
Operational Modelling of Agent Autonomy: Theoretical
Aspects and a Formal Language

Gerhard Weiß1, Felix Fischer1,2, Matthias Nickles1, and Michael Rovatsos3

1 Department of Informatics, Technical University of Munich, 85748 Garching, Germany
{weissg, nickles}@in.tum.de

2 Department of Informatics, University of Munich, 80538 Munich, Germany
fischerf@tcs.ifi.lmu.de

3 School of Informatics, The University of Edinburgh, Edinburgh EH8 9LE, United Kingdom
mrovatso@inf.ed.ac.uk

Abstract. Autonomy has always been conceived as one of the defining attributes
of intelligent agents. While the past years have seen considerable progress regard-
ing theoretical aspects of autonomy, and while autonomy has been identified as
an enabler for new computing paradigms such as grid computing, (web-)service-
oriented computing or ubiquitous computing, autonomy as a software property
is still miles away from implementation. Because of the legal responsibility of
designers or users for the actions of autonomous software, the implementation of
autonomy will require rigorous modelling and verification, so as to ensure max-
imum dependability. We take a first step in this direction by introducing a for-
mal language ASL (Autonomy Specification Language) that allows for a precise
specification of the activities to be carried out by a set of agents, the deontic con-
straints imposed on these activities, and the implications of activity execution on
particular constraints (i.e., constraint dynamics). Agent autonomy is implicit in
an ASL specification as the degrees of freedom left to the agents for the execution
of activities.

1 Introduction

Since the inception of distributed artificial intelligence, autonomy has always been con-
ceived as one of the defining attributes of intelligent agents. In the past years, particular
interest has been paid to the theoretical aspects of autonomy and related concepts (like
the control of and cooperation between agents), and considerable progress has been
made in formally defining these [10, 5]. In addition to that, the increasing complexity
of software in domains like e/m-commerce, telecommunications, logistics, knowledge
management, and simulation of social and economic processes on the one hand and
the identification of autonomy as an enabler for emerging information processing par-
adigms such as grid computing, (web-)service-oriented computing or ubiquitous com-
puting on the other have given rise to a more general interest in autonomy as a software
property. Nevertheless, software systems that tap the full potential of intelligent agents
and have autonomy as a real property1 rather than just a catchy label are still miles

1 This means decision and action choice for working and interacting towards a design objective
even under critical and unexpected circumstances and without substantial human support or
intervention.

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 G. Weiß et al.

away from implementation. The main reason for this is obvious: while (technically)
each piece of software can be given the autonomy to act on its own, it will always be
the designers or users who are responsible for its actions in a legal sense. Hence, the
only way towards the implementation of autonomy is via a systematic process of rig-
orous modelling and verification, so as to ensure maximum dependability of systems
that are given the permission to act autonomously. Without this dependability, it is un-
likely that autonomously acting agents will be broadly used in industrial, commercial
and scientific applications.

We respond to this challenge and take a first step by introducing a formal language
ASL (Autonomy Specification Language) that allows for a precise specification of the
activities to be carried out by a set of agents, the deontic constraints imposed on these
activities, and the implications of activity execution on particular constraints (i.e., con-
straint dynamics). Agent autonomy is implicit in an ASL specification as the degrees
of freedom left to the agents for the execution of activities, so that its type and degree
can be precisely tailored to the task at hand. ASL further allows for the automatic detec-
tion and handling of norm conflicts, such that conflicts can either be resolved at design
time or appropriate measures can be taken regarding their runtime settlement. What
distinguishes ASL from existing role- and norm-based models of agent interaction is
its operational character and its expressiveness and flexibility particularly w.r.t. agent
autonomy.

The remainder of this paper is structured as follows. Section 2 introduces ASL and
gives a formal definition of its syntax. Throughout this section, the expressiveness and
flexibility of ASL is illustrated in the context of an agent-based electronic trading plat-
form. Section 3 identifies different types of conflicts in an autonomy specification and
proposes strategies for their identification and resolution. Section 4 then discusses the
features of ASL, compares it to related work and points to some shortcomings and future
improvements.

