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ABSTRACT
Web-based collaborative systems, where most computation
is performed by human collectives, have distinctly different
requirements from traditional workflow orchestration sys-
tems, as humans have to be mobilised to perform compu-
tations and the system has to adapt to their collective be-
haviour at runtime. In this paper, we present a social or-
chestration system called SmartOrch, which has been de-
signed specifically for collective adaptive systems in which
human participation is at the core of the overall distributed
computation. SmartOrch provides a flexible and customis-
able workflow composition framework that has multi-level
optimisation capabilities. These features allow us to man-
age the uncertainty that collective adaptive systems need to
deal with in a principled way.

We demonstrate the benefits of SmartOrch with simula-
tion experiments in a ridesharing domain. Our experiments
show that SmartOrch is able to respond flexibly to variation
in collective human behaviour, and to adapt to observed be-
haviour at different levels. This is accomplished by learning
how to propose and route human-based tasks, how to al-
locate computational resources when managing these tasks,
and how to adapt the overall interaction model of the plat-
form based on past performance. By proposing novel, solid
engineering principles for these kinds of systems, SmartOrch
addresses shortcomings of previous work that mostly focused
on application-specific, non-adaptive solutions.

Keywords
Distributed systems, workflow orchestration, workflow com-
position, workflow optimisation, collective adaptive systems

1. INTRODUCTION
In recent years, a new type of massive-scale distributed

system has emerged in which most computation is performed
by humans, e.g. social computing platforms such as Face-
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book and Twitter, collaborative content creation systems
such as Wikipedia, crowdsourcing systems like Yahoo! An-
swers, human-based computation platforms such as Amazon
Mechanical Turk, and sharing economy applications such as
Uber and AirBnB. While specific programming frameworks
have been proposed for such applications or to facilitate the
use of existing platforms to enable a specific “social compu-
tation” [1, 3, 9, 10], the design of generic platforms to or-
chestrate human-centric collaborative computation has not
received much attention in the literature.

Viewing social orchestration as the process of organising
the interactions of humans with a computational platform
and with each other, while at the same time managing the
computational resources used by the system to support this
organisation of activity, we obtain a set of requirements that
are different from those of workflow management and enact-
ment systems that are mostly “machine-centric” [2, 4, 19].

In order to identify these requirements, we need to observe
the nature of operations performed by humans and machine
peers, interacting over a digital (normally Web-based) plat-
form. The overall lifecycle of performing a collaborative
activity generally comprises (some or all of) the following
stages: peer discovery, which identifies human peers that
might be interested in contributing to a social computation,
task composition, which generates possible (computational
or physical) tasks these peers might perform individually or
jointly, task allocation, which produces a concrete assign-
ment of peers to activities (and may involve processes such
as contracting or negotiation), task execution, which tracks
the performance of these tasks, and feedback, which allows
peers to report on their experiences, e.g. rate each other.

The social orchestration process managed by a platform
deals with organising all this activity using computational
means and through appropriate interaction with the users.
It should be able to cater for differences in the specific re-
quirements of each scenario while providing sufficient struc-
ture to support all stages of the above lifecycle. To concep-
tualise this, we distinguish between three vertical layers of
computation involved in the horizontal lifecycle stages:

(1) The process layer, at which primitive computational
processing steps are located (e.g. authentication, matchmak-
ing). These cannot be broken down into separately orches-
trated sub-steps, and need to be allocated computational
resources per platform job that corresponds to a process in-
stance to be executed. They can be performed by internal
components of the platform, or delegated to external third-
party services (e.g. a reputation service).



(2) The orchestration workflow layer, which embeds a con-
crete control flow of jobs enacted by a specific “manager”
component, typically one for each of the stages of the lifecy-
cle described above. For example, a task composition man-
ager might obtain a request from a peer to generate suitable
tasks to achieve a certain objective, and handle contacting
the right peers, performing matchmaking operations, and
consulting reputation information to rank the results.

(3) The user interaction workflow layer, finally, enacts the
interaction model that governs the way users will work with
the platform, providing the input/output interfaces to hu-
mans participating in the computation. For example, the
negotiation process in a group activity might involve all par-
ticipants in a task agreeing to it explicitly, and the process
of tracking this agreement would be handled by a negotia-
tion manager accepting agree/reject messages to update the
status of the task. It is at this layer that managers expose
APIs toward client applications, whereas the lower-level lay-
ers only involve APIs used either by platform components
or internally used third-party services.

