
Advice Taking in Multiagent Reinforcement Learning

Michael Rovatsos and Alexandros Belesiotis
School of Informatics

The University of Edinburgh
Edinburgh EH8 9LE, United Kingdom

mrovatso@inf.ed.ac.uk

ABSTRACT
This paper proposes the β-WoLF algorithm for multiagent
reinforcement learning (MARL) in the stochastic games
framework that uses an additional “advice” signal to in-
form agents about mutually beneficial forms of behaviour.
β-WoLF is an extension of the WoLF-PHC algorithm that
allows agents to assess whether the advice obtained through
this additional reward signal is (i) useful for the learning
agent itself and (ii) currently being followed by other agents
in the system. With this, agents are able to decide au-
tonomously whether to follow the advice or not, safeguard-
ing themselves against malicious or unreliable advice which,
if followed, might lead them to sacrifice their own future
rewards, as well as unilateral cooperation that could be ex-
ploited by other agents in the system. We report on ex-
perimental results obtained with this novel algorithm which
indicate that it enables cooperation in scenarios in which the
need to defend oneself against exploitation results in poor
coordination using existing MARL algorithms. We present
a critical discussion of its merits and limitations, and discuss
its significance as a step toward the development of MARL
algorithms capable of dealing with more complex forms of
potentially unreliable communication.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

Keywords
Multiagent reinforcement learning, stochastic games,
communication-based learning

1. INTRODUCTION
In recent years, the problem of designing multiagent rein-

forcement learning (MARL) algorithms has received much
attention (see [2, 11] for overviews) due to its challeng-
ing nature. MARL problems are usually defined using the
stochastic games framework [8], an extension of the stan-
dard Markov Decision Process (MDP) model [10] commonly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

used in single-agent reinforcement learning (SARL) [12] that
assumes state transitions and individual agent rewards to
depend on all agents’ simultaneously executed actions in
a common environment. Unlike SARL, where the envi-
ronment (while being stochastic) exhibits a stationary be-
haviour (as state transition probabilities depend only on the
current state) MARL adds an element of non-stationarity
to the original learning problem since opponents may be
adaptive themselves, i.e. their future strategy may be any
function of the history of previous system behaviour.

This added complexity results in a number of problems
that need to be addressed by MARL algorithms:

• Agents have to learn the behaviour of the environment
and that of their opponents at the same time.

• Agents have to be prepared to adapt their own strate-
gies to changes in others’ strategies.

• Agents have to teach others about their own strategies
to achieve a certain joint behaviour.

• Agents have to safeguard themselves against others’
attempts to exploit them.

• Agents should be able to cooperate with others who
are willing to reciprocate this cooperation.

Obviously, ensuring all these characteristics in a single algo-
rithm is a difficult task, and it is not surprising that there is
actually a considerable amount of debate regarding the cri-
teria that should be applied to evaluate MARL algorithms
considering the range of required capabilities [11].

A number of approaches have been suggested to deal with
these problems, each with its merits and limitations: Early
work was often restricted to strictly competitive games [9] or
focused on learning joint-action values and ensuring conver-
gence to Nash (or correlated) equilibria [7, 8], requiring that
agents had access to the rewards received by other agents.
Since equilibrium strategies are irrelevant when opponents
are sub-optimal, other algorithms have focused on devis-
ing algorithms that will learn best-response strategies and
are hence optimal even when confronted with sub-optimal
opponents [2, 4, 5]. Also, while many algorithms only work
against stationary opponents, some have been proposed that
can learn to behave optimally against adaptive opponents
[2] but this comes at the price of being exploitable [3] if op-
ponents use strategies that “lure” the learning agent away
from safe choices. This, in turn, lead to the development of
“no-regret” algorithms which converge in many situations of
self-play [1] (the notion of regret measures how much worse
an algorithm performs compared to a fixed strategy).

What all these approaches have in common is that all in-
formation about others’ behaviours and the learning agent’s
own policies has to be encoded in the learning model that
is being used to select one’s own policy, and that this learn-
ing model should ideally capture the adaptive nature of
the opponents’ decision-making algorithms. This places
very strong requirements on MDP-based representations of a
learning problem, and the existing approaches indicate that
it is impossible to capture all this information for any kind
of opponent one might be dealing with in this way.

In this paper, we argue that communication about certain
properties of agent behaviour can be used to relieve basic
MARL algorithms of some of these requirements and suggest
an algorithm that uses a very simple kind of communication
to achieve this. The intuition underlying the design of this
algorithm is the following: If information about the learn-
ing problem is publicly available to all agents, any MARL
agent can track whether this information is being used by
its fellow agents. Provided that the information is useful to
achieve coordinated behaviour, this makes an explicit mod-
elling of the opponents’ (potentially adaptive) strategy pos-
sible without requiring that the modelling agent acts in a
certain way to learn more about its opponents. In other
words, communication enables MARL agents to de-couple
their actions from learning about others as it is sufficient
to use information about well-coordinated behaviour as a
publicly verifiable “gold standard” regardless of the actual
(learning) algorithms employed by other agents.