2 The Autonomy Specification Language ASL

The basic view underlying ASL is that agents are embedded in a social frame that regu-
lates their behaviour. This social frame, henceforth called role space, is composed of a
set of roles which are available to the agents and through which they can try to achieve
individual and joint objectives. An agent may own several roles at the same time, and
the same role may be owned by several agents. In the context of this paper, roles serve
as a means for specifying desired behaviour and for achieving behavioural predictabil-
ity, but not to make sure that agents never exhibit unexpected and undesirable behaviour
(which would simply be impossible if autonomy is taken seriously). In particular, roles
may not fully specify or constrain the behaviour of potential owners, but leave room for
individuality (so that different agents may fill in the same role differently, put emphasis
on different aspects, etc.).

Formally, a role in ASL consists of a set of activities to which norms and sanctions
are attached. As the owner of a role, an agent is exposed to all the norms and sanc-
tions attached to the role-specific activities. ASL distinguishes between three different
types of norms (namely permissions, obligations, and interdictions) and two types of

Operational Modelling of Agent Autonomy 3

sanctions (reward and punishment). While norms correspond to behavioural expecta-
tions held by agents against each other in their capacities as role owners, sanctions
denote (potential) consequences of norm-conforming and norm-violating behaviour.
Hence, through norms and sanctions, a system designer can explicitly specify the lim-
its within which an agent is supposed to act autonomously, and how these limits are
enforced.

2.1 Notational Preliminaries

The syntax of ASL will be given as a set of production rules in extended Backus-Naur
form (more precisely, these rules resemble a context-free grammar G, and this grammar
generates the language L(G) of valid ASL specifications). For the sake of readability,
nonterminals (to be replaced) and ASL-specific keywords and special symbols (which
both are terminal symbols) are written in different fonts.

2.2 Basic Language Constructs

Role Spaces. The most general abstraction employed by ASL is that of a role space
composed of several roles to be played by the individual agents in their attempt to
achieve their goals. This is captured by the nonterminal role-space-spec2 and the
production rule

role-space-spec ::= role space role-space-id { role-spec+}

where role-space-id is an identifier3 composed of letters “L” and digits “D” and be-
ginning with a letter, i.e.,

role-space-id ::= L { L | D }∗

role-space-id (i.e. any result of its replacement) is referred to as a role space identi-
fier. The nonterminal role-spec, which allows for the specification of roles as sets of
activities, can be replaced according to the rule

role-spec ::= role role-id { activity-spec+}

where role-id is a role identifier and activity-spec is given by the rule

activity-spec ::= basic-activity-spec | activating-activity-spec |
deactivating-activity-spec | request-activity-spec

The four nonterminals on the right hand side of this rule, corresponding to the different
kinds of activities in ASL, are treated in section 2.3.

Example 1. Consider an agent-based electronic supply chain management system, for
which the system designers have identified five roles “European supplier”, “US sup-
plier”, “European assembly manager”,“US assembly manager”, and “member of the
board of directors”. In ASL, this role structure can be written as

2 Hence, role-space-spec is the starting symbol of the grammar G that generates ASL.
3 All the different kinds of identifiers used throughout this paper are assumed to be defined in

this way, individual identifiers are further assumed to be unique.

4 G. Weiß et al.

role space eSUPPLY
{ role EUROsupplier { . . . } role USsupplier { . . . }

role EUROamg { . . . } role USamg { . . . } role MBdir { . . . } }

where the “. . . ” remain to be filled with the appropriate activity specifications.

Variables. In ASL, variables can be specified explicitly according to the production rule

variable-spec ::= variable-id of type variable-type [variable-range]

where variable-id is an identifier and variable-type is a data type, i.e.,

variable-type ::= { nat | int | real | bool | char | string | identifier }

All types but identifier are standard primitive types known from various high-level pro-
gramming languages. The type identifier, which encompasses all legal identifiers and has
no operations defined on it, serves to enable a designer to effectively refer to specific
roles and activities (details on these follow below). Optionally, variable domains can
be restricted explicitly by giving possible (ranges of) values after the type in square
brackets (e.g. [1..100] or [EUROamg, USamg]).

Status Statements, Norms, and Sanctions. In ASL, each role is defined through a set
of characteristic activities. Attached to each activity of each role is at least one status
statement that specifies the norms and sanctions an agent playing the role is exposed
to with respect to this particular activity. ASL distinguishes three types of norms –
permission (indicated by the keyword p), obligation (o), and interdiction (i) to carry
out the activity – and two types of sanctions – reward (re) and punishment (pu) – that
apply in the case of norm conformance and norm deviation, respectively.