While this kind of horizontal and vertical composition of
distributed processes has a lot in common with general dis-
tributed workflow orchestration systems, the paradigm of
social computation brings new challenges with it that call
for (1) more flexibility in terms of workflow composition and
(2) adaptability required to be able to respond to observed
behaviour. As pointed out in [3, 13, 17], once human activ-
ity needs to be orchestrated, it is difficult to predict patterns
of use, quantity, timescales and quality of contributions at
design time. This implies that we need to be able to flexibly
extend and modify the structure of the system to respond
to emergent collective human behaviour.

Consider, for example, the simple case of Web search,
which provides a single-step, stateless user interaction work-
flow repeated millions of times every day. If users experi-
ence difficulty in finding what they are looking for, they will
resort to using other applications, e.g. a crowdsourcing plat-
form that utilises human input, whenever automated search
does not produce good results. The disconnect between the
two systems involved implies that the search engine provider
does not receive feedback from users to modify the calcula-
tion of search results, or utilise crowdsourcing to comple-
ment them. Conversely, the crowdsourcing platform is un-
aware of the original queries posed to the search engine,
and hence cannot mobilise its users at the time of the ini-
tial query. This simple example illustrates a much broader
problem: Without the capability to compose more complex
human-centric workflows and to adapt them to collective be-
haviour at runtime based on data observed across different
parts of the overall environment, it is hard to manage such
systems effectively.

A formal framework that allows general user interaction
models, described as multi-agent protocols with different
roles and activities, to be mapped onto orchestration ar-
chitectures in ways that permit composition of complex ap-
plication workflows has been previously described in [15].
Figure 1 shows an example of such a protocol, where a peer
role p interacts with an orchestrator role o, traversing the
different stages of the social computation lifecycle. In this
team task protocol, peers can advertise capabilities C which
the Task Composition Manager can use to generate a set of
possible solutions T , i.e. tasks satisfying the description D
contained in a task request. The participants of any pro-
posed task t ∈ T can agree or refuse to participate in it.
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Figure 1: Team task protocol, adapted from [15].
Swimlanes represent peer roles, boxes their internal
processing steps, and diamonds choice points.

Once all of them agree (a process tracked by the Negotia-
tion Manager) they can start providing updates on the ex-
ecution status of the task to the Task Execution Manager
and feedback to the Reputation Manager. Note that any
of these processing steps and interactions can be managed
by human and/or machine peers. For example, updates on
execution status could come from a sensor, or, conversely,
suggestions of possible tasks could come from human users
in response to a task request.

The workflow composition capabilities of SmartOrch fol-
lows this model but are implemented using a single orches-
trator to manage not just interactions with user clients con-
tributing to different segments of the protocol at the same
time, but also to run different protocols in parallel, reusing
manager components where possible, and managing system
resources in an integrated fashion.

In this paper, we present a novel social orchestration archi-
tecture called SmartOrch (Smart Architecture for Human-
Centric Task Orchestration) based on above model. Its over-
all purpose is to manage a workflow, involving the perfor-
mance of human and machine activities, to support the com-
pletion of domain tasks (e.g. getting a question answered,
organising a meeting, renting a property), which may in-
clude steps that take place outside the platform in the real
world. The contributions of these peers are enacted through
API-level interactions with data resources exposed by the
architecture, and whose state is handled by managers, each
of which is a machine peer responsible for different parts
of the workflow. The orchestration manager is a specific
peer that allocates backend computational resources to the
operations that need to be performed for the overall orches-
tration of such a workflow. It iterates over an asynchronous
event processing loop, serving platform jobs maintained on
dynamic process queues, one for every type of interaction
with the system.

The key contribution of SmartOrch is that it enables adap-
tation to collective human behaviour and computational per-
formance at all levels of the architecture through a uniform
treatment of data collected by the system. At the level of
individual processes, optimisation can be performed to take
account of observed user behaviour in order to achieve the
global design objective of the system, e.g. maximise uptake
or resource sharing. At the orchestration level, the ways in
which computational resources are allocated to different pro-
cesses in terms of scheduling, parallelisation, and delegation,



can be optimised based on observed human and machine
performance. At the interaction level, different patterns
that determine how the platform interacts with its users
can be selected dynamically based on requirements and per-
formance measures, and be deployed in parallel on the plat-
form. At all three levels, information about past operations
is tracked through provenance traces and computation pro-
filing information. This information can be inspected and
analysed by the maintainer of the platform, its users, and
automated internal optimiser modules. This allows for flex-
ible adaptation of an existing system configuration by hu-
mans and algorithmic procedures that perform automated
adaptations. We believe that this multi-level adaptability
is vital for collective adaptive systems, where overall per-
formance largely depends on potentially volatile collective
human behaviour.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the design of the SmartOrch architecture.
Section 3 provides examples of adaptation at the process,
orchestration, and user interaction level, and simulation ex-
periments that demonstrate the impact of such optimisa-
tions in an example scenario. In section 4 we review related
work, and section 5 concludes.