As a first step toward exploiting this basic idea, we con-
sider stochastic games in which an additional “advice” sig-
nal is available to agents that provides feedback about opti-
mal joint actions. Since this advice signal can be unreliable
(i.e. completely misleading or only partially relevant), we
endow agents with the capability of autonomously decid-
ing whether and to which degree they want to follow that
advice. Thereby, we do not assume that the advice affects
agents’ private utilities directly in any way – we still consider
that the sole objective of agents is to maximise their own
expected future reward when choosing their policy. While
our approach is in part inspired by the Collective Intelli-
gence (COIN) framework [13], it respects agent autonomy
and this distinguishes it clearly from work on COIN that
aims at designing individual agent reward functions from a
birds-eye point of view in order to achieve a certain global
performance assuming that agents will behave in a utility-
maximising fashion.

Our agents decide whether to follow the advice based on
two simple criteria:

1. Rationality: Advice will only be followed if it yields
payoffs that are at least as high as an individually ra-
tional strategy that completely ignores the advice.

2. Mutuality: Advice will only be followed if other agents
appear to follow it as well, and will cease to be heeded
when they stop doing so.

Since the fulfilment of these criteria can be verified regard-
less of the nature of the learning algorithms of all parties
involved, this mechanism allows agents to incorporate ad-
ditional information about the interaction problem by rea-
soning explicitly about its potential benefits in the current
situation.

The suggested algorithm called β-WoLF is based on the
WoLF-PHC (“Win or Learn Fast – Policy Hill-Climbing”)
algorithm for MARL [2] and utilises its properties of con-
vergence (i.e. converging to a fixed policy if opponents ex-
hibit stationary behaviour), rationality (convergence to a

best-response strategy against stationary opponents), vari-
able learning rates (adapting the learning speed depending
on whether the agent’s current policy is successful), and –
perhaps most importantly for our purposes – the fact that
an explicit model of the agent’s current policy is maintained
independently from action-value tables (we shall see below
why this is crucial for communication-based MARL).

While our method requires an extension of the original
stochastic games framework to provide an advice signal we
believe that there are many real-world problems in which
such additional information is available (e.g. in the form of
some notion of “social welfare” of joint actions), and that to
solve the general MARL problem there will be many cases
in which such information is vital to achieving coordinated
behaviour among self-interested learners.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the β-WoLF algorithm. In section 3 we
report on extensive experiments conducted to evaluate its
performance and discuss them critically. Section 4 concludes
and gives an outlook on future work on the subject.

2. THE β-WoLF ALGORITHM

2.1 General Setup
To describe the overall learning problem formally, we use

the framework of stochastic games [8] and extend it by an ad-
ditional reward signal that represents an information source
external to the stochastic game itself.

Definition 1. An n-player stochastic game with advice is
a tuple

〈n, S, A1, . . . , An, T, R1, . . . Rn, W1, . . . , Wn〉

where

• S the set of states, Ai the set of actions available to i

• T : S ×A× S → [0, 1] is the transition model (defined
in terms of the joint action space A = ×n

i=1Ai)

• Ri : S ×A→ R is the reward function of agent i

• Wi : S × A→ R is the advice function of agent i

Stochastic games (SGs) work pretty much like MDPs, but
transitions between states (and therefore future rewards) de-
pend on everyone’s choices. Alternatively, we can view a SG
as a collection of normal-form games, such that each state
is associated with a payoff matrix as used in game theory
[6] and agents’ joint actions trigger stochastic transitions
between these states.

We assume that the agents’ goal is to learn a stationary
(potentially stochastic) policy πi : S ×Ai → [0 : 1] that will
maximise expected, discounted future payoff

E

"

∞
X

t=0

γtR(st
i, a

t
i)|s0, πi

#

for some discount factor γ < 1 and time t, i.e. the expected
value of the discounted, cumulative infinite-horizon payoff
that will be obtained if πi is followed starting in state s0

(st
i denotes the state visited in the tth iteration and at

i the
action selected in that timestep). Note that this criterion is
solely defined in terms of Ri and does not take the advice
Wi into account – in other words, obtaining advice does not
directly affect the agent’s performance.

The way SGs with advice work is as follows: Agents ob-
serve the current state s ∈ S in each timestep and inde-
pendently pick an action ai ∈ Ai to execute, resulting in a
joint action a = (a1, . . . , an) ∈ A. Then, each agent i re-
ceives its individual reward Ri(s, a) and the advice signals
Wj(s, a) for all agents j ∈ {1, . . . , n} which are “publicly an-
nounced” (we explain below why agents need to be informed
about the advice others receive). Finally, the next state is
calculated according to the probability distribution induced
by {T (s, a, s′)|s′ ∈ S} and the next iteration is initiated.

For the purposes of this paper, we refer to the entity that
distributes the advice rewards as the observer. However, in
principle these feedback values could also constitute infor-
mation that is revealed by one of the learning agents.

