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ABSTRACT
This paper proposes the β-WoLF algorithm for multiagent
reinforcement learning (MARL) that uses an additional “ad-
vice” signal to inform agents about mutually beneficial forms
of behaviour. β-WoLF is an extension of the WoLF-PHC
algorithm that allows agents to assess whether the advice
obtained through this additional reward signal is (i) useful
for the learning agent itself and (ii) currently being followed
by other agents in the system. We report on experimental
results obtained with this novel algorithm which indicate
that it enables cooperation in scenarios in which the need
to defend oneself against exploitation results in poor coor-
dination using existing MARL algorithms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems
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1. INTRODUCTION
In recent years, the problem of designing multiagent rein-

forcement learning (MARL) algorithms has received much
attention (see [1, 3] for overviews) due to its challenging
nature. As opposed to the single-agent case [4] (where the
environment exhibits a stationary behaviour) MARL adds
an element of non-stationarity to the original learning prob-
lem since opponents may be adaptive themselves, i.e. their
future strategy may be any function of the history of previ-
ous system behaviour.

In this paper, we argue that communication about certain
properties of agent behaviour can be used to tackle some
of the fundamental problems of MARL algorithms, and as
a first step toward exploiting this basic idea, we consider
stochastic games in which an additional “advice” signal is
available to agents that provides feedback about optimal
joint actions. We present a novel algorithm called β-WoLF
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based on WoLF-PHC [1] that enables to autonomously de-
cide whether and to which degree they want to follow that
advice based on two simple criteria: (1) advice will only be
followed if it yields payoffs that are at least as high as an
individually rational strategy (rationality), and (2) advice
will only be followed if other agents are also following it
(mutuality).

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the β-WoLF algorithm, section 3 reports
on experimental results and section 4 concludes.

2. THE β-WoLF ALGORITHM
We use the framework of stochastic games (SGs) [2]

and extend it with additional reward signals that represent
an information source external to the stochastic game it-
self. For this, we define n-player stochastic games with ad-
vice 〈n, S, A1, . . . , An, T, R1, . . . Rn, W1, . . . , Wn〉 with states
S, agent action sets Ai (resulting in a joint action space
A = ×n

i=1Ai), transition model T , individual real-valued
reward functions Ri and real-valued individual advice func-
tions Wi : S ×A → R for each agent i. We assume that the
agents’ goal is to learn a stationary (potentially stochastic)
policy πi : S × Ai → [0 : 1] that will maximise expected,
discounted future payoff in terms of Ri alone, i.e. not taking
Wi into account – in other words, obtaining advice does
not directly affect the agent’s performance. This distin-
guishes our approach from work on the Collective Intelli-
gence (COIN) framework [5]: we focus on respecting agent
autonomy rather than attempting to design individual agent
reward functions from a birds-eye point of view.

The way SGs with advice work is as follows: Agents ob-
serve state s ∈ S, execute action ai ∈ Ai. Based on the
resulting joint action a = (a1, . . . , an) ∈ A and distribu-
tion {T (s, a, s′)|s′ ∈ S} the successor state s′ is determined.
Agent i receives its reward Ri(s, a) and the advice signals
Wj(s, a) for all agents j ∈ {1, . . . , n}.1 and the next itera-
tion is initiated.

β-WoLF essentially consists of a number of WoLF-PHC
learning “modules” that learn optimal strategies for differ-
ent sub-problems and a criterion for coordinating how these
components are integrated by the agent to yield a single
policy. More specifically, a β-WoLF-agent maintains the
following data structures:

1. The individual reward learner: A WoLF-PHC learn-
ing algorithm used for maximising individual rewards,
using a Q-table [6] Q(s, ai), updated using rewards
Ri(s, ai) for ai ∈ Ai, and evolving a policy πi(s, ai).

2. The collective reward learner: A Q-table is maintained
for values Q′(s, a) where a ∈ A and updated using the

1We justify below why this is necessary.



standard Q-update rule given rewards Ri(s, a) as in
Q, to learn how useful joint actions are for the agent
considering individual rewards Ri(s, a) as in Q.