As we have already said at the beginning of section 2, it is unrealistic to assume that
agents as autonomous entities do always act in accordance with available norms (espe-
cially in open environments characterised by a changing population of heterogeneous,
self-interested agents). Instead, agents may ignore or violate norms, be it intentional
or not. ASL takes care of this fact by enabling designers to explicitly specify the con-
sequences of norm-conforming and norm-deviating behaviour in terms of positive and
negative sanctions (i.e., reward and punishment). In other words, norms alone do not
impose any limitations on possible agent behaviour (since this is impossible due to our
definition of autonomy), they rather work indirectly via the agent’s internal reasoning
about the attached sanctions, making certain behaviours (which may be undesirable
from the designer’s point of view) undesirable for the agent. Hence, it is the responsi-
bility of the system designer to devise a set of norms that prevent undesirable behaviour
and the appropriate sanctions to enforce these norms. In addition to that, norms can be
coupled to logical conditions that specify the circumstances under which they are valid
and apply.

Alternatively, the three types of norms (in combination with the sanctions attached
to them) can be viewed as different ways to specify the boundaries of agent autonomy:
while obligations and interdictions state which activities are outside an agent’s range of
behavioural choice and control, permissions state which activities are within. Putting
sanctions aside, an agent may, but need not execute a permitted activity – the execution

Operational Modelling of Agent Autonomy 5

is neither mandatory (as in the case of an obligation) nor forbidden (as in the case of an
interdiction). Whether or not an agent executes such an activity solely depends on his
own decision about how to pursue his goals.4

Returning to the ASL syntax, a designer can distinguish between two different types
of status statements (i.e. norm-sanction pairs) attached to an activity:

– independent status statements (keyword ind) an agent becomes subject to as a direct
consequence of entering the role to which the activity belongs; and

– dependent status statements (keyword dep) an agent as owner of the respective role
only becomes subject to if they are explicitly “activated” by another agent (through
the execution of special activating activities, details on which are given in sec-
tion 2.3).

Hence, dependent status statements allow for the specification of adjustable autonomy
[9], and the status statements attached to activating activities resemble a kind of “meta-
autonomy” (i.e. autonomy w.r.t. influencing others’ autonomy), and so on. Formally,
status statements are given by the following rule:

status-statement-spec ::= < { ind | dep role-id } > : norm-spec
[+ sanction-spec]

The norm specification is defined as

norm-spec ::= norm < { p | o | i} > <condition>

where condition is a standard Boolean expression over the variables of the activity to
which the status statement is attached (evaluating to true or false) and denotes when the
norm is actually valid. The sanction specification is given by

sanction-spec ::= sanc < { re | pu } > <sanction-ref>

Details on sanction-ref will be given at the end of section 2.3, for now it shall suffice
to view sanction-ref as a (unique) identifier referring to a particular sanction. The
following examples shall illustrate the use of status statements.

Example 2. Consider a status statement <ind> : norm <p> < true> attached to an ac-
tivity Deliver of the role EUROsupplier (a complete specification of this activity will be
provided in example 3 in section 2.3). Accordingly, each agent acting as EUROsup-
plier is permitted (as indicated by p) to carry out this activity (i.e., to deliver material)
under any circumstances (as condition is true) and without any sanction coupled to
this permission. Being an independent status statement (ind), an agent becomes subject

4 In fact, for truly autonomous agents (which only judge norms by the personal consequences
of attached sanctions) the distinction between different types of norms does not increase the
expressiveness of ASL, since assigning both a positive and a negative sanction to each activity
would suffice to fully specify the range of behavioural choice. This is an interesting similarity
to deontic logic, where each of the operators can be defined via the respective other, and we
will return to this aspect in the following section in the context of requests.

6 G. Weiß et al.

to this permission automatically when entering the role EUROsupplier. Further assume
that the Deliver activity contains <dep EUROamg> : norm <o> < material = "steel"> + sanc

<pu> <ChargeFine(500)> as a second status statement. As indicated by “dep EUROamg”,
this status statement can be activated by agents acting as European assembly manager
(how this can be done is described in the following section). Through this activation,
a European supplier (more precisely, an agent owning the role EUROsupplier) becomes
obliged (o) to fulfil all requests for delivering steel (from now on, and no matter what
quantity of steel is requested). Moreover, this status statement says that a violation of
this obligation results in a punishment (pu) in the form of a $500 fine (as indicated by
“ChargeFine(500)”).