In designing our algorithm, we assume the following rea-
soning model: If πi is the policy that would be learned disre-
garding Wi completely, and conversely, a policy ρi : S×Ai →
[0 : 1] is the policy that would result from training the agent
on the advice signal Wi alone, we can define the social strat-
egy σi : S × Ai → [0 : 1] of agent i as a convex combination
of πi and ρi, that is

σi(s, ai) = (1− β)πi(s, ai) + βρi(s, ai)

for some constant β ∈ [0 : 1]. Assuming that i behaves
according to σi in the game, the advice factor β would then
describe to which extent i is using the advice signal.

To determine πi and ρi we use instances of the WoLF-
PHC algorithm. The β-WoLF algorithm itself provides an
update rule for β (hence the name) and integrates different
WoLF-PHC components to achieve the desired behaviour.

2.2 The WoLF-PHC Algorithm
The WoLF-PHC algorithm introduced in [2] is based on

the use of a variable learning rate in multiagent learning and
consists of two components: (i) a gradient-ascent algorithm
PHC which continuously modifies action selection probabil-
ities according to action values learned using a standard Q-
learning [14] update rule, (ii) the WoLF heuristic for switch-
ing between different learning rates based on the idea that
agents should learn quickly when they are “losing” and learn
cautiously when they are “winning”. Thereby, it is assumed
that the agent is winning if it prefers its current strategy
to that of playing an equilibrium strategy against another
agent’s current strategy, where the equilibrium strategy is
the long-term average of its greedy choices.

2.2.1 Policy Hill-Climbing
The “policy hill-climbing” (PHC) part of the algorithm

is based on learning a Q-table only for the values of its
own strategies, disregarding the choices of other agents.
However, to chose its actions Q-values are not used di-
rectly. Instead, the algorithm maintains a probability dis-
tribution πi(s, ai) that determines with which probability it
will choose a certain action in a given state and chooses its
next action by sampling from this distribution.

More specifically, the agent initialises all Q-values to 0,
and starts with a uniformly distributed stochastic policy
πi(s, ai) = 1

|Ai|
. Assuming two learning rates α ∈ [0 : 1]

and δ ∈ [0 : 1], it selects its action in each step according to
πi(s, ai) with some exploration, observes reward r ∈ R and
the next state s′, and updates

Q(s, ai)← (1− α)Q(s, ai) + α(r + γ max
a′

i

Q(s′, a′
i)) (1)

Note that this table is only maintained for values S × Ai

rather than the joint action spaces S × A, i.e. it does not
depend on other agents’ actions.

2 C D
1
C (3,3) (0,5)
D (5,0) (1,1)

2 A B
1
A (10,10) (0,0)
B (0,0) (10,10)

2 D S
1
D (1,1) (4,2)
S (2,4) (3,3)

2 L R
1
U (1,0) (3,2)
D (2,1) (4,0)

Table 1: Payoff matrices for the Prisoner’s Dilemma
game (top left), Coordination Game (top right), the
Game of Chicken (bottom left), and the Stackelberg
game (bottom right)

To ensure the agent is moving closer to the optimal policy
PHC uses the update rule

πi(s, ai)← πi(s, ai) + ∆sai

where

∆sai
=

(

−δsai
if ai 6= arg maxa′

i
Q(s, a′

i)
P

a′

i
6=ai

δsa′

i
else

In this equation, δsai
= min(πi(s, ai),

δ
|Ai|−1

) calculates the

“step size”: We want to deduct a total of δ from the prob-
abilities of all non-optimal (in terms of Q) actions taken
together, but some of the probabilities of those non-optimal
actions may already be below δ

|Ai|−1
), so in this case their

probability is reduced to zero. To calculate the increase
in probability for the optimal action we then sum over the
probabilities we have deducted from all non-optimal actions.

In a multiagent setting, it should be noted that the ac-
tual Q-values may range from the maximin (worst-case)
values to the best-case values depending on the behaviour
of the other agents. In the Iterated Prisoner’s Dilemma
(IPD) game described in table 1 (with a single state s and
T (s, a, s) = 1 for all a ∈ A1 × A2 and A1 = A2 = {C, D})
the values the table entries will converge to may range from
Q(s,C) = 0/Q(s, D) = 1 for an opponent who will al-
ways play D to Q(s,C) = 3/Q(s, D) = 1 for a TIT FOR
TAT opponent (who cooperates initially and plays whatever
the other agent played in the previous round thereafter) or
Q(s,C) = 3/Q(s, D) = 5 for an opponent who always coop-
erates (if we ignore exploration).