2. THE SMARTORCH ARCHITECTURE
SmartOrch has been developed as a purely event-driven,

asynchronous framework that follows a fully RESTful de-
sign. At the level of backend processing, the orchestrator
manages individual platform jobs by maintaining dynamic
queues, one for every type of platform job. Jobs can be cre-
ated due to a client-side interaction, they can be triggered as
a side-effect of managers’ activities (e.g. to synchronise dif-
ferent resources), or can be delegated to third-party services
(e.g. for authentication). Events corresponding to steps in
the user interaction workflows as perceived by the clients of
the system are communicated to SmartOrch through REST
APIs, as are internal events resulting from the operation
of managers and other third-party services described be-
low. SmartOrch responds to any such event by generat-
ing a sequence of jobs that need to be executed. Example
jobs that occur as a result of almost all client-centric events
are authentication, access control, and document validation.
These sequences of jobs give rise to the orchestration work-
flows executed whenever calls to exposed APIs are received.

Developers can either use predefined jobs from a job repos-
itory to construct such workflows, or customise the response
of SmartOrch further by writing custom jobs for a specific
application. Distributed state is maintained through a set
of exposed resources (documents), such as task requests that
correspond to requests from users for a new task, tasks corre-
sponding to composed tasks, and task records that are used
to record execution updates. These documents are fully ver-
sioned, access-controlled, and linked to each other to reflect
the lifecycle of their creation (essentially, each of them corre-
sponds to a “message” arc in Figure 1 and contains the data
corresponding to the content of the respective message).

In our implementation, peer profiles (used for peer dis-
covery), reputation information (used in the feedback stage),
and provenance tracking (used for optimisation, as explained
in Section 3) are handled by services running on remote
servers, while task composition, negotiation, and task ex-
ecution management are handled by manager components
running on the orchestration server. However, SmartOrch is

Figure 2: The Architecture of SmartOrch

indifferent to the physical distribution of these services.

2.1 Architecture structure
Figure 2 shows a high-level overview of SmartOrch and

the main interactions between its components. Core com-
ponents are shown inside the dashed box, and supporting
services are shown at the bottom of the figure. Interactions
between core components and client applications as well as
supporting services are via client and platform REST APIs,
where only the client interfaces are exposed for external use,
whereas the platform APIs require privileges only provided
to components used by the SmartOrch platform internally.

Creation of a specific orchestration system starts with the
developer defining individual platform jobs from scratch or
fetching existing implementations already published on a
Job Repository and binding them so that different user inter-
action workflows can be created. Such jobs will typically be
wrapped in orchestration workflows capturing a response to
an API call. Consider the example of handling an AGREE(t)
call during negotiation, which indicates that a peer p wants
to join task t: An example orchestration workflow for this
might involve authenticating p on the platform and check-
ing whether p has write access to the document representing
t, validating the format and contents of the data p is send-
ing, recording p’s agreement by updating t, and recording
provenance information for this operation, which logs which
peer (including machine peers) performed what operation
on which data structure.

This particular workflow is handled by the Negotiation
Manager, and contains calls to the Peer Manager (authen-
tication, access control) and the Provenance Manager. If
p is the final peer to agree to the task, the agreement will
also trigger a call to the Task Execution Manager, as a new
task record for t must be created. In other words, individ-
ual orchestration workflows are connected with each other to
enact the user interaction workflow defined by client APIs.

The implementations of these orchestration workflows are
stored in the User Interaction Workflow Manager, which is
also used to select different workflows in different situations
in the process of optimisation (cf. Section 3). This manager
passes them on to the Execution Engine, which, in turn, con-
tains the Workflow Executor and the Scheduler. The Work-
flow Executor receives orchestration workflows, dispatches



the jobs they contain to the correct queues, and handles
dependencies between them (for example locking a specific
data resource while it is being updated). The Scheduler
determines which pending job should be executed next by
applying a prioritisation schedule on the different queues for
jobs to be served. For example, simple document inspection
jobs (e.g. when a user wants to display the list of current
tasks on their client app) can be given higher priority than
provenance recording, which is not time-critical, in order to
ensure responsive behaviour of user interfaces.

