
6 Int. J. Intelligent Information and Database Systems, Vol. 2, No. 1, 2008

MALEF: Framework for distributed machine

learning and data mining

Jan Tožička∗

Gerstner Laboratory,
Czech Technical University,
Technická 2, Prague,
166 27, Czech Republic
Fax: +420 224 923 677
E-mail: tozicka@labe.felk.cvut.cz
∗Corresponding author

Michael Rovatsos

School of Informatics,
The University of Edinburgh,
Edinburgh EH8 9LE, UK
E-mail: mrovatso@inf.ed.ac.uk

Michal Pěchouček and Štěpán Urban

Gerstner Laboratory,
Czech Technical University,
Technická 2, Prague,
166 27, Czech Republic
Fax: +420 224 923 677
E-mail: pechouc@labe.felk.cvut.cz
E-mail: urbans1@fel.cvut.cz

Abstract: Growing importance of distributed data mining techniques has
recently attracted attentionof researchers inmultiagent domain. In this paper
we present a novel framework MultiAgent Learning Framework (MALEF)
designed for both the agent-based distributed machine learning as well as
data mining. Proposed framework is based on

• the exchange of meta-level descriptions of individual learning process

• online reasoning about learning success and learning progress.

This paper illustrates how MALEF framework can be used in practical
system in which different learners use different datasets, hypotheses and
learning algorithms.We describe our experimental results obtained using this
system and review related work on the subject.

Keywords: multiagent learning; distributed machine learning; frameworks
and architectures; unsupervised clustering; market-based approaches.

Copyright © 2008 Inderscience Enterprises Ltd.

MALEF: Framework for distributed machine learning and data mining 7

Reference to this paper should bemade as follows: Tožička, J., Rovatsos,M.,
Pěchouček, M. and Urban, Š. (2008) ‘MALEF: Framework for distributed
machine learning and data mining’, Int. J. Intelligent Information and
Database Systems, Vol. 2, No. 1, pp.6–24.

Biographical notes: Jan Tožička holds Doctorate in Natural Sciences Degree
in Theoretical Computer Science from Faculty of Mathematics and Physics
at the Charles University in Prague where he also received his Master of
Science Degree in the same branch. He is currently Researcher at Agent
Technology Group of the Gerstner laboratory and in the same time finishes
his PhD studies at the Department of Cybernetics of the Czech Technical
University. His research focuses on knowledge analysis, meta-reasoning,
machine learning and formalmethods inmulti-agent systems.Heparticipates
on several international projects (contracted by US Air Force Research
Laboratory, Army Research Laboratory, Office of Naval Research and
others).

Michael Rovatsos received his PhD in Computer Science at the Technical
University of Munich. He is a Lecturer at the Centre For Intelligent Systems
and their Applications of the School of Informatics at The University of
Edinburgh, Scotland, UK. He is the Head of the Agent Group at School
of Informatics. His research interests include issues related to multiagent
systems, machine learning, multiagent approaches to semantic web, grid
computing and context-aware computing applications, agent-oriented
software engineering, health informatics and eScience. He is an author or
coauthor of cited publications in Proceedings of International Conferences
and Journal Papers. He is Editor of books Computational Autonomy,
Autonomous Software and Cooperative Information Agents X.

Michal Pechoucek received his PhD in Artificial Intelligence and
Biocybernetics at the Czech Technical University in Prague. He works
as a Reader in Artificial Intelligence. He is the Head of the Agent
Technology Group at the Gerstner Laboratory. His research focuses on
problems related to multi-agent systems: social knowledge, meta-reasoning,
communication inaccessibility, coalition formation, agent reflection and
planning. He participated in and coordinated several EC FP5/6 projects and
research projects funded by US AFRL, ONR and ARL. He is an author or
coauthor of cited publications in Proceedings of International Conferences
and Journal Papers. He has been a co-chair of Several Conferences.

Štěpán Urban is a MSc student of Artificial Intelligence at the Department
of Cybernetics, CTU. He focuses on multi-agent simulation and agent-based
data-mining.He participates on an international project contracted byOffice
of Naval Research.

1 Introduction

This size of datasets distributed over the network is rapidly growing and therefore
the research in the data mining domain is also focusing on distributed solutions.

8 J. Tožička et al.

Several attempts were made to incorporate multi-agent approach into the data
mining task. Nevertheless most of these solutions are based only on the agentification
of existing distributed data mining methods and therefore are somehow limited.
All created applications assume homogeneity of agent design (all agents apply the
same mining method) and/or agent objectives (all agents are trying to cooperatively
solve a single/global data mining problem). Therefore, suggested techniques are not
applicable in societies of autonomous learners interacting in open systems. On the other
hand in the multiagent systems we have the methods to cope with such systems using
e.g., negotiation, auctions, or trust.

Real-world problems may not allow learner (viz agent) to integrate its dataset or
learning results with knowledge received from other learners (because of different data
formats and representations, learning algorithms, or legal restrictions that prohibit
such integration (Ghosh et al., 2002)). At the same time learners cannot always be
guaranteed to interact in a strictly cooperative fashion (discovered knowledge and
collected datamight be economic assets that should only be sharedwhen this is deemed
profitable, malicious agents might attempt to adversely influence others’ learning
results, etc.).