2.2.2 The WoLF Heuristic
To implement the “win or learn fast” strategy, the algo-

rithm uses two learning rates δl > δw ∈ (0 : 1] and a counter
Ci(s) reflecting how often state s has been observed (initially
0). In each iteration, WoLF-PHC updates an estimate of the
average policy π̄i(s, ai) as follows:

Ci(s)← Ci(s) + 1

∀a′
i ∈ Ai π̄i(s, a

′
i)← π̄i(s, a

′
i) +

1

Ci(s)
(πi(s, a

′
i)− π̄i(s, a

′
i))

As in PHC, πi is moved closer to the Q-optimal policy in
each step, but the rate for this update is now chosen using
the following equation:

δ =

(

δw if
P

a′

i
πi(s, a

′
i)Q(s, a′

i) >
P

a′

i
π̄i(s, a

′
i)Q(s, a′

i)

δl otherwise

Thus the learning rate is kept low if the expected payoff
of the current strategy is higher than that of the long-term
average strategy (which will, in the long-term, converge to
an equilibrium strategy in the worst case). It is increased to
the higher value if the current strategy is not successful.

The main advantage of the WoLF-PHC algorithm is that
it can adapt to changing opponent strategies while, in a
sense, storing information about its fallback (best-response)
strategy. Furthermore, what makes the algorithm particu-
larly suitable for our purposes is that it allows for an analy-
sis of a learned policy as this policy is explicitly represented
through the probability distribution πi rather than implic-
itly “hidden” in some action-value table.

2.3 Definingβ-WoLF
β-WoLF essentially consists of a number of WoLF-PHC

learning “modules” that learn optimal strategies for differ-
ent sub-problems and a criterion for coordinating how these
components are integrated by the agent to yield a single
policy. More specifically, a β-WoLF-agent maintains the
following data structures:

1. The individual reward learner: A normal WoLF-PHC
learning algorithm used for maximising individual re-
wards, using a Q-table Q(s, ai), updated using rewards
Ri(s, ai) for ai ∈ Ai, and evolving a policy πi(s, ai)

2. The collective reward learner: A Q-table is maintained
for values Q′(s, a) where a ∈ A and updated using the
standard Q-update rule (eqn. 1) given rewards Ri(s, a)
as in Q. This is used to learn how useful joint ac-
tions are for the agent considering individual rewards
Ri(s, a) as in Q.

3. n individual advice learners: One WoLF-PHC learner
is used per agent (including i itself) to model that
agent’s learning process if it was to follow the external
advice Wi (rather than its actual reward). We denote
the respective Q-table by Vj(s, aj) for aj ∈ Aj using
update equation

Vj(s, aj)← (1−α)Vj(s, aj)+α(Wj(s, aj)+γ max
a′

j

Vj(s
′, a′

j))

and the resulting (advice-based/social) strategy will
be denoted by ρj(s, aj). This is done for each j ∈
{1, . . . , n} separately. Note that while this requires
knowledge of all Wj signals by i each individual advice
learner is only concerned with its own actions.

4. Using an advice factor β ∈ [0 : 1] and an advice learn-
ing rate δβ ∈ (0 : 1] the agent updates its policy
σi(s, ai) in every step as

σi(s, ai) = (1− β)πi(s, ai) + βρi(s, ai)

adjusting β according to the following criterion:

β ←

8

>

>

>

<

>

>

>

:

min{1, β + δβ} if
P

a

Q

j
ρj(s, aj)Q

′(s, a) >
P

ai
πi(s, ai)Q(s, ai)

and d|σ̄−i(s)− ρ−i(s)|/dt < 0

max{0, β − δβ} else

Thereby, σ̄−i is the average (posterior) long-term strat-
egy of the remaining agents which is maintained and
updated in the same way as π̄i in normal WoLF-PHC.

5. If
P

a

Q

j
ρj(s, aj)Q

′(s, a) >
P

ai
πi(s, ai)Q(s, ai),

choose the next action based on the advice-following
policy ρi for k iterations with probability ǫ/2 (for some

exploration rate ǫ ∈ (0 : 1]and choose a random action
with probability ǫ/2. Else, choose a random action
with probability ǫ. With probability 1− ǫ behave ac-
cording to σi.

To understand what the algorithm does we discuss each of
each steps one by one. Assume agent i has performed action
ai in state s and observed reward R, joint action a and
advice W1, . . . Wn (note that while we assume the agent has
access to the advice given to all agents it does not have to
observe the rewards other agents receive).

First, using normal WoLF-PHC learning, agent i updates
tables Q and Q′ (whose difference is that Q′ learns estimates
for joint, rather than individual actions) and adapts its (in-
dividual) strategy πi. It also adapts estimates of its own
and others’ average long-term strategies π̄i/σ̄−i.

Next, a purely advice-based WoLF-PHC learning process
is simulated for all agents using tables Vj and individual
agent actions aj . The respective strategies ρj will learn to
behave optimally “as if” the advice was the actual reward
signal. The resulting strategies can be used to verify to
which extent other agents are following the advice.

The actual policy σi for agent i is a convex combination
of the reward-based (individual) strategy πi and the advice-
based strategy ρi where the relative importance of both com-
ponents is controlled by β. As stated above, the advice
should affect strategy choice if (i) following it is better than
applying some greedy, locally optimal strategy (rationality)
and (ii) if everyone else seems to be following it (mutuality).

