
SmartSociety – A Platform for Collaborative
People-Machine Computation

Ognjen Scekic∗, Daniele Miorandi†, Tommaso Schiavinotto†, Dimitrios I. Diochnos‡, Alethia Hume§,
Ronald Chenu-Abente§, Hong-Linh Truong∗, Michael Rovatsos‡, Iacopo Carreras†, Schahram Dustdar∗ and

Fausto Giunchiglia§
∗ Distributed Systems Group, Vienna University of Technology, Austria

Email: oscekic | truong | dustdar @dsg.tuwien.ac.at
† U-Hopper, Trento, Italy

Email: daniele.miorandi | tommaso.schiavinotto | iacopo.carreras @u-hopper.com
‡ Centre for Intelligent Systems and their Applications, University of Edinburgh, UK

Email: d.diochnos | mrovatso @inf.ed.ac.uk
§ Department of Information and Communication Technology, University of Trento, Italy

Email: hume | chenu | fausto @disi.unitn.it

Abstract—Society is moving towards a socio-technical ecosys-
tem in which physical and virtual dimensions of life are inter-
twined and where people interactions ever more take place with
or are mediated by machines. Hybrid Diversity-aware Collective
Adaptive Systems (HDA-CAS) is a new generation of socio-
technical systems where humans and machines synergetically
complement each other and operate collectively to achieve their
goals. HDA-CAS introduce the fundamental properties of hy-
bridity and collectiveness, hiding from the users the complexities
associated with managing the collaboration and coordination
of machine and human computing elements. In this paper we
present an HDA-CAS system called SmartSociety, supporting
computations with hybrid human/machine collectives. We de-
scribe the platform’s architecture and functionality, validate it on
two real-world scenarios involving human and machine elements
and present a performance evaluation.

I. INTRODUCTION

Over the last few years we have been witnessing a rapidly
evolving process of merging of devices and software services
with the human society fabric. We are moving more and more
towards a world where the physical and virtual dimensions
of life become deeply entangled and human interactions ever
more often take place with or are mediated by machines.
These changes are opening up the possibilities for novel
forms of interaction, collaboration and organization of labor.
In [1] we analyzed this emerging phenomenon and named
it social collective intelligence (SCI). Its power resides in
the combination of contributions coming from both humans
(individuals as well as collectives) and computers. Humans
bring in their competences, knowledge, and skills together with
networks of social relationships and understanding of social
context, while computer elements provide unmatched ability
to transfer information over large distances, to store data for
long time and to quickly perform well-defined computations
at scale. The core idea of SCI is not new. Similar motivation
led to the design of different systems, described under the
terms: CSCW, Social Computing, Crowdsourcing, and Social
Machines. However, most existing systems limit themselves
to using computers to support and orchestrate purely human

collaborations, usually based on patterns of work that can be
predictably modeled before the execution [2]. On the other
hand, the concept of social collective intelligence implies blur-
ring the line between human and machine computing elements,
and considering them under a generic term of peers – entities
that provide different functionalities under different contexts,
provisioned under a service model [3]; participating in collec-
tives – persistent or short-lived teams of peers, representing
the principal entity performing the computation (task). Peers
and collectives embody the two fundamental properties of the
SCI vision: hybridity and collectiveness, offered as inherent
features of these emerging systems. Systems supporting these
properties perform tasks and computations transparently to the
user by assembling or provisioning appropriate collectives of
peers that will perform the task in a collaborative fashion.
We call the whole class of these emerging socio-technical
systems HDA-CAS1 [1]. While the general idea of SCI looks
appealing at an abstract level, from an engineering perspective
building such systems is a challenging task, requiring solutions
for problems that go well beyond the traditional coordination
and communication problems into the areas of social norms,
privacy and ethics [4]. Furthermore, as people and machines
are expected to work seamlessly in various collectives and
contexts, questions on acceptable means of controlling these
collaborations inevitably arise. Both hard/direct (programming,
workflows) and soft/indirect means (reputation, incentives)
approaches are applicable, but bring along associated technical
complexities, drawbacks and ethical issues.

In this paper we present the SmartSociety Platform2, a
novel HDA-CAS, able to effectively support a wide spectrum
of collaboration scenarios present in today’s social computing:
from ‘open-call’ to ‘on-demand’ collaborations, featuring an
advanced coordination and privacy management. Concretely,
the contribution of this paper is the design of the platform—
description of its functionality, architecture and core com-

1 Hybrid Diversity-Aware Collective Adaptive Systems, see http://focas.eu/
2 The platform is being developed in the context of the EU FP7 research

project ‘SmartSociety’ URL:http://www.smart-society-project.eu/

http://focas.eu/
http://www.smart-society-project.eu/

ponents. The paper demonstrates how the presented design
tackles the fundamental HDA-CAS research challenges of
hybridity and collectiveness on two real-world case-studies
employing a prototype implementation of the platform.

The paper is organized as follows: In Section II we
present the intended usage context and design requirements
of the platform. In Section III we present the architecture and
functionality of the platform. In Section IV we functionally
evaluate the platform’s support of hybridity and collectiveness
through two real-world case studies. In SectionV we report on
the implementation and experimental performance evaluation.
Related work is described in Section VI. Finally, Section VII
concludes the paper and points out directions for future activ-
ities.