Assuming a Closed World. A well known assumption in AI (and the modelling realm
in general) is that of a closed world, stating that everything that cannot be shown to be
true is assumed to be false. ASL adopts this principle in that every activity not explic-
itly declared as being permitted, obligatory or interdicted (under certain conditions), is
implicitly assumed to be interdicted (under these conditions).5 In software engineering
terms, this corresponds to the least privileges and complete mediation design princi-
ples for secure software. The former principle states that users and programs should be
endowed with as few privileges as possible, and the latter states that only those activ-
ities – more specifically, those data accesses – being explicitly allowed should in fact
be executable. Obviously, implicit interdiction also requires an implicit sanction to be
effective, which we assume to be the “grounding” sanction described in the following
section.

2.3 Activity Specifications

Around the status statements defined in the previous section, we will now introduce the
ASL syntax for four different types of activities, namely basic, activating, deactivat-
ing and request. The nonterminal symbols corresponding to these different types are
basic-activity-spec, activating-activity-spec, deactivating-activity-spec,
and request-activity-spec, respectively.

Basic Activities. All activities that concern the handling of resources and events are
referred to as basic activities. Examples for resources to be handled are time, money,
or data, and examples for events are the access to a database, the delivery of goods,
the execution of a negotiation protocol, or the response to an environmental chance. In
ASL, basic activities are specified according to the production rule

basic-activity-spec ::= act activity-id (variable-id∗)
{ variable-spec∗;

status range status-statement-spec+ }

where activity-id is an identifier. The activity takes a (possibly empty) list of para-
meters and contains a specification of all these variables and any additional (e.g. global)

5 It should be noted that while practically there is no difference between implicit and explicit
interdictions, the latter can be used deliberatively – through the execution of activating activi-
ties – to “override” permissions and obligations.

Operational Modelling of Agent Autonomy 7

ones referred to by the activity specification. At the core of the activity specification is
a nonempty set of status statements, the activity’s status range.

Example 3. Consider the following basic activity specification as part of the role US-
supplier:

act Deliver (material, quantity)
{ material of type string["steel", "silver", "gold", "platinum"] ,

quantity of type nat[1 .. 1000];
status range
<ind> : norm <o> <quantity ≥ 100> + sanc <pu> <ChargeFine(500)>
<dep USamg> : norm <p> <quantity < 100>
<dep MBdir> : norm <i> <quantity > 50 and material = "silver"> +

sanc <pu> <WithdrawRole> }

According to the independent status statement of this activity, a US supplier must (o)
fulfil any delivery request with a quantity of at least 100. If this obligation is violated,
the responsible US supplier has to pay a fine (more precisely, the agent who violated
this norm in his capacity as US supplier). What’s implicit in this independent status
statement is that delivery of quantities below 100 is forbidden, but due to the first de-
pendent status statement a US assembly manager can permit a US supplier to obey such
requests (for any kind of material given in the variable specification). The second de-
pendent status statement says that a member of the board of directors (MBdir) can forbid
(i) a US supplier to fulfil requests for delivering more than 50 units of silver. An agent
is no longer allowed to act as US supplier if he violates this interdiction (indicated by
“WithdrawRole”).

Activating and Deactivating Activities. As we have already mentioned, ASL explic-
itly captures adjustable autonomy (i.e. autonomy that changes over time) and meta-
autonomy (i.e. autonomy w.r.t. influencing others’ autonomy) by means of so-called
activating and deactivating activities, which serve to activate and deactivate dependent
status statements and thus dynamically expose role owners to certain norms and sanc-
tions. The ASL syntax of activating activities is given by the rule

activating-activity-spec ::= act activity-id
activate activity-id of role-id
{ variable-spec∗;

status-range-spec ;
impact status-statement-spec+ }

The first activity-id is a unique identifier for the activating activity, while the second
activity-id and the role-id identify the activity being affected. The status state-
ments included in impact-spec are those statements of that activity that are activated
(i.e. the same that occur in the corresponding dependent status statement). Deactivating
activities (nonterminal deactivating-activity-spec) are specified analogously with
activate replaced by deactivate (the meaning of this should be clear).