Examples for applications of this kind abound:Many distributed learning domains
involve the use of sensitive data and prohibit the exchange of this data (e.g., exchange
of patient data in distributed brain tumour diagnosis (http://www.healthagents.com))
– however, they may permit the exchange of local learning hypotheses among different
learners. In other areas, training data might be commercially valuable so that agents
would only make it available to others if those agents can provide something in
return (e.g., in remote ship surveillance and tracking, where the different agencies
involved are commercial service providers (http://www.aislive.com)). Furthermore,
agents might have a vested interest in negatively affecting other agents’ learning
performance. An example for this are fraudulent agents on eBay which may try to
prevent reputation-learning agents from the constructionof usefulmodels for detecting
fraud.

Viewing learners as autonomous, self-directed agents is the only appropriate view
one can take inmodelling these distributed learning environments, i.e., use of the agent
metaphor becomes a necessity rather than a matter of using ‘soft’ arguments such as
scalability, dynamic data selection, ‘interactivity’ etc., as put forward, for example, by
Klusch et al. (2003) – those can also be achieved through (non-agent) distribution and
parallelisation in principle.

Despite the autonomy and self-directedness of learning agents, many of these
systems exhibit a sufficient overlap in terms of individual learning goals so that
beneficial cooperation might be possible if a model for flexible interaction between
autonomous learners was available that allowed agents to:

• exchange information about different aspects of their own learning mechanism
at different levels of detail without being forced to reveal private information
that should not be disclosed

• decide to which extent they want to share information about their own learning
processes and utilise information provided by other learners

• reason about how this information can be best used to improve their own
learning performance.

MALEF: Framework for distributed machine learning and data mining 9

In this paper we propose such a model based on the simple idea that autonomous
learners should maintain meta-descriptions of their own learning processes (see
also Bailey et al., 1999) in order to be able to exchange information and reason about
them in a rational way (i.e., with the overall objective of improving their own learning
results). Thereby, our hypothesis is a very simple one:

“If we can devise a sufficiently general, abstract view of describing learning processes,
we will be able to utilise the whole range of methods for (i) rational reasoning and
(ii) communication and coordination offered by agent technology so as to build
effective autonomous learning agents.”

To test this hypothesis, we introduce such an abstract architecture (Section 2) and
implement a simple, concrete instance of it in a real-world domain (Section 3).
We report on empirical results obtainedwith this implemented system thatdemonstrate
the viability of our approach (Section 4). Finally, we review related work (Section 5)
and conclude with a summary, discussion of our approach and outlook to future work
on the subject (Section 6).

2 Abstract architecture

Our framework is based on providing formal (meta-level) descriptions of learning
processes, i.e., representations of all relevant components of the learning machinery
used by a learning agent, together with information about the state of the learning
process.

To ensure this framework is sufficiently general, we consider the following general
description of a learning problem:

“Given data D ⊆ D taken from an instance space D, a hypothesis space H and an
(unknown) target function c ∈ H1, derive a function h ∈ H that approximates c as
well as possible according to some performance measure g : H → QwhereQ is a set
of possible levels of learning performance.”

This very broad definition includes a number of components of a learning problem
for which more concrete specifications can be provided if we want to be more precise.
For the cases of classification and clustering, for example, we can further specify the
above as follows: Learning data can be described in both cases as D = ×n

i=1[Ai] where
[Ai] is the domain of the ith attribute and the set of attributes isA = {1, . . . , n}. For the
hypothesis space we obtain

H ⊆ {h |h : D → {0, 1}}

in the case of classification (i.e., a subset of the set of all possible classifiers, the nature
of which depends on the expressivity of the learning algorithm used) and

H ⊆ {h |h : D → N, h is total with range {1, . . . , k}}

in the case of clustering (i.e., a subset of all sets of possible cluster assignments thatmap
data points to a finite number of clusters numbered k–1). For classification, g might
be defined in terms of the numbers of false negatives and false positives with respect
to some validation set V ⊆ D, and clustering might use various measures of cluster

10 J. Tožička et al.

validity to evaluate the quality of a current hypothesis, so that Q = R in both cases
(but other sets of learning quality levels can be imagined).

Next, we introduce a notion of learning step which imposes a uniform basic
structure on all learning processes that are supposed to exchange information using our
framework. For this, we assume that each learner is presented with a finite set of data
D = 〈d1, . . . dk〉 in each step (this is an ordered set to express that the order in which
the samples are used for training matters) and employs a training/update function
f : H × D∗ → Hwhich updates h given a series of samples d1, . . . , dk. In other words,
one learning step always consists of applying the update function to all samples in D
exactly once. We define a learning step as a tuple

l = 〈D, H, f, g, h〉

where we require that H ⊆ H and h ∈ H .
The intuition behind this definition is that each learning step completely describes

one learning iteration as shown in Figure 1: in step t, the learner updates the current
hypothesis ht−1 with dataDt, and evaluates the resulting new hypothesis ht according
to the current performance measure gt. Such a learning step is equivalent to the
following steps of omputation:

• train the algorithm on all samples in D (once), i.e., calculate ft(ht−1, Dt) = ht,

• calculate the quality gt of the resulting hypothesis gt(ht).

Figure 1 A generic model of a learning step

We denote the set of all possible learning steps by L. For ease of notation, we denote
the components of any l ∈ L by D(l), H(l), f(l) and g(l), respectively. The reason
why such learning step specifications use a subset H of H instead of H itself is that
learners often have explicit knowledge about which hypotheses are effectively ruled
out by f given h in the future (if this is not the case, we can still set H = H).