II. DESIGN REQUIREMENTS & USAGE CONTEXT

The SmartSociety platform (platform) is a software frame-
work intended for use by:

1) Users – external human clients or applications who need
a complex collaborative human-machine task performed;

2) Peers – human or machine entities providing Human/Web
Services.

The platform acts as intermediary between the two user types,
trying to align their interests and provide them the following
functionalities:

• For users: a) task execution environment; and b) work-
force management functionality.

• For peers: c) a collaboration environment; and d) fair
working conditions.

While providing these functionalities can be considered as the
set of basic design requirements (DR1a–d) for the platform,
the distinguishing, novel design requirements assume provid-
ing them under the HDA-CAS principles of hybridity (DR2)
and collectiveness (DR3). Throughout the paper, we show how
the presented design responds to these requirements.

The intended platform usage context foresees human peers
registering their profiles with the platform and enlisting for
performing different professional activities. The platform uses
this data for locating and engaging peers into different collab-
orative efforts. Peer engagement is transparent with respect
to the working conditions (DR1d): peers know in advance
the conditions under which they are required to provide their
services, how the effort will be monitored/assessed, as well as
what kind of compensation (or penalty) awaits them. In case
of human peers, the platform asks for an explicit approval,
enabling the peer engagement under a short-term contractual
relationship. In case of a software peer, the services are
contracted under conventional SLAs. Once the platform has
located appropriate peers for performing a task (computation),
a collective is formed. A collective is composed of a team
of peers along with a collaborative environment assembled
for performing a specific task. The collaborative environment
(DR1c) consists of a set of software communication and
coordination tools. For example, the platform is able to set
up a predefined virtual communication infrastructure for the
collective members, provide access to a shared data repository

(e.g., Dropbox folder) [3], and plan/orchestrate the necessary
activities to be performed by the collective’s members.

The complete collective lifecycle is managed by the plat-
form (DR1b) in a context of a SmartSociety platform appli-
cation. The applications are encapsulating application-specific
business logic that also determines in which way collectives are
formed. During the task execution various incentives [5] may
be applied for stimulating the collective’s effort and retaining
the peers. After finishing the task, collectives may be dissolved,
and the reputation and other metrics of the member peers
are updated (DR1d). The application-specific business logic
also determines what is the accepted quality of result (QoR),
different adaptation and elasticity policies, metrics and other
runtime execution parameters. Furthermore, the application
specifies one of the predefined orchestration and negotiation
patterns that the platform enforces during the execution.

Platform users submit task requests to be executed to the
SmartSociety platform (DR1a). A user application communi-
cates with the corresponding platform application. For exam-
ple, as shown in Fig. 1, a mobile user application SmartShare
contacts the corresponding SmartSociety platform application.
Note that the same person can at the same time play the role
both of a user and of a peer of a platform application— for
example, in a ride-sharing application, a person requests a ride
from the platform (as a user), but then takes a part in the
ride (e.g., as a driver) and thus plays the role of the peer by
providing a service for the platform. Similarly, a same person
can participate as a peer in different collectives, in the same
or different platform applications concurrently, represented by
different peer profiles.

III. PLATFORM ARCHITECTURE & FUNCTIONALITY

A. Overview

A simplified, high-level view of the SmartSociety platform
architecture is presented in Fig. 1. The architecture is designed
to be fully distributed and scalable. The rectangle boxes
represent the key platform components that may be deployed
distributively, as all components expose (private or public)
RESTful APIs. The principal component-interoperability chan-
nels are denoted with double-headed arrows in the figure.
Communication with peers is additionally supported via pop-
ular commercial protocols to allow a broader integration with
existing communication software and allow easier inclusion of
peers into the platform.

User applications contact the platform through the REST
API component. All incoming user requests are served by this
module that verifies their correctness and dispatches them to
the appropriate platform application that will be processing
and responding to them. The platform applications run sand-
boxed in appropriate containers (see Docker3), allowing the
applications to be deployed at different (virtual) machines.
The first time a platform application is run the container will
take care of informing the PeerManager (PM) component
to set up (register) appropriate application, peer and collec-
tive profiles required by the application. The container will
also request from the PeerManager a set of permissions for
accessing and manipulating sensitive private data of peers.

3https://www.docker.com/

https://www.docker.com/

SmartSociety Platform

users

e.g.,
AskSmartSociety!

User App

Provenance
Service

Incentive
Service

SM
A

R
T
C

O
M

M

id
dl

ew
ar

e

Android cloud msg.
Facebook connector
Twitter connector
Dropbox connector
Email connector
REST APIs

Pe
e

rM
an

ag
er

SmartSociety Application

O
rc

he
st

ra
ti

o
n

M
an

a
ge

r

JVM

SmartSociety
Program

Programming
model

application containers

peers

Knowledge Bases (KBs)

peer
profiles

privacy
policies

comm.
channels

R
ES

T
A

P
I

e.g.,
SmartShare

User App

Fig. 1: SmartSociety platform users and architecture.

The PeerManager can shortly be described as the central
data-store of the platform, managing all peer and application
information, and allowing privacy-aware access and sharing of
the data among platform components. In practice, the platform
application is a Java application making use of SmartSociety
platform’s programming libraries, allowing the developer to
execute collective-based tasks on the platform. The developer
is offered a complete programming model4 and appropriate
high-level language constructs. Each platform application fea-
tures a dedicated Orchestration Manager (OM) component.
The OM is the component in charge of preparing and orches-
trating collaborative activities among peers. Performing these
functionalities requires the OM to heavily use the PeerManager
and SMARTCOM Middleware components.