Obviously, a sound ASL specification should include one corresponding activating
activity for each dependent status statement in order to ensure that each such statement
can be activated (and also a deactivating activity if it should be possible to deactivate it

8 G. Weiß et al.

afterwards). Compared to that, independent status statements are inherently active and
they concern agents immediately upon entering a role. Finally, it should be emphasised
that activating and deactivating activities apply at the role rather than the individual
agent level (i.e., a status statement can only be activated for all agents acting as owners
of a particular role).

Example 4. Consider the basic activity Deliver of a US supplier as defined in exam-
ple 3. According to the first dependent status statement of this activity, a US supplier
can be permitted by a US assembly manager to fulfil delivery requests under certain cir-
cumstances. Consequently, within the role USamg there should be an activating activity
corresponding to this “permissive” status statement. Assume that this activating activity
is given by the following specification:

act PermitDeliver
activate Deliver of USsupplier
{ EcoSituation of type string["poor", "medium", "excellent"] ;

status range
<ind> : norm <p> <true>
<dep MBdir> : norm <o> <EcoSituation = "poor"> + sanc <re> <EarnBonus(500)>
impact
<dep USamg> : norm <p> <quantity < 100> }

As desired, the impact part includes the first status statement (i.e., “<dep USamg> . . . ”)
of the Deliver activity of a US supplier, thus clearly identifying both the activity to be
affected and the effect of executing the activating activity (i.e., US assembly managers
are granted the permission to deliver less than 100 pieces of material). The respective
deactivating activity (for example called ForbidDeliver) will only differ by the keyword
activate replaced by deactivate and will have just the opposite effect (in this case revok-
ing the above permission). A pair of corresponding activating and deactivating activities
hence facilitates the exertion of full control over the adjustable autonomy inherent in
a dependent status statement. The semantics of the status range is the same across the
different activity types (basic, activating and deactivating). Hence, according to the in-
dependent status statement, a US assembly manager is permitted (p) to execute this
activating activity (hence to permit US suppliers to fulfil deliver requests with an or-
der volume lower than 100) without any restrictions (true). According to the dependent
status statement, a US assembly manager can be obliged (o) by a member of the board
of directors (MBdir) to carry out this activating activity, provided that the economic sit-
uation is rated as poor. By following this obligation, a US assembly manager earns a
bonus.

Request Activities. ASL allows a designer to explicitly specify requests for carrying
out activities through so-called request activities. Request activities may be viewed
as requests for behaving cooperatively by executing the requested activity. This not
only allows for modelling autonomy w.r.t. issuing requests, but also enables a precise
definition of the notion of “not executing an action a” often found in deontic frame-
works, namely as “not executing a (immediately) when requested”. The ASL syntax
of request activities is defined quite similar to that of (de)activating activities by the
rule

Operational Modelling of Agent Autonomy 9

request-activity-spec ::= act activity-id
request activity-id of role-id
{ variable-spec∗;
status-range-spec }

with nonterminals as defined above. Again, the first activity-id serves to identify the
request activity, while the second together with the role-id refers to the activity being
requested. Observe that the parameters are determined by the activity being requested
and need not be specified again. Possible restrictions on the parameters can be expressed
by means of the request activity’s status range.

Example 5. Assume that the following request activity specification forms part of the
role USamg:

act RequestDeliver
request Deliver of USsupplier
{ material of type string["steel", "silver", "gold", "platinum"] ,

quantity of type nat[1 .. 1000] ;
status range
<ind> : norm <p> <quantity ≤ 200>
<dep MBdir> : norm <i> <material = gold> + sanc <pu> <WithdrawRole> }

According to this, a US assembly manager (i.e., an agent in his capacity as a US as-
sembly manager) is permitted under certain conditions (as given in the status range) to
request US suppliers to deliver certain types of material (namely, steel, silver, gold and
platinum). The independent status statement says that a US assembly manager is per-
mitted to order up to 200 units of material. According to the dependent status statement,
once activated through a member of the board of directors, a US assembly manager is
interdicted to request the delivery of gold.

An important feature w.r.t. the expressiveness and flexibility of ASL is that activities of
any type can be subject to both (de)activating and request activities. In particular, this
means that ASL allows for the formulation of “crossed” and “self-referential” constructs
such as requests for requests, requests for disallowing certain activities (i.e. requests for
carrying out activating or deactivating activities) and so on.