The component that adds genuinely novel functionality to
SmartOrch is the Optimiser, which extracts patterns from
past operation of the platform that can be used to optimise
the system at the process, orchestration, and user inter-
action workflow layers. To this end, it continually fetches
provenance data and updates so-called orchestration pat-
terns that describe what has been learned so far. The inter-
actions between the Optimiser, the orchestration patterns,
and other components of the architecture are further ex-
plained in detail in Section 3.1. The output of the Opti-
miser are decisions used as input for the User Interaction
Workflow Manager and the Execution Engine.

The boxes at the bottom of Figure 2 represent manager
components that support and use the orchestration backend,
but whose internal structure is not controlled by this back-
end. Some of these, e.g. the Task Composition Manager, Ne-
gotiation Manager, and Task Execution Manager, are imple-
mented using the SmartOrch Execution Engine, while others
are third-party services interacting with SmartOrch only at
API level. In the implementation of our example scenar-
ios, these are: the Peer Manager, Provenance Manager, and
Reputation Manager. The Peer Manager handles user regis-
tration and thus maintains profiles for human users, includ-
ing credentials and scenario-specific profiles used for peer
discovery. Any machine peers using platform APIs are also
registered with the Peer Manager. The Provenance Manager
we use is implemented using a remote PROV [12] server,
and plays a key role in recording all operations at the level
of accessing and manipulating data resources. It serves as
the fundamental data source for the Optimiser’s adaptation
and optimisation functions, providing a uniform way of cap-
turing observed system operation. Finally, the Reputation
Manager is responsible for computing numerical reputation
scores for each human user based on feedback supplied by
participants in tasks that user was involved in. This can be
used, for example, to rank the tasks proposed by the Task
Composition Manager, or, as we will show below, to make
decisions regarding which user interaction workflow to use
for different sub-collectives of users in the system.

3. ADAPTATION CAPABILITIES
The most distinctive feature of SmartOrch is the way in

which it embeds adaptation capabilities in the orchestration
system. These enable it to respond to variations and changes
in observed collective behaviour in order to ensure achieve-
ment of global system objectives and to optimise computa-
tional performance of the platform. While data-driven opti-
misation can in principle be performed in any orchestration
architecture, by linking a component that has the capability
to modify decisions at the processing, orchestration work-
flow, and user interaction workflow levels, and which op-
erates on a single data source (provenance data describing
all operations in the system) we enable a much more per-

Figure 3: The SmartOrch Optimizer

vasive and principled capacity for runtime adaptation that
is suitable for collective adaptive systems, where we expect
variability in system behaviour to be the rule.

3.1 Optimiser
The Optimiser follows the general design shown in Fig-

ure 3: Provenance data, describing all operations in terms
of peers, resources, and activities performed on these re-
sources, is continually gathered by the Provenance Manager
and can be queried by the platform developer or an auto-
mated Optimiser process. For example, we might want to
know how soon users stop using the platform after they have
not found tasks that match their requests for a while. Op-
timisation algorithms (in a very broad sense of the term)
make decisions based on the results of these queries, by us-
ing them as parameters that inform their decisions. In our
example, if we find out that most users leave after three con-
secutive unsuccessful attempts, we should give those users
priority over use of some resource (e.g. allocate them to a
car in a ridesharing domain) after they have been unlucky
twice. However, to discover such patterns, a background
learning process must run in the background, which involves
the use of learning patterns, defining what data patterns are
queried to obtain learning data, and application of learning
algorithms to extract pertinent orchestration patterns. In
the above example, a suitable learning pattern might be

(REQUEST→ NO SOLUTION)n → REQUEST→ SOLUTION

checking for all sequences where no solution was identified
repeatedly n times, and then another request was posted by
the same user later (using the notation of Figure 1). The
orchestration pattern extracted from this might be

(REQUEST→ NO SOLUTION)3 → ⊥

where ⊥ indicates no match against a future REQUEST. When
these forms of background learning from data are applied,
optimisation algorithms would query the library of extracted
orchestration patterns, rather than the original provenance
data directly.

It is worth noting that we use the notion of “orchestration
pattern” very liberally here. For example, it could apply to
a recurring pattern in a user interaction workflow as in the
example above, to regularities in the performance of certain
platform jobs (e.g. because of persistently high loads of spe-
cific services), and to many other similar cases. By and large,
however, we are mostly interested in optimisations that aim
at adapting to collective human behaviour.