B. Principal Components

Peer Manager (PM): provides the central data store that
maintains and manages information about human- or machine-
based peers in a privacy-preserving framework. Concretely, the
PM provides the following functionalities: a) A mechanism
to manage peers’ information (using profiles) that accounts for
heterogeneous peers; b) A semantic peer search functionality;
and c) A model for enforcing advanced privacy mechanisms.

To effectively manage peer profiles across different appli-
cations, the PM builds upon the notion of an entity-centric
semantic enhanced model [6] that defines an extensible set of
entity schemas providing the templates for an attribute-based
representation of peers’ characteristics. Concrete meaning of
schemas is specified by mapping single elements (i.e., types of
entities, names of attributes and their values) to concepts from
an underlying ontology that is also part of the same model,
thus allowing reasoning over peer’s properties as well as the
implementation of semantic-enhanced services. The basic set

4Description of the programming model is currently in submission prepa-
ration and can be made available to the reviewers upon request.

Name:	 Mario	 Rossi;	 Marito;	 	
Gender:	 Male	
Date	 of	 Birth:	 1991-‐05-‐12	
Address:	 Via	 Piave	 5,	 Trento	
Age:	 33	
Posi6on:	 46.064199,	 11.127730	
Smoker:	 No	
Communica6on	 channels:	
[<email,	 mr123@gmail.com>,	
<cellphone,	 +39	 3480070998>]	
...	

Peer’s Information Peer’s Profiles

Ride	 Sharing	 profile	

User:	 Mario	 Rossi	
Age	 range:	 between	 25	 and	 35	 	
City:	 Trento	
Smoker:	 No	
Communica6on	 channels:	 [<cell	 phone>]	

AskSmartSociety!	 profile	

User:	 Marito	
City:	 Trento	
Communica6on	 channels:	 [<cell	 phone>]	

Fig. 2: Simplified example of a peer with multiple profiles.
Each profile is revealed to a different application.

of schemas/templates can be easily extended to support new
application-specific attributes, allowing an efficient definition
of new peer types. The adaptability is provided by enabling
search and information sharing services to work over the new
types in a way that is transparent to the rest of the platform.

By leveraging semantic search approaches described in
[7] the PM’s search functionality allows locating relevant
peers and collectives based on a set of attribute constraints
even when they are described using different terminology in
their profiles. Queries can specify arbitrarily complex semantic
operations and constraints on attributes. The semantical search
is one of the enabling factors for the overall hybridity property
of the platform (DR2), because it allows interpreting queries
originating from human peers into a tractable set of constraints,
thereby alleviating semantical differences which are inherently
present when dealing with humans.

Additionally, the PM defines a privacy protection model
that pays special attention to different privacy principles en-
acted by the EU Data Protection Directive 95/46/EC5 affecting

5http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31995L0046

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31995L0046

storage and processing of personal data. Specifically, the
model defines privacy regulations and considerations described
in [8], such as purpose specification and binding, that are
enforced upon search queries. This means that in different
usage-contexts the peer profiles will reveal only partial or
(semantically) obfuscated information, used for replying to
specific information requests, thus enforcing data minimiza-
tion. Fig. 2 shows an simplified example of a human peer
subscribed to participate in two platform applications: a ride-
sharing application and a Q&A application, revealing different
information (by using different profiles) in each case. This
allows, e.g., a human peer to reveal its age range (as a
way to obfuscate the exact date of birth) when participating
in a ride-sharing collective, while the same information is
completely hidden when participating in a question-answering
collective. More details about the definition, internal design
and implementation of the PM can be found here6.

Communication Middleware: SMARTCOM is a commu-
nication and virtualization middleware used as the primary
means of communication between the platform and the peers.
Although tightly integrated into the platform, SMARTCOM
is designed as an independent component that can be used
with similar HDA-CAS platforms. Apart from performing
functionalities typical of conventional service buses (e.g., mes-
sage transformation, routing, encryption, authentication) the
distinguishing novelty of SMARTCOM is its native support
for virtualizing collectives [3]:

• Hiding the complexity of communication with a dynamic
collective as a whole and passing of instructions from the
HDA-CAS platform to it, making collective a first-class,
programmable entity (DR3);

• Making the human vs. machine distinction transparent
during the communication, by interpreting/translating the
messages for different peer types and delivering them
to peers through different communication channels/pro-
tocols, in accordance with peer’s preferences (DR2);

• Allowing concurrent participation of peers in different
collectives concurrently, acting as a different service units
with different SLA, delivery and privacy policies.