To determine whether (i) is the case, we compare the ex-
pected utility Q′(s, a) for agent i under joint action a consid-
ering the joint action probability resulting from

Q

j
ρ(s, aj)

compared to the expected utility of its individually ratio-
nal strategy πi that has been evolved disregarding advice
completely. Note that it is this inequality that necessitates
maintaining an additional Q-table Q′ for joint action values.

For (ii), we constantly check whether the distance between
the average opponent policy and the advice-based policy
|σ̄−i(s) − ρ−i(s)| is decreasing over time, i.e. if the other
agents are “approaching” the behaviour that is optimal ac-
cording to the advice signal. In the simplest case (which we
assume in our experiments below) checking this so-called
distance criterion can be done by verifying whether the cur-
rent value of this distance is smaller than its immediate pre-
decessor.

If both conditions apply, β is increased, and otherwise
decreased while making sure that its value is bounded by 0
and 1. Thereby, the advice learning rate δβ serves to provide
some “inertia” in the process of adapting the degree to which
advice is taken into account.

Finally, we have to explain the use of the special explo-
ration rule suggested above: As the criteria for rationality
and mutuality of advice taking only verify whether others
are following the advice, there is nothing that would ensure
that some agent initiates this kind of behaviour if it is ben-
eficial. Therefore, we require that with half the probability
ǫ that is used for ǫ-greedy exploration, the agent follows a
purely advice-led strategy for k steps if the advice is benefi-
cial (using the same criterion referred to under (i) above).

If the Vj-tables contain (roughly) correct estimates, these
advice-exploration phases will cause the distance criterion
to apply to the exploring agent, so that other advice taking
agents can pick up this “signal” if they are capable and
willing to follow advice.

2.4 Example
To illustrate the workings of the β-WoLF algorithm, con-

sider the IPD game described above. This is a particularly
interesting game, as any rational MARL algorithm should
converge to best-response behaviour for any opponent (in-
cluding agents that play D throughout) and is hence prone
to sacrifice the (Pareto efficient) payoff distribution (3, 3)
that can be achieved by playing (C, C) in order to guaran-
tee the “safety” payoff of 1 for itself, i.e. to avoid exploitation
and receiving a zero payoff.

To aid agents in achieving the Pareto efficient solution, as-
sume that the observer receives information about the social
welfare R1(s, (a1, a2)) + R2(s, (a1, a2)) of each joint action
(potentially without knowing how these global rewards come
about). Assume, then, that the observer acts as a “passive”
RL agent and learns action values Qg(s, a) for the global re-
ward of joint action a in state s using ordinary Q-learning.

The following scheme for computing the advice given to
the two agents can be applied: We compute

qi(s, a) =
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a

′
i, a−i))

P

ai∈Ai
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a′

i, a−i))

if
P

ai∈Ai
Qg(s, (ai, a−i)) − mina′

i
Qg(s, (a

′
i, a−i)) > 0 and

qi(s, a) = 1

|Ai|
else. This calculates the “relative coopera-

tiveness” of each agent i as a normalised fraction of what i
contributes to the current global reward Qg(s, a) compared
to the most harmful action i might have performed in that
situation if all other agents behaved identically.

Then, considering the amount Qg(s, a) the observer has
to “spend” on the advice given to different agents, we can
calculate the advice for each agent as

Wi(s, a) = qi(s, a)Qg(s, a)

For the IPD game, these quantities result in the game matrix

2 C D
1
C (3,3) (5,0)
D (0,5) (1,1)

that has (C, C) as a dominant strategy equilibrium, which
means that if agents followed the advice (only), they would
behave cooperatively. In other words, following the advice
would be useful for any two agents that learn to play the
Nash equilibrium strategy (D, D) in the original IPD.

To get agents to cooperate who can flexibly decide
whether to follow the advice or not, we would like to obtain
the following behaviour: Initially, C is picked by both agents
occasionally due to exploration. Then, since the rationality
criterion would apply for appropriate current π-values (this
is the case e.g. for worst-case values π(C) = 0 and π(D) = 1
and advice as above) one of the agents might choose to follow
the advice “a little more” by increasing β. However, this be-
haviour will not continue unless the other agent behaves in a
similar way. This is ensured by the distance criterion, which
will make a β-WoLF-agent decrease β once the other agent
“moves away” from the advice-following strategy. Note that
both explicit exploration of pure advice following and grad-
ual reduction of β ensure that occasional mistakes by the
respective other are forgiven and that there is a certain de-
gree of leniency regarding adherence to advice.

3. EXPERIMENTAL RESULTS
We report on empirical results with a number of two-

player games and a fixed configuration of parameter set-
tings1. Mostly, we will present results regarding joint action

1These are: δw = 0.02, δl = 0.04, ǫ = 0.2, initially β = 0.5,

probabilities that result from the σ-distributions of the two
agents (rather than observed joint action frequencies or aver-
age payoffs) as this yields a view that is not biased by explo-
ration (keeping in mind that the cost of ǫ-greedy exploration
would have to be subtracted from the alleged cumulative
payoff). We average these over 100 repeated simulations2

and assume the advice calculation scheme introduced in the
previous section for all games below. When referring to
joint actions (X, Y) we will assume that the β-WoLF agent
is agent 1 (i.e. plays X) as a default.