3.2 Simulation Experiments
In this section, we present three different optimisations,

one for each of the three layers of operation, performed by
SmartOrch when it is used for a ridesharing application. The
purpose of these experiments is to demonstrate the breadth
of optimisation opportunities SmartOrch offers, and the ben-
efits these can bring in terms of managing collective adaptive
systems. The actual algorithms we use are deliberately kept
simple, and do not constitute novel contributions.

A ridesharing application aims to support people that are
willing to share a ride. In our simulation scenario, we con-
sider users who want to go from location O to location D
within the next 24 hours. Each of them is characterised by
role (driver or commuter), gender (male or female), and age
(young or adult). The aim of the system is to compute a
global ride allocation, a solution that groups people into cars
given their requirements and preferences.

The pickup location O, drop-off location D, and time of
the ride are requirements of the users that impose hard con-
straints on the allocation proposed by the system. This in-
formation is elicited from the users during the peer discovery
stage. During task composition, SmartOrch proposes only
solutions to users that satisfy their requirements.

However, each user also has preferences about whom to
travel with, i.e., they have hedonic preferences. We assume
a setting in which young users want to travel only with other
young users, adults only with adults, female users only with
other females, and male users who are indifferent toward
female and male users. This information is not directly
elicited, so the system has to learn these hidden preferences
and understand which type of implicit constraints they im-
pose. In particular, to provide a solution that satisfies the
users, the system needs to determine whether they would
accept solutions that violate these preferences, i.e. whether
they constitute hard or soft constraints in practice.

Assume that SmartOrch proposes a unique allocationA to
users computed by a heuristic that maximises the sum of the
utility of all the drivers, i.e., the drivers’ social welfare (called
“driver welfare” below). Formally, the utility u(A, d) of a
driver d given allocationA is u(A, d) = k−k/|S(A, d)| where
k is the cost of the ride and S(A, d) is the set of users allo-
cated in the car of driver d, assuming that the cost is spread
equally among all passengers. The total welfare of all drivers
D can be trivially computed as U(A) =

∑
d∈D u(A, d). The

heuristic the system uses is shown in Algorithm 1: In line

Algorithm 1 : Greedy task allocation algorithm

1: Input: a vector of drivers D, a vector of commutersM
2: Output: set of teams T that compose allocation A
3: initialize (T,D)

4: C ←
∑|D|
i=1 capacity (Di)

5: whileM 6= 0 and
∑|D|
i=1(|Ti| − 1) < C do

6: 〈τ,m〉 ← findmax (T,M)
7: M←M\ {m}
8: Tτ ← Tτ ∪ {m}
9: end while
10: return T

3, a set of teams T with one driver d ∈ D in each team is
created. A team τ ∈ T represents a group of people that
shares the same car in the solution proposed by the system.
In line 4, given the capacity of the car of each driver Di,
the system computes the total capacity C. The next steps
identify the pair of commuter m and team τ that maximises
the gain in the driver welfare by using the function find-

max(T,M) (Line 6), remove commuter m from the set of
commuters that still need to be allocated (Line 7), and add
commuter m to team τ (Line 8). These steps are repeated
until no more commuters need to be allocated or the overall
capacity C has been reached (Line 5). By randomly select-
ing the order with which users with identical requirements
and preferences join a team, the algorithm can be proven
to be fair in expectation. That is, in expectation, identical
users achieve the same utility in the limit.

Focusing on this greedy task allocation heuristic, we demon-
strate the benefits of SmartOrch adaptation at the process,
orchestration, and user interaction workflow levels.

Process layer. At the level of processes, we consider
the example introduced in Section 3.1, whereby, after sev-
eral iterations, the system learns that users drop out of the
system when they are not matched to a car three times in
a row. Given this, we introduce priorities in Algorithm 1
for users, which depend on how many times they have not
been matched in a row. This results in a drastic reduction
of the dropout rate: In a simple case with 100 commuters
and 16 drivers offering 3 seats each, the user dropout proba-

bility is around 14% (i.e.,
(
100−3×16

100

)3
) after three iterations

with Algorithm 1, and 0 when user priorities are introduced.
SmartOrch allows for this adaptation by modifying the job
of computing tasks within the Composition Manager with-
out reengineering the system. We simply store an additional
attribute for every user in the Peer Manager that represents
the number k of consecutive unsuccessful ride requests, and
replace the findmax function by a procedure that sorts com-
muters by their priority, which increases with k.