3. n individual advice learners: One WoLF-PHC per
agent j (including i itself) to simulate j’s learning
process if it followed the external advice Wi (rather
than its actual reward). We denote these Q-tables by
Vj(s, aj) for aj ∈ Aj using update equation

Vj(s, aj)← (1 − α)Vj (s, aj) + α(Wj(s, aj) + γ max
a′

j

Vj(s
′, a′

j))

and the resulting advice-based strategy by ρj(s, aj).
2

4. Using advice factor β ∈ [0 : 1] and an advice learning
rate δβ ∈ (0 : 1] policy σi(s, ai) is updated using

σi(s, ai) = (1 − β)πi(s, ai) + βρi(s, ai)

adjusting β according to the following criterion:

β ←

8

>

>

<

>

>

:

min{1, β + δβ} if
P

a

Q

j ρj(s, aj)Q′(s, a) >
P

ai
πi(s, ai)Q(s, ai)

and d|σ̄−i(s)− ρ−i(s)|/dt < 0

max{0, β − δβ} else

Here σ̄−i is the average (posterior) long-term strategy
of the remaining agents maintained and updated in the
same way as π̄i in normal WoLF-PHC.

5. If
P

a

Q

j
ρj(s, aj)Q

′(s, a) >
P

ai
πi(s, ai)Q(s, ai), act

according to ρi for k iterations with probability ǫ/2
(for some ǫ ∈ (0 : 1]) and randomly with probability
ǫ/2. Else, choose a random action with probability ǫ.
With probability 1 − ǫ behave according to σi.

We discuss each step one by one: First, using normal WoLF-
PHC learning, agent i updates tables Q and Q′ (whose dif-
ference is that Q′ learns estimates for joint, rather than
individual actions) and adapts its (individual) strategy πi

while updating long-term average strategies π̄i/σ̄−i. Next,
a purely advice-based WoLF-PHC learning process is sim-
ulated for all agents using tables Vj and individual agent
actions aj . The respective strategies ρj will learn to be-
have optimally “as if” the advice was the actual reward.
The actual policy σi for agent i is a convex combination of
the reward-based (individual) strategy πi and the advice-
based strategy ρi controlled by the advice factor β. To
determine whether following advice is better than apply-
ing some locally optimal strategy, we compare the expected
utility Q′(s, a) for agent i under joint action a consider-
ing the joint action probability resulting from

Q

j
ρ(s, aj)

compared to the expected utility of its individually ratio-
nal strategy πi that has been evolved disregarding advice
completely.3 To determine whether others are also follow-
ing the advice, we constantly check whether the distance
between the average opponent policy and the advice-based
policy |σ̄−i(s) − ρ−i(s)| is decreasing over time, i.e. if the
other agents are “approaching” the behaviour that is op-
timal according to the advice signal. In the simplest case
(which we assume in our experiments below) checking this
so-called distance criterion can be done by verifying whether
the current value of this distance is smaller than its imme-
diate predecessor. If both conditions apply, β is increased,
and otherwise decreased while making sure that its value is
bounded by 0 and 1. Thereby, the advice learning rate δβ

2While this requires knowledge of all Wj signals by i each
advice learner is only concerned with its own actions.
3Note that it is this inequality that necessitates maintaining
an additional Q-table Q′ for joint action values.

serves to provide some “inertia” in the process of adapting
the degree to which advice is taken into account. Finally,
as the criteria for rationality and mutuality of advice taking
only verify whether others are following the advice, there
is nothing that would ensure that some agent initiates this
kind of behaviour if it is beneficial. Therefore, we require
that with half the probability ǫ that is used for ǫ-greedy ex-
ploration, the agent follows a purely advice-led strategy for
k steps if the advice is beneficial (using the same criterion
as above).

3. EXPERIMENTAL RESULTS
We have evaluated the algorithm extensively in a number

of two-player games out of which we can only report on
results with Iterated Prisoner’s Dilemma (IPD) games here.
The calculation of advice was based on the social welfare
R1(s, (a1, a2))+R2(s, (a1, a2)) of each joint action, such that
the “advice giver” acts as a “passive” RL agent and learns
action values Qg(s, a) for the global reward of joint action a
in state s using ordinary Q-learning. To compute the advice
given to the two agents, let

qi(s, a) =
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a′

i, a−i))
P

ai∈Ai
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a′

i
, a−i))