A learning process is a finite, non-empty sequence

1 = l1 → l2 → . . . → ln

of learning steps such that

∀1 ≤ i < n.h(li+1) = f(li)(h(li), D(li))

i.e., the only requirement the transition relation →⊆ L × L makes is that the new
hypothesis is the result of training the old hypothesis on all available sample data that
belongs to the current step. We denote the set of all possible learning processes by L
(ignoring, for ease of notation, the fact that this set depends on H, D and the spaces of
possible training and evaluation functions f and g). The performance trace associated
with a learning process l is the sequence 〈q1, . . . , qn〉 ∈ Qn where qi = g(li)(h(li)),

MALEF: Framework for distributed machine learning and data mining 11

i.e., the sequence of quality values calculated by the performance measures of the
individual learning steps on the respective hypotheses.

Such specifications allow agents to provide a self-description of their learning
process. However, in communication among learning agents, it is often useful to
provide only partial information about one’s internal learning process rather than
its full details, e.g., when advertising this information in order to enter information
exchange negotiations with others. For this purpose, we will assume that learners
describe their internal state in terms of sets of learning processes (in the sense of
disjunctive choice) which we call Learning Process Descriptions (LPDs) rather than
by giving precise descriptions about a single, concrete learning process.

This allows us to describe properties of a learning process without specifying its
details exhaustively. As an example, the set {1 ∈ L | ∀l = 1[i].D(l) ≤ 100} describes all
processes that have a training set of at most 100 samples (where all the other elements
are arbitrary). Likewise, {1 ∈ L | ∀l = 1[i].D(l) = {d}} is equivalent to just providing
information about a single sample {d} and no other details about the process (this can
be useful to model, for example, data received from the environment). Therefore, we
use ℘(L), that is the set of all LPDs, as the basis for designing content languages for
communication in the protocols we specify below.

In practice, the actual content language chosen will of course be more restricted
and allow only for a special type of subsets ofL to be specified in a compact way, and its
choice will be crucial for the interactions that can occur between learning agents. For
our examples below, we simply assume explicit enumeration of all possible elements
of the respective sets and function spaces (D, H , etc.) extended by the use of wildcard
symbols ∗ (so that our second example above would become ({d}, ∗, ∗, ∗, ∗)).

2.1 Learning agents

In our framework, a learning agent is essentially a meta-reasoning function that
operates on information about learning processes and is situated in an environment co-
inhabited by other learning agents. This means that it is not only capable of meta-level
control on ‘how to learn’, but in doing so it can take information into account that is
provided by other agents or the environment. Although purely cooperative or hybrid
cases are possible, for the purposes of this paper we will assume that agents are purely
self-interested, and that while there may be a potential for cooperation considering
how agents canmutually improve each others’ learning performance, there is no global
mechanism that can enforce such cooperative behaviour (Weiss and Dillenbourg,
1999).2

Formally speaking, an agent’s learning function is a function which, given a set of
histories of previous learning processes (of oneself and potentially of learning processes
about which other agents have provided information) and outputs a learning step
which is its next ‘learning action’. In the most general sense, our learning agent’s
internal learning process update can hence be viewed as a function

λ : ℘(L) → L × ℘(L)

which takes a set of learning ‘histories’ of oneself and others as inputs and computes
a new learning step to be executed while updating the set of known learning process
histories (e.g., by appending the new learning action to one’s own learning process

12 J. Tožička et al.

and leaving all information about others’ learning processes untouched). Note that in
λ({11, . . .1n}) = (l, {1′

1, . . .1
′
n′}) some elements 1i of the input learning process set

may be descriptions of new learning data received from the environment.
The λ-function can essentially be freely chosen by the agent as long as one

requirement is met, namely that the learning data that is being used always stems from
what has been previously observed. More formally,

∀{11, . . .1n} ∈ ℘(L).λ({11, . . .1n})

= (l, {1′
1, . . .1

′
n′}) ⇒

(
D(l) ∪

(⋃
l′=1′

i[j]

D(l′)
))

⊆
⋃

l′′=1i[j]

D(l′′)

i.e., whatever λ outputs as a new learning step and updated set of learning histories, it
cannot ‘invent’ newdata; it has toworkwith the samples that have beenmade available
to it earlier in the process through the environment or from other agents (and it can
of course re-train on previously used data).

With this, the goal of agent can be described as outputting an optimal learning step
in each iteration given the information that it has. One possibility of specifying this is
to require that

∀{11, . . .1n} ∈ ℘(L).λ({11, . . .1n}) = (l, {1′
1, . . .1

′
n′})

⇒ l = arg max
l′∈L

g(l′)(h(l′))

but since it will usually be unrealistic to compute the optimal next learning step in
every situation, it is more useful to simply use g(l′)(h(l′)) as a running performance
measure to evaluate how well the agent is performing.

All the above is of course too abstract and unspecific for our purposes: While it
describes what agents should do (transform the settings for the next learning step in
an optimal way), it does not specify how this can be achieved in practice.

2.2 Integrating learning process information

To specify how an agent’s learning process can be affected by integrating information
received from others, we need to flesh out the details of how the learning steps it
will perform can be modified using incoming information about learning processes
described by other agents (this includes the acquisition of new learning data from the
environment as a special case). In the most general case, we can specify this in terms
of the potential modifications to the existing information about learning histories that
can be performed using new information. For ease of presentation, we will assume that
agents are stationary learning processes that can only record the previously executed
learning step and only exchange information about this one individual learning step
(our model can be extended canonically to cater for more complex settings).