2.4 Modelling Sanctions and Autonomy Dynamics

So far, we have not given a formal definition of the nonterminal sanction-ref intro-
duced on page 5 and have rather referred to sanctions by some abstract identifiers. By
means of request activities, we are now able to introduce a natural yet much more ex-
pressive model of sanctioning. This can be done by defining a basic activity for every
action that is to be executed as the result of a sanction (like paying a fine, for example),
which is obligatory for every role it is part of. However, the corresponding request activ-
ity (which is required to put this obligation into practise) may not normally be executed,
but is triggered automatically upon norm violation.6

6 More precisely, this resembles an executive authority that constantly monitors all active norms
and is allowed to execute the corresponding request activity – and does so – in case of a norm
violation.

10 G. Weiß et al.

For sanctions to be of any use in the presence of really autonomous agents, failure to
execute a sanctioning activity (which has become obligatory by the “triggered” request)
will again have to be sanctioned, until ultimately some grounding sanction is reached
(e.g. role withdrawal, as used in some of the above examples).7 To enable the use of
sanctioning activities in a status statement, we finally define

sanction-ref ::= activity-id(variable-id∗)

Example 6. Consider the following definition of a basic activity PayFine as part of the
role USsupplier. It takes the amount of the fine as a parameter and is grounded in role
withdrawal.

act PayFine (amount)
{ amount of type int ;

status range
<ind> : norm <o> <true> + sanc <pu> <WithdrawRole> }

The corresponding request activity (invoked automatically if USsupplier violates certain
norms) then forms part of the role specification for the executive authority:

act ChargeFine
request PayFine of USsupplier
{ status range
<ind> : norm <p> <true> }

Besides sanctioning, activities that are triggered automatically upon norm conformance
or violation can also be used for modelling a wide variety of autonomy dynamics like,
for example, alternatives in norms, reciprocal norms, or contrary-to-duty obligations.
For example, the obligation to do either X or Y can be modelled by means of deacti-
vating activities that remove the obligation for either of the two as soon the other one is
performed (i.e. as a reward). As an example for contrary-to-duties, consider a contract
according to which a seller is obliged to deliver some goods, and a buyer is obliged to
pay a certain price (not necessarily after the goods have been delivered). However, if
the buyer fails to pay for the goods, the seller must no longer deliver them (in addition
to the buyer being fined). This situation can be modelled by means of a deactivating ac-
tivity which impacts the seller’s obligation (to deliver) and is triggered as a punishment
for violating the obligation to pay. What is particularly interesting about this model of
a contract is that the buyer’s refusal to pay for the goods explicitly excuses the seller
from delivering. The formalisation of these two examples in ASL is left to the interested
reader as an exercise.

3 Autonomy-Induced Conflicts

Since ASL does not impose any limitations whatsoever on the different status state-
ments in an activity (e.g., regarding their number or kind), the corresponding norms

7 By this, we implicitly assume that (at least) this grounding sanction can always be enforced.
The existence of such a grounding sanction is crucial for retaining control over any system in
which autonomy is involved.

Operational Modelling of Agent Autonomy 11

may be inconsistent. To this end, we will now define three basic types of autonomy-
induced conflicts in terms of such inconsistencies and show how these can be detected
and resolved at design time.

It should be noted that in the context of this paper the term conflict is used to denote
conflicts between norms (as these, and possible other conflicts caused directly by them,
are the conflicts that can be treated on the level of an ASL specification). The (low-
level, design-time) conflict resolution strategies presented here do not address exactly
the same problems as the (high-level, runtime) ones usually investigated in the context
of agents, like negotiation, mediation, arbitration, etc. (see, e.g. [8, 13]). They should
hence be seen as a supplement (able to completely avoid certain high-level conflicts)
rather than an alternative.

3.1 Types of Conflicts

In the following, let

S1 = <status-type1> : norm <norm-type1> <condition1> . . .
S2 = <status-type2> : norm <norm-type2> <condition2> . . .

be two status statements that are part of the status range of an activity A. S1 and S2 are
then said to constitute a potential conflict if and only if

(i) S1 and S2 have one of the following three norm constellations:
• norm-type1 = o and norm-type2 = i (“OI conflict”)
• norm-type1 = p and norm-type2 = o (“PO conflict”)
• norm-type1 = p and norm-type2 = i (“PI conflict”) and

(ii) it can happen that condition1 and condition2 evaluate to true at the same time
(i.e., both S1 and S2 are applicable for a particular request).