if
P

ai∈Ai
Qg(s, (ai, a−i)) − mina′

i
Qg(s, (a

′
i, a−i)) > 0 and

qi(s, a) = 1

|Ai|
else. This calculates the “relative coopera-

tiveness” of each agent i compared to the most harmful ac-
tion i might have performed (we use a−i to refer to the joint
action of all agents but i). With this, we can can calculate
the advice for each agent as Wi(s, a) = qi(s, a)Qg(s, a). We
present results regarding joint action probabilities that re-
sult from the σ-distributions of the two agents (rather than
observed joint action frequencies or average payoffs) to ig-
nore the effects of exploration4, and average over 100 re-
peated simulations5; when referring to joint actions (X, Y )
we assume that the β-WoLF agent is agent 1 (i.e. plays X).
For a single run, the results of β-WoLF in a self-play situa-
tion are shown in the top part of figure 1: initially, the agents
learn the equilibrium strategy (D, D), but the β-value (here
shown for one of the two agents only) exhibits occasional
“spikes” representing attempts to achieve joint advice fol-
lowing. Eventually the agents succeed in coordinating their
attempts and very quickly switch to the Pareto efficient ac-
tion (C, C) and while occasional deviation from it (due to
exploration) implies that its probability is below one, the
agents behave cooperatively most of the time. While we can-
not give any guarantees for when this switching will occur, in
our experiments all 100 simulations converged to an average
probability (C, C)-probability of 1 within 5000 rounds.

Beyond self-play, we evaluated the performance of β-
WoLF against other types of (fixed and adaptive) opponents.
We ran IPD simulations in which the algorithm has to play
against an ALL D (always defects), an ALL C (always coop-
erates), a TIT FOR TAT, and a “malicious” agent (behaves
like β-WoLF for 1500 rounds and then switches to ALL D).
Convergence to playing the best response D with probabil-
ity 1 is achieved against ALL C and ALL D within little
more than 40 rounds over 100 simulations on the average
(not shown for lack of space), we have to be a bit more
careful about TIT FOR TAT: Here, the β-WoLF agent can-
not represent the opponent’s strategy (as it is not merely a

4keeping in mind that the cost of ǫ-greedy exploration would
have to be subtracted from the alleged cumulative payoff
5For all reported “convergence” results standard deviation
between runs converged to zero.
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Figure 1: Self-play: single run (top), averaged over
100 runs (bottom)

probability distribution), but as the plot shows (which de-
picts the number of games out of 100 that have converged
to (C,C) with probability > 0.9) over 90% of all games con-
verge to mutual cooperation. This is an important result
which underlines that communicated advice has the capac-
ity to act as a “gold standard” regardless of whether agents
can explicitly model their opponents. Results with the ma-
licious agent show that β-WoLF is able to recover from ex-
cessive reliance on advice: while being exploited initially
(probability of (C, D)), our agent later abandons the advice
and switches to best-response behaviour. Unfortunately this
may take very long in some cases – as the long average con-
vergence time for 100 simulations indicates. This is due to
the fact that (1) Q-tables have converged to (numerically)
fairly high values by the time the malicious agent switches
to D, (2) the learning rate has decreased by that time and
(3) average strategies take very long to adapt to the “mis-
conduct” at this stage.

4. CONCLUSION
We presented a MARL algorithm for processing advice

regarding mutually beneficial behaviour and for to deciding
autonomously whether or not to follow. Our experimental
evaluation shows that this algorithm generates optimally co-
ordinated behaviour in an example game in which achieving
this is a highly non-trivial task for MARL algorithms.

This comes at the price of increased computational com-
plexity. Also, advice-following will only work under certain,
fairly strong, assumptions (such as, e.g., that the globably
optimal behaviour can be respresented as a convex combina-
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Figure 2: TIT FOR TAT (top), malicious (bottom)

tion of individually rational strategies and the strategy sug-
gested by the advice signal). However, this shortcoming is
alleviated by the fact that if all else fails, β-WoLF agents will
resort to using their individual reward WoLF-PHC learn-
ing module and learn a simple best-response strategy – our
additional machinery does not jeopardise the performance
guarantees of a communication-free MARL.

In the future, we would like to establish formal properties
of the algorithm (especially in terms of performance guar-
antees), and to exploit more complex forms of (potentially
unreliable) communication for the development of advanced
MARL algorithms.
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