Let lj = 〈Dj , Hj , fj , gj , hj〉 be the current ‘state’ of agent j when receiving a
learning process description li = 〈Di, Hi, fi, gi, hi〉 from agent i (for the time being, we
assume that this is a specific learning step and not amore vague, disjunctive description
of properties of the learning step of i). Considering all possible interactions at an
abstract level, we basically obtain a matrix of possibilities for modifications of j’s
learning step specification as shown in Table 1. In this matrix, each entry specifies

MALEF: Framework for distributed machine learning and data mining 13

a family of integration functions pc→c′
1 , . . . , pc→c′

kc→c′ where c, c′ ∈ {D, H, f, g, h} and
which define how agent j’s component c′

j will be modified using the information ci

provided about (the same or a different component of) i’s learning step by applying
pc→c′

r (ci, c
′
j) for some r ∈ {1, . . . , kc→c′}. To put it more simply, the collections of

p-functions an agent j uses specifies how it will modify its own learning behaviour
using information obtained from i.

Table 1 Matrix of integration functions for messages sent from learner i to j

i j Dj Hj fj gj hj

pD→D
1 (Di, Dj)

Di

... n/a . . .

pD→D
kD→D

(Di, Dj)

Hi

...
. . . n/a

fi

...
. . . n/a

pg→h
1 (gi, hj)

gi

... n/a
...

pg→h
kg→h

(gi, hj)

hi

... n/a
. . .

For the diagonal of this matrix, which contains the most common ways of integrating
new information in one’s own learning model, obvious ways of modifying one’s
own learning process include replacing c′

j by ci or ignoring ci altogether. More
complex/subtle forms of learning process integration include:

• Modification of Dj : append Di to Dj ; filter out all elements from Dj which also
appear in Di; append Di to Dj discarding all elements with attributes outside
ranges which affect gj , or those elements already correctly classified by hj

• Modification of Hi: use the union/intersection of Hi and Hj ; alternatively,
discard elements of Hj that are inconsistent with Dj in the process of
intersection or union, or filter out elements that can not be obtained using fj

(unless fj is modified at the same time)

• Modification of fj : modify parameters or background knowledge of fj using
information about fi; assess their relevance by simulating previous learning steps
on Dj using gj and discard those that do not help improve own performance

• Modification of hj : combine hj with hi using (say) logical or mathematical
operators; make the use of hi contingent on a ‘pre-integration’ assessment of its
quality using own data Dj and gj .

While this list does not include fully-fledged, concrete integration operations for
learning processes it is indicative of the broad range of interactions between individual
agents’ learning processes that our framework enables.

14 J. Tožička et al.

Note that the list does not include any modifications to gj . This is because we
do not allow modifications to the agent’s own quality measure as this would render
the model of rational (learning) action useless (if the quality measure is relative and
volatile, we can not objectively judge learning performance). Also note that some of
the above examples require consulting other elements of lj than those appearing as
arguments of the p-operations; we omit these for ease of notation, but emphasise that
information-rich operations will involve consulting many different aspects of lj .

Apart from operations along the diagonal of the matrix, more ‘exotic’ integration
operations are conceivable that combine information about different components.
In theory we could fill most of the matrix with entries for them, but for lack of space
we list only a few examples:

• Modification of Dj using fi: pre-process samples in fi, e.g., to achieve
intermediate representations that fj can be applied to

• Modification of Dj using hi: filter out samples from Dj that are covered by hi

and build hj using fj only on remaining samples

• Modification of Hj using fi: filter out hypotheses from Hj that are not realisable
using fi

• Modification of hj using gi: if hj is composed of several sub-components, filter
out those sub-components that do not perform well according to gi

• . . .

Finally, many messages received from others describing properties of their learning
processes will contain information about several elements of a learning step, giving
rise to yet more complex operations that depend on which kinds of information are
available.

3 Application example

3.1 Domain description

As an illustration of our framework, we present an agent-based data mining
system for clustering-based surveillance using (Automatic Identification System,
http://www.aislive.com) AIS data. In our application domain, different commercial
and governmental agencies track the journeys of ships over time using AIS data
which contains structured information automatically provided by ships equipped with
shipborne mobile AIS stations to shore stations, other ships and aircrafts. This data
contains the ship’s identity, type, position, course, speed, navigational status and other
safety-related information. Figure 2 shows a screenshot of our simulation system.

It is the task of AIS agencies to detect anomalous behaviour so as to
alarm police/coastguard units to further investigate unusual, potentially suspicious
behaviour. Such behaviour might include things such as deviation from the standard
routes between the declared origin and destination of the journey, unexpected
‘close encounters’ between different vessels on sea, or unusual patterns in the choice of
destination over multiple journeys considering the type of vessel and reported freight.
While the reasons for such unusual behaviour may range from pure coincidence or

MALEF: Framework for distributed machine learning and data mining 15

technical problems to criminal activity (such as smuggling, piracy, terrorist/military
attacks) it is obviously useful to pre-process the huge amount of vessel (tracking) data
that is available before engaging in further analysis by human experts.