A peer can use different communication channels to inter-
act with SMARTCOM, e.g., a human peer can communicate
with the platform via email and Twitter interchangeably, re-
ceive task descriptions and track progress through a web appli-
cation, and communicate with other peers within the collective
through a dedicated mobile app. Human peers can make use
of software peers in the collective, serving as collaborative and
utility tools. For example, a software service like Doodle can
be used to agree upon participation times, or Dropbox as a
common repository for performed tasks. The developer also
uses SMARTCOM indirectly through the provided language
constructs to implement the communication with collectives
from the SmartSociety program during the execution phase.
PeerManager stores for SMARTCOM the communication and
availability preferences of human peers. Before contacting
a peer, SMARTCOM checks with the PeerManager possible
communication preferences in the peer’s profile. Peers can
specify: a) preferred communication channels (protocol) (e.g.,
through email or via Twitter); b) availability time-slots (e.g.,

6http://www.smart-society-project.eu/publications/deliverables/D_4_2

working days 09-17h); c) prevent being contacted by specific
peers/collectives. When a message needs to be dispatched to
a peer, the SMARTCOM takes these preferences automatically
into the account, transparently to the rest of the platform. More
details on the internal design and functionality of SMART-
COM, as well as the source code is available here7.

Orchestration Manager (OM): The OM is responsible for
the following functionalities:

• Composition – Generating possible execution plans to
meet user-set constraints and optimize wanted parameters.

• Negotiation – Coordinating the negotiation process among
human peers leading to the overall agreement and accep-
tance of the suggested execution plan by the participating
peers.

• Execution – Monitoring the execution and enforcing the
selected execution plan during the runtime.

OM works in an asynchronous loop reacting to events of
new (users’) task requests and (peers’) participation requests.
Upon each event the OM computes the set of feasible exe-
cution plans associated with one or more requests. Plans are
constructed by solving a high-level combinatorial or constraint
satisfaction problem, as described here8.

For example, in a ridesharing scenario, drivers post the
rides (task requests) and passengers express participation re-
quests (also a type of task requests). Although passengers may
be flexible to take a ride in different time intervals during the
day, an execution plan can contain only a time interval fitting
every participant in the riding collective associated with that
plan. Other constraints may need to be considered, such as
the capacity of the vehicle; or trade-offs, such as choosing
between the optimal route vs. the route that accommodates
more participants. In such a setting, each new/altered request
can lead to creation/invalidation of multiple plans— e.g., a
number of passengers who submitted a participation request
could not have been part of any execution plan until a driver
submitted the matching ride offer. When the ride is finally
offered, multiple possible plans are generated with different
passenger collectives, and only one plan can (in this case)
be ultimately realized. Furthermore, if at any time the driver
cancels the ride, all plans need to be invalidated. Conversely,
a matching ride offer by another driver creates a different set
of execution plans, opening up a possibility for passengers
to concurrently consider and negotiate about participating in
different rides, but ultimately choosing only one. Once new
plans are generated, the participants in the tentative collec-
tives associated with each plan can negotiate among them,
thereby deciding whether the candidate solution provided by
the OM is acceptable and the actual execution can take place.
OM mediates the negotiation process based on the selected
negotiation protocol (pattern). The descriptions of currently
supported negotiation protocols are provided here8. The OM
uses SMARTCOM to enact the negotiation protocol, i.e., to
dispatch appropriate offers, accepts, rejects and agreed plans.

Both the negotiation process and the execution process
are orchestrated using the linked data approach8, which uses
shared artifacts (documents) with unique IDs and versioning

7http://github.com/tuwiendsg/SmartCom
8http://www.smart-society-project.eu/publications/deliverables/D_6_2

http://www.smart-society-project.eu/publications/deliverables/D_4_2
http://github.com/tuwiendsg/SmartCom
http://www.smart-society-project.eu/publications/deliverables/D_6_2

to trace task requests, plans and status changes of a plan
in execution. Such approach allows storing the state of an
execution, scalability of the entire process, and provenance
generation (Sec. III-C).

The described OM functionalities are fundamental for en-
abling the human-driven collectiveness (DR3), i.e., workflows
where the order of activities is not prescribed (cf. Sec. VI),
but is instead determined at runtime, based on the preferences
and capabilities of the human peers interested in performing
the task.

C. Other Components

The incentive service is an independent component offering
an API for storing new incentive mechanisms and subse-
quently suggesting concrete incentive measures for given peers
based on the analysis of their past behavior. Incentives are
application-specific, and need to be carefully designed follow-
ing a case-study analysis. The design of the component was
based on the research experiences gained by running a case-
study on incentivizing participants in collaborative scientific
platform Zooniverse9 [5]. The service currently supports issu-
ing personalized textual messages to peers, meant to motivate
their participation in the collective effort.

Provenance is defined10 as: “information about entities,
activities, and people involved in producing a piece of data or
thing, which can be used to form assessments about its quality,
reliability or trustworthiness”. Although designed as an inde-
pendent component, in our architecture the Provenance Service
(ProvS) is a component offering a platform-internal server
and service for tracing the data provenance from processes
involving task executions performed by peers. The provenance
traces are stored on ProvS in the graph form [9]. As the same
data gets additionally processed by new peers, possibly in the
context of new task executions, the provenance graphs get
updated. ProvS is a passive component; it requires another
platform component to submit the actions performed on a piece
of data. In our case, the OM uses the ProvS to trace data related
to negotiations and task executions. Any platform component
can invoke the service to query provenance graph, and obtain
specific results on peer reputation or accountability.

IV. FUNCTIONAL EVALUATION

In order to validate the platform’s functionality and test
its ability to support a wide variety of real-world use cases,
we prototyped two SmartSociety platform applications and the
corresponding peer/user applications and ran case-studies with
actual users/peers. The experience gained from running the
two case-studies provided us the feedback information which
led to subsequent design improvements. The two applications
implement the two extremes of the collaborative man-machine
computation spectrum— a design choice made for evaluating
and showcasing the flexibility of the platform.