Orchestration layer. To consider an example of adap-
tation at the orchestration level, we look at the performance
of task composition in terms of driver welfare U(A). Note
that, given an allocation A, we can compute the highest
value of this quantity U∗(A) that can be achieved when all
users accept the proposed rides. However, we aim to use the
actual welfare U(A) achieved given actually accepted rides
to evaluate the system, since this is a better measure of the
quality of the solutions proposed. To evaluate user satisfac-
tion we consider the two following measures: First, given an
allocation A, we consider the number of people N(A) who
accept rides and affect U(A), compared to the maximum
number of people C that could be sharing a ride (including
drivers) in the best case, i.e., C = C + |D|. Further, we also
consider the difference between the number of users N∗(A)
to whom the system proposes a ride and the number of users
that actually accept it, i.e., N∗(A)−N(A). Evaluating this
difference is important because rejection of a ride can be
interpreted as a failure of the system to understand user
preferences. Finally, we measure computation time t of the
algorithm to assess how much the efficiency of the system is
improved. We compare the performance of SmartOrch with
a system G that simply applies Algorithm 1. In what fol-
lows, we denote with AS and AG the allocations computed
by SmartOrch and G, respectively.

In our example, the Optimiser knows that there are four
subsets of users that should be considered separately in or-
der to avoid ride rejections: young female users, adult fe-
male users, young male users, and adult male users. Given
this, SmartOrch can dynamically learn to decompose the
input set of the task composition problem into four non-
overlapping subsets of users (who would not ride with each
other anyway), and to run four instances of the algorithm in



parallel, one for each subset of users, on a separate Composi-
tion Manager process. As a result, we expect to observe that
U(AS) ≥ U(AG) even if U∗(AS) ≤ U∗(AG). Indeed, by dis-
covering users’ preferences and the type of constraints they
impose, SmartOrch can avoid proposing rides that would be
rejected. This guarantees that U(AS) ≥ U(AG). However,
since no constraint related to preferences affects the allo-
cation AG, U∗(AG) corresponds to the upper bound of the
driver welfare that can be achieved by any system, and thus,
typically U∗(AS) < U∗(AG).

Given the heuristic used in this example, the observa-
tions about the driver welfare trivially imply that N(AS) ≥
N(AG) and N∗(AS)−N(AS) ≤ N∗(AG)−N(AG). That is,
users are more satisfied with solutions proposed by Smart-
Orch than with the ones proposed by system G because
with the former system (i) more users are allocated and (ii)
fewer users reject the solution proposed to them. Note that
SmartOrch can flexibly decide how many instances of the
algorithm to run in parallel and opt for the solution that,
e.g., reduces the computational time of the algorithm with-
out obtaining a driver welfare lower than that of G.

Before discussing the advantages of SmartOrch in terms
of user interaction workflow, we present the results of the
simulation of the example described above. The users con-
sidered in the simulation are randomly generated such that
each of them is either male of female with 50% probability,
young or adult with 50% probability, and are a driver with
20% probability. For the sake of simplicity, we assume all
the users want to go from location O to location D during
the same time interval. We consider different population
sizes (50, 100, 500, 1000, 3000, 5000, and 10000 users) and
the results we present are averaged over 100 instances for
each population size.

First, we analyse the driver welfare shown in Figure 4
where U(AG) and U(AS) are compared to the upper bound
U∗(AG). The figure shows only results for populations up to
1000 users. It is easy to observe that the welfare achieved by
SmartOrch is higher than the one achieved by G. We obtain
similar results for every population size. Indeed, the aver-
age ratio between actual driver welfare and the upper bound,
where the average is taken over all different population sizes,
is 0.4777 for system G and 0.9829 for SmartOrch, with a
standard deviation of 0.0037 and 0.0080 respectively. Note
that, in this example, U∗(AS) = U(AS) and thus U(AS)
in Figure 4 represents also the maximum welfare achievable
when constraints due to preferences are taken into account.
Thus, U∗(AG)− U(AS) indicates how much preferences af-
fect the maximum achievable welfare achievable. In our ex-
ample, this effect is not significant.

We can make similar observations regarding user satisfac-
tion. Figure 5 shows the number of users who accept the
ride proposed by G and SmartOrch compared to C, i.e. the
maximum number of people that can take part in a ride. We
observe that N(AS) ≥ N(AG), i.e. the users that accept the
ride with allocation AS are no less than the ones that accept
it with AG. Moreover, more users reject the ride proposed
by system G. In particular, N∗(AG) − N(AG) > 0 (light
blue area), while N∗(AS) = N(AS) (empty yellow area).