Figure 2 Screenshot of our simulation system, displaying online vessel tracking data for the
North Sea region

To support this automated pre-processing task, software used by these agencies applies
clustering methods in order to identify outliers and flag those as potentially suspicious
entities to thehumanuser.However,manyagencies active in this domainare competing
enterprises and use their (partially overlapping, but distinct) datasets and learning
hypotheses (models) as assets and hence cannot be expected to collaborate in a fully
cooperative way to improve overall learning results. Nevertheless the self-interested
agencies would agree to exchange part of their knowledge if it improves their own
results. Considering that this is the reality of the domain in the real world, it is easy to
see that a framework like the one we have suggested above might be useful to exploit
the cooperation potential that is not exploited by current systems.

3.2 Agent-based distributed learning system design

To describe a concrete design for the AIS domain, we need to specify the following
elements of the overall system:

1 the datasets and clustering algorithms available to individual agents

2 the interaction mechanism used for exchanging descriptions of learning processes

3 the decision mechanism agents apply to make learning decisions.

We will describe element 1 in two cases: ship classification and ship surveillance.
In the first case, we try to detect ships lying about their identities and in the latter one
we try to detect anomalies in the ship movement. Elements 2 and 3 are implemented
using the same strategy in both cases.

16 J. Tožička et al.

3.3 Ship classification

Regarding 1, our agents are equipped with their own private datasets in the form of
vessel descriptions. Learning samples are represented by tuples containing data about
individual vessels in terms of attributesA = {1, . . . , n} including things such as width,
length, etc., with real-valued domains ([Ai] = R for all i).

In terms of learning algorithm, we consider clustering with a fixed number of
k clusters using the k-means and k-medoids clustering algorithms (Berkhin, 2002)
(‘fixed’ meaning that the learning algorithm will always output k clusters; however,
we allow agents to change the value of k over different learning cycles). This means
that the hypothesis space can be defined as H = {〈c1, . . . , ck〉 | ci ∈ R

|A|} i.e., the set
of all possible sets of k cluster centroids in |A|-dimensional Euclidean space. For each
hypothesis h = 〈c1, . . . , ck〉 and any data point d ∈ ×n

i=1[Ai] given domain [Ai] for
the ith attribute of each sample, the assignment to clusters is given by

C(〈c1, . . . , ck〉, d) = arg min
1≤j≤k

|d − cj |

i.e., d is assigned to that cluster whose centroid is closest to the data point in terms of
Euclidean distance.

For evaluation purposes, each dataset pertaining to a particular agent i is initially
split into a training set Di and a validation Vi. Then, we generate a set of ‘fake’ vessels
Fi such that |Fi| = |Vi|. These two sets assess the agent’s ability to detect ‘suspicious’
vessels. For this, we assign a confidence value r(h, d) to every ship d:

r(h, d) =
1

|d − cC(h,d)|

where C(h, d) is the index of the nearest centroid. Based on this measure, we classify
any vessel in Fi ∪ Vi as fake if its r-value is bellow the median of all the confidences
r(h, d) for d ∈ Fi ∪ Vi. With this, we can compute the quality gi(h) ∈ R as the ratio
between all correctly classified vessels and all vessels in Fi ∪ Vi.

3.4 Ship surveillance

In this case, the learning agents observe which harbors are chosen by the ships and
try to find anomalies in the ship movements. Chosen harbour is appended to the ship
track (n last harbors) and transformed into the n-gram Witten et al. (1999). Group
of n-grams associated with one ship describes important properties of its track. It is
represented as point in the vector space (Miao et al., 2005) where each axis correspond
to one possible n-grams and its value shows the probability of the last harbour a1
following the previous ones a2, . . . , an: P (a1 | an, . . . , a2). Therefore different values
of parameter n create model which is able to detect different types of common track
violations. For example see Figure 3.

Similarly to the ship classification case, we use clustering methods to group similar
clusters. If new n-gram does not follow created model, the confidence value of the ship
is decreased. Clustering ofn-gram is illustrated on the Figure 4 showing how a centroid
representing two n-gram models is produced.

As concerns 2, we use a simple Contract-Net Protocol (CNP) (Smith, 1980)
based ‘hypothesis trading’ mechanism: Before each learning iteration, agents issue

MALEF: Framework for distributed machine learning and data mining 17

(publicly broadcasted) Calls-For-Proposals (CfPs), advertising their own numerical
model quality. Inotherwords, the ‘initiator’ of aCNPdescribe theowncurrent learning
state as (∗, ∗, ∗, gi(h), ∗) where h is their current hypothesis/model. We assume that
agents are sincere when advertising theirmodel quality, but note that this qualitymight
be of limited relevance to other agents as they may specialise on specific regions of the
data space not related to the test set of the sender of the CfP.

Figure 3 Example of different violation (illustrated by bold arrows) of learned tracks
detectable by: (a) 1-grams (new harbor), or (b) 2-grams (skipped harbor),
or (c) 3-grams (skipped part of figure eight track) respectively

Figure 4 Example of two different ship routes and the centroid of the cluster containing them.
Table shows n-gram representation of the routes

Subsequently, (some) agents may issue bids in which they advertise, in turn, the quality
of their ownmodel. If the bids (if any) are accepted by the initiator of the protocol who
issued the CfP, the agents exchange their hypotheses and the next learning iteration
ensues.

To describe what is necessary for 3, we have to specify

i under which conditions agents submit bids in response to a CfP

ii when they accept bids in the CNP negotiation process

iii how they integrate the received information in their own learning process.