The first one, called SmartShare is a ride-sharing applica-
tion. In terms of collaboration pattern, SmartShare can be con-
sidered an open-call application. In ‘open-call’ collaborations
tasks are published on the platform, and peers are motivated

9http://www.zooniverse.org/
10W3C Definition: http://www.w3.org/TR/prov-overview/

Fig. 3: Screenshots of the SmartShare user+peer mobile appli-
cation.

to apply and negotiate for taking part in execution of the
task. Typical representatives of ‘open-call’ collaborations are
today’s micro-task and design contest crowdsourcing platforms
[10]. However, they lack advanced composition and negotia-
tion features presented here. The second one, called AskS-
martSociety!, is a collaborative question and answer (Q&A)
service able to combine responses from individuals, collectives
and machines. In terms of collaboration pattern, AskSmartSo-
ciety! can be considered an on-demand application. In ‘on-
demand’ collaborations, for each input task the platform tries
to locate or provision peers/collectives that should be optimally
capable of performing the task with respect to given input
constraints (e.g., [11]).

SmartShare: SmartShare is a ride-sharing application in
which travelers share a vehicle for a trip and split travel
costs such as gas, toll, and parking fees with others that have
compatible itineraries and time schedules. In SmartShare the
platform performs the following functionalities: a) generating
ride plans by matching compatible ride offers and ride requests
(composition); b) providing recommendations to peers based
on their preferences and the reputation of other peers; c)
orchestrating negotiation process among human peers.

On the other hand, human peers are in charge of: d) posting
and searching for rides; e) accepting and withdrawing from
potentially agreed rides as other travelers sign up or better
opportunities arise; f) participating in the ride either as drivers
or as passengers; and g) rating each other after the completion
of the ride.

A single individual can play concurrently the role of both
a platform user (by posting ride requests/offers) and a peer
(by taking a ride). The ride requests and offers are posted
through web or mobile user application interfaces, that play
the role of the joint user+peer application (see Fig. 3). The
request includes information on the date, time and destination,
as well a set of user preferences (e.g., “no smoking during the
ride”). The platform then goes on to mediate the negotiation
process, in which each peer identified in the composed plan is
again contacted over the preferred communication channel in
line with personal privacy settings (cf. Sec. III-B) and asked
to express interest in taking the ride. If all intended peers
provide a confirmation, the ride is fully agreed and execution
can start. However, until all peers have agreed, peers are only
in conditional acceptance, and able to withdraw it at any time.

http://www.zooniverse.org/
http://www.w3.org/TR/prov-overview/

This allows the peers to contend for multiple rides in parallel,
and finally agree to a single one or none. The described
negotiation procedure represents just one possible negotiation
pattern that the platform is able to support. The execution
phase is not actively mediated by the platform, but rather
driven by the collective participating in the ride. Indirect (soft)
techniques are used to control the execution, such as feedback-
based peer reputation and incentives (achievement badges
and encouragement emails, such as in [5]). The reputation
is calculated through the ratings of drivers and passengers
left after the ride, and subsequently used by the OM when
performing the matching.

In the period late 2014–early 2015 a pilot run of the
SmartShare application took place in Israel, involving students
and staff of the Ben Gurion University. The application ac-
cumulated 150 registered users/peers, out of which 84 close
successful ridesharing agreements through the application.
Running this case study allowed us to test the full spectrum
of possible composition and negotiation scenarios in a real-
istic environment (DR3), as well as to improve the design
and application of incentives, provenance and reputation. The
complete case-study of the pilot run can be found here11. The
SmartShare codebase can be accessed here12.

AskSmartSociety!: AskSmartSociety! is a Q&A service
where tasks submitted by the users correspond to natural-
language questions that need to be transparently answered by
hybrid collectives consisting of both humans and/or software
services such as Google or Twitter. Differently than other Q&A
services such as Yahoo! Answers or StackOverflow.com, where
questions are openly posted for peers to respond, AskSmartSo-
ciety! is able to actively (on-demand) locate and engage those
individuals or software services which can be expected to pro-
vide answers of required quality. Quality criteria determine the
composition of the collective, i.e., different service matching
and ranking. For example, if response speed is the preferred
criterion, then aggregated answers from different software-
based peers will be presented to the user. On the other hand,
if human interpretation of the question’s context is required,
or local knowledge, then human peers can filter the responses
from software services, or provide their own answers.

Consider the following scenario: Bob is about to visit Milan
for the first time. He is looking for a nearby restaurant with
a garden, that will be showing the game of his favorite team.
In addition, Bob requires gluten-free meals. The application
is able to respond to such questions by leveraging hybrid
collectives which rely on software services to come up with
a list of restaurants with garden in Bob’s vicinity, but rely
on local human peers to filter out those who have gluten-
free meals and showing games and rank/recommend them.
Answers can be ranked based on the reputation of the peers
or community ranking (similarly to StackOverflow). In some
instances the user issuing the question can select an answer
and provide quality feedback to the peers.