Finally, we discuss results for computation time of the al-
gorithm shown in Table 1. Here, we compare the situation
in which a system (like system G) always runs a single in-
stance of the algorithm with that where execution of the
algorithm is always parallelised whenever this reduces the
expected number of rejected rides. When the system has

Figure 4: Drivers welfare

Figure 5: Number of allocated users
population size tG tparallel

50 3.85 · 102 18.82 · 102

100 10.69 · 102 20.74 · 102

500 16.90 · 103 3.49 · 103

1000 65.18 · 103 4.51 · 103

3000 59.79 · 104 1.14 · 104

5000 157.75 · 104 1.87 · 104

7000 316.16 · 104 2.59 · 104

10000 636.87 · 104 3.61 · 104

Table 1: Computation times (in seconds) of system
G (tG) and SmartOrch (tparallel) for different popu-
lation sizes

500 users or more, the parallel approach requires less time
than the one used by G. This is not the case when there
are no more than 100 users. However, since SmartOrch can
dynamically adapt to specific situations, if it identifies that
the computation time of the algorithm is more critical than,
e.g., driver welfare, it can still decide to behave exactly as
G, i.e., SmartOrch can decide how to run the algorithm by
imposing tS = min{tG, tparallel}. This highlights the flexi-
bility of SmartOrch in making decisions regarding trade-offs
between performance depending on the situation in hand.

User interaction workflow layer. In the final set of
simulation experiments, we focus on optimisations at the
user interaction workflow level, specifically, when observ-
ing unreliable users. In the ridesharing scenario, in order
to reach agreement, users have to accept a proposed ride
in the task allocation stage. This requires a lot of explicit
communication between the system and the users, and may
lead to delays if users take some time to accept a ride. If
we assume that each user i has a reputation ri, we could re-



Figure 6: Workflow in which high-reputation users
do not have accept rides explicitly

duce this communication overhead by selecting a threshold
θ and requiring that only users with a reputation below θ
must explicitly accept a ride. The idea is that users with a
sufficiently high reputation are reliable enough to guarantee
that it is unlikely that they will not accept a proposed ride.

Note that the potential loss in driver welfare this could in-
cur is due to users who do not take the (explicitly accepted
or not) ride proposed by the system, even if their require-
ments and preferences are satisfied, e.g. due to last-minute
changes of plan that implicitly affects their reliability (and
reputation). A user interaction workflow model that cap-
tures these two alternatives is shown in Figure 6.

We measure the impact of this more flexible workflow
model on driver welfare as follows: We assign a reputation
level ri ∼ U(1, 100) to each user i. Since we assume that
users requirements and preferences are satisfied, the proba-
bility pi that a user i will not take the ride depends only on
exogenous factors and thus on ri. We model this probability
as pi = (100−ri)/100, i.e., the complement of the reputation
level. Moreover, we assume that if the user explicitly accepts
a ride, her probability to “fail” to complete it correctly is re-
duced by 90%. For example, if ri = 20, then pi = 80% when
i does not explicitly accept the ride and pi = 8% when i ac-
cepts the ride. In our simulation, we use these probabilities
to randomly select the users that do not take a proposed
ride. For every population size and instance considered in
the previous simulation, we present results averaged over
100 random selections. Driver welfare is computed by con-
sidering only users that actually perform a ride. Table 2
shows the proportion of driver welfare obtained compared
to the maximally achievable value (achieved when θ = 100
and every user has to explicitly accept the ride) for different
threshold values.

size θ = 0 θ = 25 θ = 50 θ = 75 θ = 100

50 0.0438 0.4807 0.7500 0.9111 1
100 0.0444 0.4913 0.7598 0.9156 1
500 0.0472 0.5073 0.7753 0.9230 1
1000 0.0475 0.5088 0.7762 0.9233 1
3000 0.0476 0.5109 0.7778 0.9240 1

Table 2: Driver welfare for different population sizes
and reputation threshold values

These results demonstrate the advantages of an adaptive
system that performs optimisation at the user interaction
workflow level, i.e. the flexibility of the system in deciding
the threshold level depending on the particular situation it is
currently exposed to. Indeed, SmartOrch can set the value
of θ as required to trade off driver welfare against the number
of messages exchanged in the system to orchestrate rides.