Concerning (i) and (ii), we employ a very simple rule that is identical in both cases:
let g be one’s own model quality and g′ that advertised by the CfP (or highest bid,

18 J. Tožička et al.

respectively). If g′ > g we respond to the CfP (accept the bid), else respond to the CfP
(accept the bid) with probability P (g′/g) and ignore (reject) it else. If two agents make
a deal, they exchange their learning hypotheses (models).

As for (iii), each agent uses a single model merging operator taken from the
following two classes of operators (hj is the receiver’s own model and hi is the
provider’s model):

• ph→h(hi, hj):

• m-join. The m best clusters (in terms of coverage of Dj) from hypothesis hi

are appended to hj .

• m-select. The set of the m best clusters (in terms of coverage of Dj) from
the union hi ∪ hj is chosen as a new model. (Unlike m-join this method
does not prefer own clusters to the received ones.)

• ph→D(hi, Dj):

• m-filter. The m best clusters (as above) from hi are are identified and
appended to a new model formed by using those samples not covered by
these clusters applying the own learning algorithm fj .

Note that m can also mean all the hypotheses in these operations, in which case, we
simply write join or filter for them. In Section 4 we analyse the performance of each
of these two classes for different choices of m.

It is noteworthy that this agent-based distributed data mining system is one of the
simplest conceivable instances of our abstract architecture. While we have previously
applied it also to a more complex market-based architecture using Inductive Logic
Programming learners in a transport logistics domain (Tožička et al., 2006), we believe
that the system sketched here is complex enough to illustrate the key design decisions
involved in using our framework and provides simple example solutions for these
design issues.

4 Experimental results

Figure 5 shows results obtained from simulations with three learning agents in the ship
classification systemusing thek-means andk-medoids clusteringmethods respectively.
We partition the total dataset of 300 ships into three disjoint sets of 100 samples each
and assign each of these to one learning agent. The parameter k is set to 10 as this is the
optimal value for the total dataset according to the Davies-Bouldin index (Davies and
Bouldin, 1979). For m-select we assume m = k which achieves a constant model size.
For m-join and m-filter we assume m = 3 to limit the extent to which models increase
over time.

During each experiment the learning agents receive ship descriptions in batches
of ten samples. Between these batches, there is enough time to exchange the models
among the agents and recompute the models if necessary. Each ship is described using
width, length, draught and speed attributes with the goal of learning to detect which
vessels have provided fake descriptions of their own properties. The validation set
contains 100 real and 100 randomly generated fake ships. To generate sufficiently

MALEF: Framework for distributed machine learning and data mining 19

realistic properties for fake ships, their individual attribute values are taken from
randomly selected ships in the validation set (so that each fake sample is a combination
of attribute values of several existing ships).

Figure 5 Performance results obtained for different integration operations in homogeneous
learner societies using the k-means (top) and k-medoids (bottom) methods

In these experiments, we are mainly interested in investigating whether a simple
form of knowledge sharing between self-interested learning agents could improve
agent performance compared to a setting of isolated learners. Thereby, we distinguish
between homogeneous learner societies where all agents use the same clustering
algorithm and heterogeneous ones where different agents use different algorithms.

As can be seen from the performance plots in Figures 5 (homogeneous case)
and 6 (heterogeneous case, two agents use one methods and one agent uses the other)
this is clearly the case for the (unrestricted) join and filter integration operations
(m = k) in both cases. This is quite natural, as these operations amount to sharing all
available model knowledge among agents (under appropriate constraints regarding
how beneficial the exchange seems to the agents).

For the restricted (m < k) m-join, m-filter and m-select methods we can also
observe an interesting distinction, namely that these perform similarly to the isolated
learner case in homogeneous agent groups but better than isolated learners in more
heterogeneous societies. This suggests that heterogeneous learners are able to benefit
even from rather limited knowledge sharing (and this is what using a rather small
m = 3 amounts to given that k = 10) while this is not always true for homogeneous
agents. And this nicely illustrates how different learning or data mining algorithms
may be able specialise on different parts problem space and then integrate their local
results to achieve better individual performance.

Apart from these obvious performance benefits, integrating partial learning results
can also have other advantages: The m-filter operation, for example, decreases the

20 J. Tožička et al.

Figure 6 Performance results obtained for different integration operations in heterogeneous
societies with the majority of learners using the k-means (top) and k-medoids
(bottom) methods

number of learning samples and thus can speed up the learning process. The relative
number of filtered examples measured in our experiments is shown in Table 2.

Table 2 Number of filtered samples filtered out using m-filter

k-means (%) k-medoids (%)

Filtering 30–40 10–20
m-filtering 20–30 5–15

Theoverall conclusionwe candraw from these initial experimentswithour architecture
is that since a very simplistic application of its principles has proven capable of
improving the performance of individual learning agents, it is worthwhile investigating
more complex forms of information exchange about learning processes among
autonomous learners.

Last experiment evaluates the n-gram based detection method. Similarly to the
ship classification case, we have evaluated the speed of the learning measured by the
number of trainning examples. The results are shown on the Figure 7.