In the current implementation stage, the AskSmartSociety!
application is able to include into answering collectives Google
and Twitter as two machine peers. While Google is accessed

11http://www.smart-society-project.eu/publications/deliverables/D_5_3
12 https://gitlab.com/smartsociety/orchestration. Log into GitLab first with:

user/pass = SmartSocietyReviewer / sm@rts0c13tyr3v13w3r

directly through the proper API endpoint, Twitter is leveraged
through SMARTCOM’s Twitter connector. This allows us to
post tweets with questions and automatically harvest answers
decorated with a specific hashtag. Human peers are accessi-
ble through a dedicated peer Android application interfaced
through SMARTCOM, or indirectly, using the Twitter peer as
mediator.

The work on AskSmartSociety! is still at an early stage,
so no full-scale user study was run. However, experiences
gained from selected users (staff and students of the University
of Trento) allowed us to test assembly and management of
collectives of various levels of hybridity (DR2). The AskS-
martSociety! codebase can be accessed here13. Also a video
showcasing the basic end-to-end functionality is available
here14.

V. PERFORMANCE EVALUATION

A. Prototype Implementation

The platform is comprised of a set of independent com-
ponents implemented in different technologies, communicat-
ing through a set of RESTful APIs. Application Runtime is
implemented as a lightweight Java application based on a
Jetty standalone server that manages and executes the plat-
form applications provided by the developer. It exposes a
RESTful interface that allows the user application to submit
tasks to the platform applications and monitor them. It also
handles calls to other components on behalf of the platform
applications. SMARTCOM’s core is implemented in Java, as
well as the provided adapters that allow the message delivery
over different channels/protocols. SMARTCOM internally uses
Apache Active MQ as an industry-standard message broker.
The Orchestration Manager is implemented as a NodeJS web
application, internally relying on MongoDB for temporary
task storage. Peer Manager consists of a back-end written
in Java using PostgreSQL for storage, and a NodeJS front-
end exposing a higher-level API. Incentive and Provenance
Service are implemented as independent Python/Django web
applications.

The platform supports both multi-instance and multi-tenant
deployment models. Platform components (e.g., OM and
SMARTCOM) can be replicated and partitioned per application
and run in a Docker container, allowing flexible scaling.
Alternatively, a single OM and SMARTCOM instance can
handle multiple compatible platform applications in parallel,
sharing resources and peers.

B. Experimental Evaluation

The platform’s scalability and performance was evaluated
for 1, 5, 10, 20, 50 and 100 SmartSociety platform applica-
tions, simulated as Java worker threads (denoted as ‘Worker’
in Fig.4), sending 1 · 106 messages concurrently, uniformly
distributed to 1, 10, 100, and 1000 peers waiting for messages
and replying to them. Each test run was executed 10 times to
obtain average throughput results. The simulation was made
on a machine with the following specifications: Windows 7
64-bit, Intel Core2 Duo @ 2.53 GHz, 4.00 GB RAM.

13 https://gitlab.com/smartsociety/appruntime. Log into GitLab first with:
user/pass = SmartSocietyReviewer / sm@rts0c13tyr3v13w3r

14https://youtu.be/Jr9z2Coqc6M

http://www.smart-society-project.eu/publications/deliverables/D_5_3
https://gitlab.com/smartsociety/orchestration
https://gitlab.com/smartsociety/appruntime
https://youtu.be/Jr9z2Coqc6M

Figure 4 presents the results of the test runs. The average
throughput remains between 5000 and 3000 msg/sec. The per-
formance decrease with higher amounts of peers is the result
of increased memory requirements rather than computational
complexity. The limiting factor here is the ActiveMQ message
broker used in the SMARTCOM implementation which only
allows for a maximum of approximately 20,000 msg/sec. The
platform has an upper bound of 5,000 msg/sec since each
message is handled multiple times by the broker. This limi-
tation applies to a single SMARTCOM instance, but multiple
instances can be deployed on the platform to balance the load
if needed, sharing the PeerManager access. Communication
performance and peer scalability is thus not expected to
become a concern due to the increased latency of human peers
and variance of response times compared to machine peers.

1 10 100 1000

0

1000

2000

3000

4000

5000

6000

Peers

M
es

sa
ge

s/
se

co
n

d

1 Worker

5 Worker

10 Worker

20 Worker

50 Worker

100 Worker

Fig. 4: Simulated message throughput for [1, 100] platform
applications (denoted as ‘Worker’) communicating bidirection-
ally with [1, 1000] peers concurrently.

Another potentially critical performance bottleneck is the
performance of computationally-expensive composition algo-
rithms or the time-consuming synchronization that is poten-
tially needed during negotiation. To test this, we performed
two experiments designed to examine the robustness and
scalability of the OM in a simulated ride-sharing scenario. In
the experiments, artificial “groups” of size k in a population of
n agents (representing human peers) were created, such that all
the ride requests inside a group would match and the number
of generated plans could be controlled. Up to 10 groups of 6,
9, and 12 agents each were created, were the passenger agents
were twice the size of the number of driver agents in each
group. The OM generated all possible plans in every case,
i.e., (2p− 1) · d, where p/d ∈ {4/2, 6/3, 8/4}, allowing up to
10,200 plans generated in the extreme case.

All the drivers would pick the ride plan with the largest
amount of passengers, and then all the passengers would
simultaneously agree to participate in a ride that they could
potentially agree to. Eventually, in every group the collective
would be formed by one driver and all the passengers. How-
ever, in the last agreement that would arrive to the system, the
agreed ride plan had to be finalized.