4. RELATED WORK
Recently, there has been much interest in systems that

perform collective computation with significant human in-

volvement, resulting of a growing body of research on hu-
man computation [8], social machines [6], human-agent col-
lectives [7], and social collective intelligence [11]. Somewhat
surprisingly, relatively little work within this space has fo-
cused on orchestration frameworks, let alone on optimisation
and adaptation capabilities for such orchestration.

Programming frameworks for human computation such as
TurKit [9], Jabberwocky [1], and AutoMan [3] provide high-
level language support for“programming with people”, using
systems like Amazon Mechanical Turk or social networking
platforms like Facebook as their backends. The proposed
languages allow some flexibility, for example continuing the
computation until a desired confidence level is achieved, but
do not offer any facilities for composing complex multi-user
workflows and optimising these over time.

CrowdLang [10] offers somewhat more extensive workflow
composition functionality based on a number of generic col-
laborative patterns (e.g., iterative, contest, collection, divide-
and-conquer), yet these are limited to crowdsourcing and do
not aim to be used for other types of social computations.
The same is true of the more comprehensive orchestration
architecture proposed by Tranquillini et al [17], even though
this allows for much more flexibility in the definition and
enactment of custom task workflows.

Another line of work concerns specification languages for
social computation-like systems. Murray-Rust et al [14] use
a declarative process calculus for describing coordination
protocols to capture collaborative processes among “social
compute units”, programmable abstractions of loosely cou-
pled human teams. Their protocols are very similar to the
models of user interaction workflows we presented in Sec-
tion 1 (e.g. the one shown in Figure 1), and the experi-
ments they conduct in a collaborative software development
application scenario exhibit some adaptation dynamics in
the ways in which the workflow is organised (the collective
changes structure over time based on different events). How-
ever, their system is presented as a simulation prototype
rather than as a reusable architecture, and the adaptations
they describe are hardcoded into the system by the devel-
oper, not extracted from observed behavioural patterns.

Singh [16] presents “Local State Transfer” (LoST) as an
architectural style for collaborative systems. He proposes
a similar agent protocol-oriented description language for
distributed process management and communication, which
shares our focus on a data-centric, RESTful framework for
communication and synchronisation. However, his frame-
work does not map the formal enactment model onto a con-
crete computational orchestration architecture.

Beyond the area of social computation, there is of course a
substantial body of work on general workflow management
and service composition platforms [5], where the systems
that share most characteristics with the kind of architec-
tures required in our domains are those used for scientific
collaboration such as Kepler [2], Triana [4], and Taverna [19].
Here, there is extensive work on adaptive workflow orches-
tration and optimisation, which, however, mostly focuses on
scheduling jobs of a workflow over a set of resources.

For example, Wen et al [18] propose a method to parti-
tion scientific workflows over federated Clouds to meet secu-
rity and reliability requirements, while minimising monetary
cost. The authors of [20] introduce a method to transform
the structure of a workflow such that the monetary cost of
executing a workflow on a public cloud is minimised while
providing performance guarantees.



These orchestration workflow optimisations are similar to
some of the examples we present. However, they do not
address the processing and user interaction workflow layers,
the performance of which heavily depends on collective hu-
man behaviour, and has not been the focus of their systems.

5. CONCLUSIONS
In this paper, we have presented SmartOrch, a novel or-

chestration architecture for collective adaptive systems in
which most computation is performed by human users.

The design of this architecture is heavily influenced by its
human-centric focus in several ways: By implementing an
asynchronous, event-driven orchestration loop, SmartOrch is
able to cope with different user interaction workflows in par-
allel and with users engaging in different stages of the social
computation lifecycle concurrently. These users will gener-
ally not exhibit the regularity of behaviour one might expect
from computational processes. By applying a purely REST-
ful approach to managing state and shared data resources,
SmartOrch exploits the standard architecture of the Web.
This makes it easy to integrate different external services,
build client apps for SmartOrch-based systems using sim-
ple, language- and platform-independent APIs, and exploit
the scalability and robustness inherent to the infrastructure
of the Web. By embedding adaptation and optimisation
features at all levels of social orchestration, SmartOrch is
capable of improving global performance based on contin-
ual observation of collective behaviour, both in terms of the
computational characteristics of the system and the quality
of social computations its orchestration activities result in.

To our knowledge, SmartOrch is the first orchestration
system that combines these features and provides a frame-
work generic enough to implement and combine a broad va-
riety of social computation applications. Beyond the ex-
amples provided in the paper, SmartOrch has been used
to implement further scenarios like meeting scheduling and
chat-based group activity creation. We are currently work-
ing on extending its optimisation capabilities with domain-
independent learning and resource allocation algorithms.
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