A potential conflict of type OI turns into an actual conflict of this type, if both S1 and
S2 are activated and a request for executing A is available for which both S1 and S2
are applicable. As mentioned above, permissions imply decision choice on the part of
an agent, so the situation is somewhat different for conflicts of types PO and PI. A po-
tential conflict of type PO turns into an actual PO conflict if additionally the agent being
requested to execute A prefers to not execute A (i.e. to not fulfil the request, which is
in accordance with the permission S1) while at the same time being obliged to (S2).
Similarly, a potential conflict of type PI turns into an actual conflict of this type if addi-
tionally the requested agent prefers to execute A (i.e. to fulfil the request in accordance
with the permission S1) while at the same time being interdicted to do so (S2).

Example 7. First, consider the independent status statement and the second dependent
status statement of the Deliver activity specified in example 3 as part of the role USsup-
plier. Since the conditions of both evaluate to true for a request of at least 100 units of
silver, they constitute a potential OI conflict. This can also be understood as a conflict
between the roles USsupplier (as the independent status statement becomes active auto-
matically through entering this role) and MBdir. An example for a potential PO conflict
is given by the two status statements of the activating activity PermitDeliver given in
example 4, where both the condition of the independent status statement and that of the

12 G. Weiß et al.

dependent statement evaluate to true if EcoSituation = poor. This conflict can also be seen
as a conflict between the roles USamg (which includes the activity) and MBdir (through
which the dependent status statement can be activated). Finally, the two dependent sta-
tus statements of the Deliver basic activity constitute a potential PI conflict, as both are
activated through a request for delivering x units of silver where 51 < x < 100. This
may also be understood as a conflict between the roles USamg and MBdir, through which
the two status statements can be activated.

3.2 Conflict Detection

As only the status statements of a single activity may lead to conflicts in the above sense,
their detection at design time reduces to a pairwise comparison of status statements and
can be fully automatised by means of the following, rather simplistic, algorithm:

for each role R ∈ role-space-spec {
for each activity A ∈ R {
for each S1 ∈ status range of A {
for each S2 ∈ status range of A \ {S1} {
if (norm-type1 and norm-type2 are of type OI, PO or PI) {
test whether there is a variable assignment that satisfies

both condition1 and condition2 } } } }

For conditions encoded in propositional logic (or first order logic with finite do-
mains), the innermost tests are decidable, and at most n · m2 of the tests are required,
where n is the total number of activities for all roles and m is an upper bound for
the number of status statements included in the status range of a particular activity.
However, a single test may take time exponential in the number of variables shared by
condition1 and condition2.

3.3 Conflict Resolution

Given that all potential conflicts in an ASL specification can be identified, we will now
present three specific strategies for the resolution of such conflicts. All of them are based
on specifying at design time which of two (or more) conflicting norms will actually be
enforced.

– Norm ordering: define an order (a reflexive, antisymmetric, transitive relation) ≺N

on the three norms o, i and p, determining which of two norms overrules the other
in case of a conflict. This ordering can be partial (e.g., i ≺N o and p ≺N o) or total
(e.g., i ≺N o ≺N p).

– Role ordering: define a (total or partial) order ≺R on roles, determining which of
two roles involved in a conflict dominates the other. This strategy is often found in
human organisations (where the decisions of one role may be overruled by a supe-
rior), and it makes sense because, as we have seen above, a conflict between two
status statements can always be attributed to the roles to which the status statements
belong or by which they have been activated.

– Status statement ordering: impose an order ≺S on conflicting status statements.
Again, this order can be total (in this case meaning that all pairs of conflicting
status statements are ordered) or partial.

Operational Modelling of Agent Autonomy 13

These strategies differ significantly w.r.t. their granularity. For example, norm ordering
is rather unspecific, but fair in the sense that it is uniform across all roles. On the other
hand, status statement ordering allows for responding to conflicts in a direct and highly
specific manner, but at the risk of resulting in a very heterogeneous collection of rela-
tionships between norms. For instance, consider four status statements S1 to S4 with
norm-type1 = norm-type4 �= norm-type2 = norm-type3, where S1 is in conflict with
S2 and S3 is in conflict with S4. Irrespective of the individual norm types (but also in a
possibly counterintuitive way), these statements can be ordered according to S1 ≺S S2
and S3 ≺S S4. Role ordering lies somewhere in between the other two strategies, but
has the additional appeal of being the most “natural” approach.