In the first experiment (with the described setup) com-
position took on average less than a minute in the case of
120 total agents and negotiation for all 10 groups of the
same case was accomplished in less than 1.5 minutes. In
the second experiment, artificial delays were introduced for
the communication of the agents. This could simulate delays
between the different operations that agents perform in the real
world. The results indicate that when the delay increases by a

factor of 10, the overall lifespan of an agent increases only by a
factor of 3 to 4. Thus there is a good indication that the system
scales well, as communication delays are expected to be much
bigger in a real-world scenario, due to the asynchronous nature
in which humans will process and negotiate on tasks.

VI. RELATED WORK

Due to space constraints here we present an overview
of relevant classes of socio-technical systems, their typical
representatives, and compare their principal features with the
SmartSociety platform. Based on the way the workflow is
abstracted and encoded the existing approaches can be cat-
egorized into three groups: a) programming-level approaches;
b) parallel-computing approaches; and c) process modeling
approaches.

Programming level approaches focus on developing a set
of libraries and language constructs allowing general-purpose
application developers to instantiate and manage tasks to be
performed on socio-technical platforms. Unlike SmartSociety,
the existing systems do not include the design of the crowd
management platform itself, and therefore have to rely on
external (commercial) platforms. The functionality of such
systems is effectively limited by the design of the underlying
platform. Typical examples of such systems are TurKit [12] ,
CrowdDB [13] and AutoMan [14]. TurKit is a library layered
on top of Amazon’s Mechanical Turk offering an execution
model (“crash-and-rerun”) which re-offers the same microtasks
to the crowd until they are performed satisfactorily. The entire
synchronization, task splitting and aggregation is left entirely
to the programmer. On the other hand, and unlike SmartSoci-
ety, the inter-worker synchronization is out of programmer’s
reach. The only constraint that a programmer can specify
is to explicitly prohibit certain workers to participate in the
computations. CrowdDB similarly outsources parts of SQL
queries as mTurk microtasks (e.g., let the crowd provide a
value for a data field or sort data rows). AutoMan integrates
the functionality of crowdsourced multiple-choice question
answering into Scala programming language. The authors
focus on automated management of answering quality. The
answering follows a hardcoded workflow. Synchronization and
aggregation are centrally handled by the AutoMan library. The
solution is of limited scope, targeting the designated labor type.
Neither of the systems allows explicit collective formation, or
hybrid collective composition.

Parallel computing approaches rely on the divide-and-
conquer strategy that divides complex tasks into a set of
subtasks solvable either by machines or humans. Typical
examples include Turkomatic [15] and Jabberwocky. For ex-
ample, Jabberwocky’s [16] ManReduce collaboration model
requires users to break down the task into appropriate map
and reduce steps which can then be performed by a machine
or by a set of humans workers. Hybridity is supported at
the overall workflow level, but individual activities are still
performed by homogeneous teams. In addition, the efficacy
of these systems is restricted to a suitable (e.g., MapReduce-
like) class of parallelizable problems. Also, in practice they
rely on existing crowdsourcing platforms and do not manage
the workforce independently, thereby inheriting all underlying
platform limitations.

The process modeling approaches focus on integrating
human-provided services into workflow systems, allowing
modeling and enactment of workflows comprising both ma-
chine and human-based activities. They are usually designed
as extensions to existing workflow systems, and therefore can
perform certain peer management. The two currently most
advanced systems are CrowdLang [17] and CrowdComputer
[2]. CrowdLang brings in a number of novelties in compar-
ison with the previously described systems, primarily with
respect to the collaboration synthesis and synchronization. It
enables users to (visually) specify a hybrid machine-human
workflow, by combining a number of generic (simple) col-
laborative patterns (e.g., iterative, contest, collection, divide-
and-conquer), and to generate a number of similar workflows
by differently recombining the constituent patterns, in order
to generate a more efficient workflow at runtime. The use of
human workflows also enables indirect encoding of inter-task
dependencies. Even if CrowdLang allows a certain level of
runtime workflow adaptability, it is limited to patterns that
need to be foreseen at design-time. SmartSociety differs from
both of these systems mostly by extending the support for
collaborations spanning from processes known at design-time
to fully human-driven, ad-hoc runtime workflows. CrowdCom-
puter is a platform allowing the users to submit general tasks
to be performed by a hybrid crowd of both web services and
human peers. The tasks are executed following a workflow
encoded in a BPMN-like notation called BPMN4Crowd, and
enacted by the platform. CrowdComputer can be seen as the
platform resembling most closely the functionality offered by
the SmartSociety platform. However, while CrowdComputer
assumes splitting of tasks and assignment of single tasks to in-
dividual workers through different ‘tactics’ (e.g., marketplace,
auction, mailing list) SmartSociety natively supports actively
assembling hybrid collectives to match a task. In addition, by
providing a programming abstraction, SmartSociety offers a
more versatile way of encoding workflows.