As a first experiment, we test the performance of β-WoLF
within the IPD game in a self-play situation. For a single
run, the results are shown in the top part of figure 1: ini-
tially, the agents learn the equilibrium strategy (D, D), but
the β-value (here shown for one of the two agents only) ex-
hibits occasional “spikes” representing attempts to achieve
joint advice following. Eventually the agents succeed in co-
ordinating their attempts and very quickly switch to the
Pareto efficient action (C,C) and while occasional devia-
tion from it (due to exploration) implies that its probability
is below one, the agents behave cooperatively most of the
time. While we cannot give any guarantees for when this
switching will occur, in our experiments all 100 simulations
converged to an average probability (C, C)-probability of 1
within 5000 rounds (bottom plot). It is also noteworthy that
the convergence speed depends on the observer’s ability to
learn the social welfare function – in an experiment with
“perfect” (instead of “learned”) advice (middle plot) where
the correct values for Qg were provided to the observer from
the start, convergence was achieved much faster.

Although this self-play result is significant, we need to ver-
ify the ability of β-WoLF to learn best-response strategies
against other (fixed and adaptive) opponents. As a repre-
sentative sample for these, we run IPD simulations in which
the algorithm has to play against an ALL D (always coop-
erates), an ALL C (always defects), a TIT FOR TAT, and
a “malicious” agent (behaves like β-WoLF for 1500 rounds
and then switches to ALL D). While convergence to playing
the best response D with probability 1 is achieved against
ALL C and ALL D within little more than 40 rounds over
100 simulations on the average (not shown for lack of space),
we have to be a bit more careful about TIT FOR TAT: Here,
the β-WoLF agent cannot represent the opponent’s strategy
(as it is not merely a probability distribution), but as the
plot shows (which depicts the number of games out of 100
that have converged to (C, C) with probability > 0.9) over
90% of all games converge to mutual cooperation. This is
an important result which underlines that communicated
advice has the capacity to act as a “gold standard” regard-
less of whether agents can explicitly model their opponents.
As long as a TIT FOR TAT “does the right thing”, a β-
WoLF agent need not worry about how this strategy comes
about.

As for the malicious agent, our results show that agents
are able to recover from excessive “trust” in advice: as the
plot shows, the β-WoLF agent faces a high probability of
being exploited (probability of (C, D)) initially, but is able
to abandon the advice and return to its best-response be-
haviour. Unfortunately, though, this may take very long in

δβ = 0.2, gamma = 0.6, α = 1/(1 + visits(ai, s)) where
visits(ai, s) is a counter that is incremented every time the
agent performs action ai in state s (this is used to obtain a
decreasing learning rate), and k = 3.
2All reported “convergence” results imply that the standard
deviation between runs converges to zero, although this is
not shown in figures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

A
ct

io
n

P
ro

ba
bi

lit
ie

s
&

 B
et

a
V

al
ue

s

Round

beta value
probability of CC
probability of DD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

A
ct

io
n

P
ro

ba
bi

lit
ie

s
&

 B
et

a
V

al
ue

s

Round

average beta value
average probability of CC
average probability of DD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

A
ct

io
n

P
ro

ba
bi

lit
ie

s
&

 B
et

a
V

al
ue

s

Round

average beta value
average probability of CC
average probability of DD

Figure 1: Convergence in IPD self-play: single run
(top), averaged over 100 runs with “perfect” (mid-
dle) and “learned” advice (bottom)

some cases – as the long average convergence time for 100
simulations indicates – thus making it impossible to pro-
vide any performance guarantees here. This is of course due
to the fact that the Q-tables have converged to (numeri-
cally) fairly high values by the time the malicious opponent
switches to D, the learning rate has become very low. Also,
the average strategies that are being tracked hardly change
due to minor “misconduct” on the malicious agent’s behalf
except after a fairly long time at this stage.

In a third set of experiments, we analyse the self-play be-
haviour of β-WoLF in a number of games other than the
IPD as shown in figures 1 (payoff matrices) and 3 (experi-
mental results). Each of these has its own challenges: The

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

Round

number of CC games

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000

A
ct

io
n

P
ro

ba
bi

lit
ie

s

Round

average probability of DD
average probability of CD

Figure 2: Fixed and adaptive opponents in the IPD
game: TIT FOR TAT (top), malicious (bottom)

Coordination Game, while purely cooperative, requires that
the agents find out whether they are going to play A or B
jointly – other joint actions yield zero payoff. As the results
show, the advice signal is sufficient to provide this function-
ality: although there are (almost) equal chances for (A,A)
and (B,B) to be selected as the right equilibrium, all runs
converge to an average payoff of around 9.7 per round and
agent, indicating that the equilibrium selection is always
successful (the small loss of about 0.3 is due to exploration).
So although the advice does not favour either equilibrium
(and is in that sense not very informative) it is sufficient as
agents follow one of the suggestions.