5 Related work

In the areas of machine learning and data mining (cf. Mitchell, 1997; Park and
Kargupta, 2002 for overviews), it has long been recognised that parallelisation and
distribution can be used to improve learning performance as the datasets grew and
became distributed over the network. Various techniques have been suggested in

MALEF: Framework for distributed machine learning and data mining 21

Figure 7 Performance of different setting of k and n parameters using k-means clustering
of n-grams

this respect, ranging from the low-level integration of independently derived learning
hypotheses (e.g., combiningdifferent classifiers tomakeoptimal classificationdecisions
(Bauer andKohavi, 1999; Chawla et al., 2001), model averaging of Bayesian classifiers
(Dash and Cooper, 2004), or consensus-based methods for integrating different
clusterings (Ghosh et al., 2002)), to the high-level combination of learning results
obtained by heterogeneous learning ‘agents’ using meta-learning (e.g., Bailey et al.,
1999; Edwards and Davies, 1993; Stolfo et al., 1997).

Even when the agent-based approaches are used, individual agents’ intents
and goals are completely disregarded and agents’ decision-making procedures are
prescribed a priori. A typical example for this type of system is the one suggested in
Caragea et al. (2000). In this system based on a distributed support-vector machine
approach agents incrementally join their datasets together according to a fixed
distributed algorithm. A similar example is Weiß (1998), where groups of classifier
agents learn to organise their activity to optimise global system behaviour.

The key difference between this kind of collaborative agent-based learning systems
(Panait and Luke, 2005) and our own framework is that these approaches assume a
joint learning goal that is pursued collaboratively by all agents.

Many approaches rely heavily on a homogeneity assumption: Ontanon and Plaza
(2005) suggests methods for agent-based intelligent reuse of cases in case-based
reasoning but is only applicable to societies of homogeneous learners (and coined
towards a specific learningmethod).Anagent-basedmethod for integratingdistributed
cluster analysis processes using density estimation is presented in Klusch et al. (2003)
which is also specifically designed for a particular learning algorithm. The same is
true of Tožička et al. (2006) and Wei et al. (2003) which both present market-based
mechanisms for aggregating the output of multiple learning agents, even though these
approaches consider more interesting interaction mechanisms among learners.

A number of approaches for sharing learning data (Provost and Hennessy, 1996)
have also been proposed: Grecu and Becker (1998) suggest an exchange of learning
samples among agents, andGhosh et al. (2002) is a step in the right direction in terms of
revealing only partial information about one’s learning process as it deals with limited
information sharing in distributed clustering.

Bailey et al. (1999) is a system that provides amarkup language formeta-description
of data, hypotheses and intermediate results and allows for an exchange of all this
information among different nodes, however with a strictly cooperative goal of
distributing the load for massively distributed data mining tasks.

22 J. Tožička et al.

The MALE system (Sian, 1991) was a very early multiagent learning system in
which agents used a blackboard approach to communicate their hypotheses. Agents
were able to critique each others’ hypotheses until agreement was reached. However,
all agents in this system were identical and the system was strictly cooperative.

The ANIMALS system (Edwards and Davies, 1993) was used to simulate
multi-strategy learning by combining two or more learning techniques (represented by
heterogeneous agents) in order to overcome weaknesses in the individual algorithms,
yet it was also a strictly cooperative system.

As these examples show and to the best of our knowledge, there have been no
previous attempts to provide a framework that can accommodate both independent
and heterogeneous learning agents and this can be regarded as the main contribution
of our work.

6 Conclusion

In thiswe propose a generic, abstract frameworkMALEFused for distributedmachine
learning and data mining. Our framework represents the first attempt to capture
complex forms of interaction between heterogeneous and/or self-interested learners.
It can be used as a foundation for implementing complex interaction systems and
reasoning mechanisms. This architecture allows agents to improve their knowledge
using information provided by other learners in the system.

Wealso described amarket-baseddistributed clustering system todemonstrate that
the abstract principles of our architecture can be turned into concrete computational
system. This clustering system was evaluated in the domain of vessel tracking for
purposes of identifying deviant or suspicious behaviour. Our experimental results only
hint at the potential of using our abstract architecture. They also underline that we are
proposing feasible system.

In the future research we plan to address also other issues not mentioned in this
paper: Firstly, we shall consider the cost of communication and omit the assumption
that the required communication ‘comes for free’. Secondly, we shall experiment
with the agents using completely different learning algorithms (e.g., symbolic and
numerical). In systems composed of completely different agents the circumstances
under which successful information exchange can be achieved might be very different
from those described here. More complex communication and reasoning methods
should be used to integrate different agents’ learning processes in a useful way.
Finally, we shall examine more sophisticated evaluation criteria for such distributed
learning architectures in order to shed some light on what the right measures of
optimality for autonomously reasoning and communicating agents should be. These
issues will be investigated together with a more systematic and thorough investigation
of advanced interaction and communicationmechanisms for distributed, collaborating
and competing agents.

Acknowledgement

We gratefully acknowledge the support of the presented research by Army
Research Laboratory project N62558-03-0819 and Office for Naval Research project
N00014-06-1-0232.

MALEF: Framework for distributed machine learning and data mining 23

References

Bailey, S., Grossman, R., Sivakumar, H. and Turinsky, A. (1999) ‘Papyrus: a system for data
mining over local andwide area clusters and super-clusters’,Proceedings of theConference
on Supercomputing, ACM Press, Article No. 63, 13–18 November, p.63.

Bauer, E. and Kohavi, R. (1999) ‘An empirical comparison of voting classification algorithms:
bagging, boosting, and variants’,Machine Learning, Vol. 36, July–August, pp.105–139.

Berkhin, P. (2002) Survey of Clustering Data Mining Techniques, Technical Report, Accrue
Software, San Jose, CA.