VII. CONCLUSION

In this paper we presented SmartSociety – an HDA-CAS
platform supporting collaborative computations performed by
hybrid collectives, composed of software and human-based
services. The platform is able to host user-provided applica-
tions, implementing and managing on their behalf a spectrum
of collaborative patterns, ranging from on-demand to open-
call. Unlike existing solutions, the platform allows executing
runtime/ad-hoc, human-driven workflows. It offers advanced
automated composition of viable execution plans, coordina-
tion of the negotiation process, transparent and multifaceted
virtualization and communication with peers/users via different
protocols, and privacy-aware management of peer/user profiles.
The platform’s design has been influenced by the two presented
real-world case studies, designed to cover the two extremes of
the collaborative spectrum and used to validate the novel HDA-
CAS properties of the platform— hybridity and collectiveness.

Future work will see the completion and tighter integration
of all project-developed components into a unified frame-
work. In addition, it foresees the development of cognate
collaborative platform applications under the broadly defined
‘tourism’ subject area, which should help validate and improve
the current design. Talks are currently under way to test the

two existing applications in real, unsupervised environments
in municipalities of Northern Italy and Israel.

ACKNOWLEDGMENT

This work is supported by the EU FP7 SmartSociety project
under grant No. 600854.

REFERENCES

[1] D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart, Eds.,
Social Collective Intelligence: Combining the Powers of Humans and
Machines to Build a Smarter Society. Springer, 2014.

[2] S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, “Modeling,
enacting, and integrating custom crowdsourcing processes,” ACM Trans.
Web, vol. 9, no. 2, pp. 7:1–7:43, May 2015.

[3] P. Zeppezauer, O. Scekic, H.-L. Truong, and S. Dustdar, “Virtualizing
communication for hybrid and diversity-aware collective adaptive sys-
tems,” in ICSOC 2014 workshops and satellite events, ser. WESOA’14.
Springer, 11 2014, p. Forthcoming.

[4] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zim-
merman, M. Lease, and J. Horton, “The future of crowd work,” in Proc.
of the 2013 Conf. on Computer supported cooperative work, ser. CSCW
’13. ACM, 2013, pp. 1301–1318.

[5] A. Segal, R. J. Simpson, Y. Gal, V. Homsy, M. Hartswood, K. R.
Page, and M. Jirotka, “Improving productivity in citizen science through
controlled intervention,” in WWW, 2015, p. forthcoming.

[6] F. Giunchiglia, B. Dutta, and V. Maltese, “From knowledge organization
to knowledge representation,” in ISKO UK Conference, 2013.

[7] F. Giunchiglia and A. Hume, “A distributed entity directory,” in The
Semantic Web: ESWC 2013 Satellite Events, ser. LNCS. Springer
Berlin Heidelberg, 2013, vol. 7955, pp. 291–292.

[8] M. Hartswood, M. Jirotka, R. Chenu-Abente, A. Hume, F. Giunchiglia,
L. A. Martucci, and S. Fischer-Hübner, “Privacy for peer profiling in
collective adaptive systems,” in Privacy and Identity Management for
the Future Internet in the Age of Globalisation. Springer, 2015.

[9] L. Moreau, “Aggregation by provenance types: A technique for sum-
marising provenance graphs,” in GRAPHS AS MODELS 2015, vol. 181.
Electronic Proceedings in Theoretical Computer Science, February
2015, pp. 129–144.

[10] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems
on the world-wide web,” Comm. ACM, vol. 54, no. 4, pp. 86–96, 2011.

[11] B. Sengupta, A. Jain, K. Bhattacharya, H.-L. Truong, and S. Dustdar,
“Who do you call? problem resolution through social compute units,”
in Proc. 10th Intl. Conf. on Service-Oriented Comp., ser. ICSOC’12.
Springer-Verlag, 2012, pp. 48–62.

[12] G. Little, “Exploring iterative and parallel human computation pro-
cesses,” in Ext. Abstracts on Human Factors in Comp. Sys., ser. CHI
EA ’10. ACM, 2010, pp. 4309–4314.

[13] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: Answering queries with crowdsourcing,” in Proc. 2011 ACM
SIGMOD Intl. Conf. on Management of Data, ser. SIGMOD ’11. ACM,
2011, pp. 61–72.

[14] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Au-
toman: A platform for integrating human-based and digital computa-
tion,” SIGPLAN Not., vol. 47, no. 10, pp. 639–654, Oct. 2012.

[15] A. P. Kulkarni, M. Can, and B. Hartmann, “Turkomatic: Automatic
recursive task and workflow design for mechanical turk,” in CHI ’11
Ext. Abs. on Human Factors in Comp. Sys., ser. CHI EA ’11. ACM,
2011, pp. 2053–2058.

[16] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky
programming environment for structured social computing,” in Proc.
24th Annual ACM Symposium on User Interface Software and Technol-
ogy, ser. UIST ’11. ACM, 2011, pp. 53–64.

[17] P. Minder and A. Bernstein, “Crowdlang: A programming language for
the systematic exploration of human computation systems,” in Social
Informatics, ser. LNCS, K. Aberer, A. Flache, W. Jager, L. Liu, J. Tang,
and C. Guéret, Eds. Springer, 2012, vol. 7710, pp. 124–137.

	Introduction
	Design Requirements & Usage Context
	Platform Architecture & Functionality
	Overview
	Principal Components
	Peer Manager (PM)
	Communication Middleware
	Orchestration Manager (OM)

	Other Components

	Functional Evaluation
	SmartShare
	AskSmartSociety!

	Performance Evaluation
	Prototype Implementation
	Experimental Evaluation

	Related Work
	Conclusion
	References