The Game of Chicken is a purely competitive game: Here,
agents learn to play the “safe” solution (S, S) with a fairly
high probability (over 100 runs), but there is also some
probability to play (D, S) or (S, D). This happens because
sometimes both observer and β-WoLF agents get the ad-
vice wrong for reasons inherent to the payoff matrix of the
game: Firstly, the social welfare is the same for (S,S) as
for (D, S)/(S, D) (6) so the advice given will be ambiguous.
Also, the average rewards for S and D are the same for the
agent ((3 + 2)/2 = 2.5 = (4 + 1)/2), so that if no pattern
can be discerned in what the other agent is doing, the agent
has no clear preferences. Therefore, as the advice is initially
identical to the “safe” strategy β approaches one, and there
is very little change in Q-values. However, over time agents
become more and more unsure about advice (as evidenced
by the fluctuations in action probabilities and β values), but

this does not help improve their performance. This shows
how the performance of β-WoLF is often contingent on the
quality of the advice: sometimes the best agents will be able
to do is to resort to the safe solution.

The Stackelberg game, finally, provides a nice illustration
of how β-WoLF agents are capable to use advice following
initiated by others in an opportunistic (yet cooperative) way.
In this game, player 1 has a dominant strategy D, and this
forces player 2 to play L as a best response. This results
in an equilibrium (D, L) with payoffs (2, 1) that is Pareto
dominated by (U,R) with payoffs (3, 2). The advice matrix
for Stackelberg

2 L R
1
U (0.5,0.5) (1,4)
D (3,0) (0,4)

suggests R to agent 2 and (as a best response to this) U
to agent 1. As can be seen from the evolution of joint ac-
tion probabilities and β values, the Pareto efficient solution
(D, R) arises by agent 1 increasing β first and starting to
play U before agent 2 can rely on the advice and start play-
ing R. This shows how cooperation can be achieved even if
the advice signal does not suggest dominant strategies for
both agents (as in the IPD) because β-WoLF allows agents
to take the initiative for cooperation. Quite remarkably, it
is exactly this kind of experiment that fails if we don’t use
k > 0 in the suggested exploration scheme.

Since all the above experiments are essentially “repeated
games” with a single state, we include results obtained with
a two-state, two-player game. In this game, agents play
a PD game in state 1 and a Coordination Game (with a
maximum payoff of 1 for (A,A) and (B,B) and zero payoff
otherwise) in state 2. Figure 4 shows a schematic diagram
that captures the transition probabilities between the two
states and how these are contingent on agents’ joint actions.
As can easily be seen, playing (C, C) in state 1 and (A, A) in
state 2 yields both the highest probability of playing a PD
game in the next step (the Pareto payoff of the PD being
3 as opposed to 1 in the Coordination Game state) and a
high payoff while in state 2. So agents should learn to play
(C, C) in state 1 and (A,A) in state 2.

Unfortunately, convergence to such behaviour can only
be achieved with much random exploration at the begin-
ning of the game (referred to as “additional exploration” in
the plot). In our experiments, we added 800 rounds (!) of
such additional exploration, and this was necessary for the
following reason: If both players act randomly, there is a
0.8×0.25+0.2×0.25 probability for the next round to be a
PD game, and a probability of 0.8×0.75+0.2×0.75 for the
next game to be a Coordination Game. As a result of this,
agents play a PD game only in 25% of all exploration iter-
ations, and if they act randomly, (C, C) will only be played
in 1/16 of those. It is therefore not surprising that they
may not be able to converge to the right β values unless
they have time to learn appropriate Q-values. While the
additional exploration solves the problem for this example,
there is a more general issue here that points at a limitation
of the β-WoLF algorithm, namely that it is contingent on
learning the right Q-values for all action-value tables before
making decisions regarding whether to follow advice or not.
This is because (for any choice of γ that makes future payoffs
non-negligible) Q-values can increase a lot over time, and,
quite naturally, the values of those actions preferred initially
(before the agent has enough information to reason about
advice) will rise disproportionately in many situations. This

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

Round

number of AA games
average player payoff per round

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

A
ct

io
n

P
ro

ba
bi

lit
ie

s
&

 B
et

a
V

al
ue

s

Round

average beta value
average probability of DS
average probability of SD
average probability of DD
average probability of SS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

A
ct

io
n

P
ro

ba
bi

lit
ie

s

Round

average probability of DR
average probability of UR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

B
et

a
V

al
ue

s

Round

average beta value row player
average beta value column player

Figure 3: β-WoLF in other games: Coordination
Game (top), Game of Chicken (middle) and Stack-
elberg (bottom)

effect of own actions on Q-value quantities is one of the ma-
jor problems that have to be dealt with in building β-WoLF
agents (in fact, it was the motivation for choosing a fairly
low γ value of 0.6 in all our experiments to limit this problem
by at least bounding the range of potential Q-values).