Caragea, D., Silvescu, A. and Honavar, V. (2000) ‘Agents that learn from distributed dynamic
data sources’, in Stone, P. and Sen, S. (Eds.): Proceedings of the Workshop on Learning
Agents (Agents 2000/ECML 2000), Barcelona, Spain.

Chawla, N., abd, S.E. and Hall, L.O. (2001) ‘Creating ensembles of classifiers’, Proceedings of
ICDM 2001, San Jose, CA, USA, pp.580–581.

Dash, D. and Cooper, G.F. (2004) ‘Model averaging for prediction with discrete Bayesian
networks’, Journal of Machine Learning Research, Vol. 5, pp.1177–1203.

Davies, D.L. and Bouldin, D.W. (1979) ‘A cluster separation measure’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 4, pp.224–227.

Edwards, P. andDavies,W. (1993) ‘Aheterogeneousmulti-agent learning system’, inDeen, S.M.
(Ed.):Proceedings of the Special InterestGrouponCooperatingKnowledgeBasedSystems
(CKBS ’93), pp.163–184.

Ghosh, J., Strehl, A. andMerugu, S. (2002) ‘A consensus framework for integrating distributed
clusterings under limited knowledge sharing’, Proceedings of the NSF Workshop on Next
Generation Data Mining, pp.99–108.

Grecu,D.L. andBecker,L.A. (1998) ‘Coactive learning fordistributeddatamining’,Proceedings
of KDD-98, New York, NY, August, pp.209–213.

Klusch, M., Lodi, S. and Moro, G. (2003) ‘Agent-based distributed data mining: the KDEC
scheme’, AgentLink, Number 2586 in LNCS, Springer, Berlin/Heidelberg, pp.104–122.

Miao, Y., Kešelj, V. and Milios, E. (2005) ‘Document clustering using character N-grams:
a comparative evaluation with term-based and word-based clustering’, Proceedings of
the 14th ACM international Conference on information and Knowledge Management,
CIKM ’05, ACM Press, New York, NY, pp.357, 358.

Mitchell, T.M. (1997)Machine Learning, McGraw-Hill, New York, pp.29–36.

Ontanon, S. and Plaza, E. (2005) ‘Recycling data for multi-agent learning’, Proceedings of
ICML-05, Bonn, Germany, ACM, New York, NY, USA.

Panait, L. and Luke, S. (2005) ‘Cooperative multi-agent learning: the state of the art’,
Autonomous Agents and Multi-Agent Systems, Vol. 11, No. 3, pp.387–434.

Park, B. and Kargupta, H. (2002) ‘Distributed data mining: algorithms, systems, and
applications’, in Ye, N. (Ed.): Data Mining Handbook, IEA, pp.341–358.

Provost, F.J. and Hennessy, D.N. (1996) ‘Scaling up: distributed machine learning with
cooperation’, Proceedings of AAAI-96, AAAI Press/MIT Press, Portland, OR, pp.74–79.

Sian, S. (1991) ‘Extending learning to multiple agents: issues and a model for multi-agent
machine learning (ma-ml)’, in Kodratoff, Y. (Ed.): Machine Learning – EWSL-91,
Springer-Verlag, Berlin et al., pp.440–456.

Smith, R. (1980) ‘The contract-net protocol: high-level communication and control in a
distributed problem solver’, IEEE Transactions on Computers, Vol. C-29, No. 12,
pp.1104–1113.

24 J. Tožička et al.

Stolfo, S.J., Prodromidis, A.L., Tselepis, S., Lee,W., Fan,D.W. andChan, P.K. (1997) ‘Jam: java
agents for meta-learning over distributed databases’, in Heckerman, D. and Mannila, H.
(Eds.): Proceedings of the KDD-97, AAAI Press, Newport Beach, CA, USA, pp.74–81.

Tožička, J., Jakob, M. and Pěchouček, M. (2006) ‘Market-inspired approach to collaborative
learning’, Cooperative Information Agents X (CIA 2006), Vol. 4149 of Lecture Notes in
Computer Science, Springer, pp.213–227.

Wei, Y.Z., Moreau, L. and Jennings, N.R. (2003) ‘Recommender systems: a market-based
design’, Proceedings of AAMAS-03), ACM Press, New York, NY, USA, pp.600–607,

Weiß, G. (1998) ‘A multiagent perspective of parallel and distributed machine learning’,
in Sycara, K.P. and Wooldridge, M. (Eds.): Proceedings of Agents’98, ACM Press,
New York, NY, pp.226–230.

Weiss,G. andDillenbourg, P. (1999) ‘What is ’multi’ inmulti-agent learning?’, inDillenbourg, P.
(Ed.): Collaborative-learning: Cognitive and Computational Approaches, Elsevier,
Oxford, pp.64–80.

Witten, H., Bray, Z., Mahoui, M. and Teahan, W.J. (1999) ‘Text mining: a new frontier for
lossless compression’, Data Compression Conference, Snowbird, UT, USA, pp.198–207.

Notes

1By requiring this we are ensuring that the learning problem can be solved in principle using
the given hypothesis space.

2Note that our outlook is not only different from common, cooperative models of distributed
machine learning and data mining, but also delineates our approach frommultiagent learning
systems in which agents learn about other agents (Weiss and Dillenbourg, 1999), i.e., the
learning goal itself is not affected by agents’ behaviour in the environment.

Websites

http://www.aislive.com
http://www.healthagents.com

