frames (these are two of
eleven frames defined for single-shot IBN in [11]):
D

˙ 0
→ request(A,B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B,reject(X))
0
→ inf-threat(B, A,T )

0
→ inf-alt(A,B, Y )

0
→ concede(B,A, Y )

0
→ request(A,B, Y )

0
→ do(B,Y )

¸

,
˙

{can(B,X), goal(B, T ),¬achieves(X, T ),achieves(Y, T ),

Y 6= X, can(B, Y )}
¸

,
˙ 0
→ 〈〉

¸

E

D

˙ 0
→ request(A, B, X)

0
→ ask-reason(B, A, request(X))

0
→ inf-goal(A, B, G)

0
→ att-goal(B, A, threat(X, T ))

0
→ concede(B, A, threat(X, T ))

¸

,
˙

{can(B, X), goal(A, G), achieves(X, G), goal(A,T ),

¬achieves(Y, T )}
¸

,
˙ 0
→ 〈〉

¸

E

In the first frame,B justifies her refusal to performX by
suggesting thatX does not achieveT , whereuponA attacks



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

A
ge

nt
 u

til
ity

Simulation rounds

Agent performance

average
minimum

maximum
lower benchmark
upper benchmark

standard deviation
std. dev. upper benchmark
std. dev. lower benchmark

Figure 2. Performance plot: interest-based
negotiation

by suggesting an alternativeY that does achieveT andB
has to concede and performY . In the second, the requesting
partyA is asked to justify their request, butB attacks the
alleged goalG by claiming thatX at the same time does
not achieveT (which is also a goal forA). A has to concede
and no action follows.

Effectively, these IBN frames enforce a much stricter
communication regimeby forcing agents to justify their
stance, to accept any alternative suggested for the same
goal, to abandon any proposal that threatens at least one
goal, etc. To make things even more difficult, we disallow
re-framing for desirability reasons, i.e. agents no longerde-
viate from the provided frames for fear of low utility out-
comes (but they still might abandon them if a failure oc-
curs, e.g. when they fail to prove frame conditions that hold
for the other party due to false/obsolete beliefs).

Figure 2 shows that the agents manage to maintain a rea-
sonable level of long-term utility even under these circum-
stances (albeit with bigger fluctuations which indicate fre-
quent “loss of an argument”), which illustrates thatm

2

InF-
FrA is capable of combining decision-theoretic learning
with complex knowledge-based reasoning about constraint-
governed conversation patterns. The results also suggest
that IBN has anequilibratoryeffect on the social outcome
since the utility difference between most and least success-
ful agents is smaller than is the case in proposal-based ne-
gotiation. It deserves to be mentioned that, to our knowl-
edge, the implementation of IBN frames inm

2

InFFrA con-
stitutes the first application of machine learning methods
to argumentation-based negotiation in MASs, which under-
lines the flexibility and expressive power of our approach.

6. Conclusion
In this paper, we presented an integrated framework for

reasoning about conversation patterns in multiagent sys-
tems that makes use of frame-based reasoning about inter-

action, hierarchical reinforcement learning of communica-
tion strategies and application as well as adaptation of com-
munication pattern models using case-based reasoning and
cluster validation techniques.

While this offers a new perspective for dealing with
generic kinds of ACL and interaction protocol specifica-
tions in open systems (in which the designer cannot enforce
obedience to a pre-specified semantics) by “making the best
out of interaction experience”, a lot of work remains to be
done. For example, we have to show that ACL/protocol se-
mantics frameworks can be automatically converted to read-
ily usable frame repositories. Also, we have to extend the
expressiveness of frame models to cater for more expres-
sive trajectory models that allow for branching and iteration
(a first step in this direction has been taken in [11] by us-
ing online methods for concatenation ofm

2

InFFrA frames in
a planning sense). Finally, “condition mining” techniques
that allow for diagnostic reasoning in case of framing fail-
ure in order to adaptively modify the respective frame con-
ditions will have to be investigated in the future.

References

[1] LIESON homepage. http://www7.in.tum.de/ rovatsos/lieson,
2002-2004.

[2] A. Barto and S. Mahadevan. Recent Advances in Hierarchi-
cal Reinforcement Learning.Discrete Event Systems, 13:41–
77, 2003.

[3] F. Dignum, editor.Advances in Agent Communication, LNAI
2922, Springer-Verlag, 2004.

[4] F. Fischer. Frame-Based Learning and Generalisation for
Multiagent Communication. Diploma Thesis, Department
of Informatics, Technical University of Munich, Germany,
2003.

[5] F. Fischer and M. Rovatsos. Reasoning about Communica-
tion: A Practical Approach based on Empirical Semantics.
Procs. CIA-2004, LNAI 3191, Springer-Verlag, 2004.

[6] J. L. Kolodner.Case-Based Reasoning. Morgan Kaufmann,
San Francisco, 1993.

[7] M. Kone, A. Shimazu, and T. Nakajima. The state of the art
in agent communication languages.Knowledge and Infor-
mation Systems, 2:259–284, 2000.

[8] D. Precup. Temporal Abstraction in Reinforcement Learn-
ing. PhD thesis, Department of Computer Science, Univer-
sity of Massachusetts, Amherst, 2000.

[9] I. Rahwan, L. Sonenberg, and F. Dignum. Towards Interest-
Based Negotiation. Procs. AAMAS-03, Melbourne, Aus-
tralia, 2003.

[10] A. S. Rao and M. Georgeff. An abstract architecture for ra-
tional agents.Procs. KR&R-92, 1992.

[11] M. Rovatsos.Computational Interaction Frames. PhD the-
sis, Department of Informatics, Technical University of Mu-
nich, 2004.

[12] M. Rovatsos, M. Nickles, and G. Weiß. Interaction is Mean-
ing: A New Model for Communication in Open Systems.
Procs. AAMAS-03, Melbourne, Australia, 2003.



[13] M. Rovatsos, G. Weiß, and M. Wolf. An Approach to the
Analysis and Design of Multiagent Systems based on Inter-
action Frames.Procs. AAMAS-02, Bologna, Italy, 2002.

[14] C. Watkins and P. Dayan. Q-learning.Machine Learning,
8:279–292, 1992.