4. CONCLUSION
In this paper, we have presented a novel MARL algorithm

that enables agents to process advice regarding mutually

1:PD 2:CG

if(A,A) 0.2 else 0.8if(C,C) 0.8 else 0.2
if(C,C) 0.2 else 0.8

if(A,A) 0.8 else 0.2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ct

io
n

P
ro

ba
bi

lit
ie

s

Round

average probability of CC (state 1)
average probability of CC (state 1), additional exploration

probability of AA (state 2)
probability of AA (state 2), additional exploration

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

B
et

a
V

al
ue

s

Round

Figure 4: Two-state game: schematic transition dia-
gram (top) and β-WoLF self-play performance (bot-
tom)

beneficial behaviour in stochastic games and to decide au-
tonomously whether or not to follow this advice based on
an assessment of whether it is (i) useful in terms of indi-
vidual expected utility maximisation and (ii) being followed
by other agents. The experimental evaluation that we have
reported on showed that the β-WoLF algorithm is able to
generate optimally coordinated behaviour in a number of
scenarios in which achieving this is a highly non-trivial task
for MARL algorithms, and that it allows agents to use ad-
ditional information about globally optimal behaviour effec-
tively for this purpose.

This comes at the price of increased computational com-
plexity: Agents have to maintain an individual reward, a
collective reward learning, and n individual advice action-
value tables, and they have to compute the expected utilities
of all resulting policies in each step.

Beyond this obvious disadvantage, the advice-taking
heuristic rests on a number of strong assumptions: Firstly,
we need to be able to describe the optimal social strategy
as a convex combination of the advice-based and reward-
based strategies using a single weight β that applies to all
opponents in all states. Although we might in principle in-
troduce different weights for each state and opponent, this
would of course further increase the complexity of the al-
gorithm. Moreover, the β-update procedure requires that
(i) its optimal value is “reachable” using the given step size
δβ , and (ii) intermediate update steps do not lead to local
minima for which the advice-taking criterion fails and β is
not increased further. Furthermore, games are conceivable
in which the opponents are moving toward less beneficial
policies although the “distance” criterion seems to apply
throughout the process. In particular, this can happen in
games with more than two players if the total Euclidean
distance to the advice policy is decreasing, but individual
agents are actually moving away from it with detrimental
effects for the β-WoLF-learner(s). Another problem that
became obvious through our experiments is that successful
use of advice is contingent on appropriate exploration and
Q-update. Finally, agents need to be informed about the

advice signals received by other agents and the advice must
be useful in itself (as we have seen in some cases above, such
advice is not always easy to provide).

However, many of these problems are alleviated by the
fact that if all else fails, β-WoLF agents will resort to us-
ing their individual reward WoLF-PHC learning module and
learn a simple best-response strategy. This ensures that even
if we cannot do any better than algorithms such as WoLF-
PHC, our additional machinery does not jeopardise the per-
formance guarantees of a communication-free MARL.

In the future, we would like to establish formal properties
of the algorithm, especially in terms of performance guar-
antees for cases of “recovery” from the adverse effects of
following advice while malicious agents are trying to bene-
fit from unilaterally cooperative behaviour. Also, we would
like to gain a deeper understanding of the workings of the
β-WoLF algorithms in larger, multi-player and multi-state
games. Finally, the work presented here only constitutes a
first step toward exploiting more complex forms of commu-
nication for the development of advanced MARL algorithms
in situations in which communication may be unreliable.

5. REFERENCES
[1] M. Bowling. Convergence and no-regret in multiagent

learning. In Advances in Neural Information
Processing Systems 17, pages 209–216, 2005.

[2] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136:215–250, 2002.

[3] Y.-H. Chang and L. P. Kaelbling. Playing is believing:
The Role of Beliefs in Multi-Agent Learning. In
Advances in Neural Information Processing Systems
14, 2001.

[4] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Collected Papers from the AAAI-97
Workshop on Multiagent Learning, pages 13–18.

[5] V. Conitzer and T. Sandholm. AWESOME: A General
Multiagent Learning Algorithm that Converges in
Self-Play and Learns a Best Response Against
Stationary Opponents. In Proceedings of ICML-03,
pages 83–90, Washington, DC, USA, 2003.

[6] D. Fudenberg and J. Tirole. Game Theory. The MIT
Press, Cambridge, MA, 1991.

[7] A. Greenwald and K. Hall. Correlated q-learning. In
Proceedings of ICML-03, pages 242–249, Washington,
DC, 2003.

[8] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proceedings of ICML-98, pages 242–250, July 1998.

[9] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
ICML-94, pages 157–163, New Brunswick, NJ, 1994.

[10] M. L. Puterman. Markov Decision Problems. John
Wiley & Sons, New York, NY, 1994.

[11] Y. Shoham, R. Powers, and T. Grenager. Multi-agent
reinforcement learning: a critical survey. Technical
report, Stanford University, 2003.

[12] R. Sutton and A. Barto. Reinforcement Learning. An
Introduction. The MIT Press, Cambridge, MA, 1998.

[13] K. Tumer and D. H. Wolpert. Collective Intelligence
and Braess’ Paradox. In Proceedings of AAAI-00,
pages 104–109, Austin, TX, 2000.

[14] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