Most importantly, both total norm ordering and total status statement ordering are
guaranteed to resolve all OI/PO/PI conflicts (while role ordering obviously doesn’t help
to resolve conflicts between one and the same role). The same effect can be achieved by
appropriately combining different partial orderings. Such a combination is appealing as
it allows for balancing the specificities of different conflict resolution strategies, but has
to be done carefully because of potential “meta-conflicts” between the strategies. For
example, norm ordering and status statement ordering may put certain status statements
into a different order. Such meta-conflicts can be resolved at design time by imposing
an order (i.e., a meta-strategy) on the strategies (or strategy types) themselves.

Example 8. Again consider the two dependent status statements included in the status
range of the basic activity Deliver defined in example 3. As described above, these state-
ments constitute a potential PI conflict, which can be resolved by imposing an order
on permissions and interdictions (i.e., p ≺N i or i ≺N p). Now assume that the first
dependent status statement (i.e., “<dep USamg> : norm <p> . . . ”) should “override” the
second one (i.e., “<dep MBdir> : norm <i> . . . ”), while in all other cases the decisions
of a member of the board of directors should overrule that of a US assembly manager.
This can be realised by imposing the desired order on the two status statements (i.e.,
“<dep USamg> . . . ” ≺S “<dep MBdir> . . . ”) and on the roles (i.e., MBdir ≺R USamg)
and by combining these two orderings according to the meta-strategy S ≺ R.

4 Discussion

After this extensive treatment of the ASL syntax, we will now summarise the essential
features of ASL, compare it to related work and point to some shortcomings that call
for further research.

Features of ASL. From the engineering point of view, ASL offers two main benefits.
First, it is a highly expressive language that enables designers to specify agent autonomy
at a very precise level. Consequences of both norm-conforming and norm-deviating be-
haviour can be captured by means of positive and negative sanctions. Instead of making
any assumptions about norm conformance or deviation, this exerts control on agents
via their internal reasoning without limiting their autonomy. In a way, ASL is neu-
tral w.r.t. autonomy (i.e. neither biased for nor against it). The fact that no assump-
tions whatsoever (e.g. mentalistic or based on social commitments) are made about the
type or internal structure of agents is also reflected in the fact that ASL focuses on the
role rather than the individual agent level. Context sensitivity of activities and norms

14 G. Weiß et al.

(and thus adjustable autonomy) can be captured by means of activating and deactivat-
ing activities, which may either be executed at will by other agents or follow implicitly
in case of conformance with or deviation from certain norms. Request activities can be
used to explicitly model cooperation and coordination between agents. Finally, nested
activity constructs of arbitrary complexity can be formalised in a natural way, such as
requests for requests or requests for activating activities. A second key feature of ASL
is that it allows for the detection and resolution of autonomy-induced conflicts already
at design time. To this end, different types of conflicts and different strategies for their
resolution have been identified. While this does not render high-level conflict resolution
techniques usually investigated in the context of agents, like negotiation, mediation or
arbitration (see, e.g. [8, 13]) unnecessary, it makes the most of what can already be done
a design time. To have at least a partial alternative to the high-level strategies is impor-
tant, because the former are not always applicable in real-world contexts (e.g., due to
limited communication bandwidth, knowledge, or time available to identify potential
compromises and put them into practice).

Related Work. There are several existing approaches for modelling the interaction
of autonomous agents, mainly in the area of electronic institutions and organisations.
[3] introduces an abstract, normative, role-based model for interactions between au-
tonomous agents within an organisation. This model uses a deontic temporal logic to
formalise contracts about agents’ capabilities and obligations. [12] presents a frame-
work for the normative specification of electronic organisations of autonomous agents at
different levels of abstraction. [11] uses a special deontic and action logic, with includes
“acting in a role” as first-order concept, to devise and reason about role-based models
of groups of autonomous agents. While both ASL and the above approaches (as well
as several others, e.g. [2, 4, 6, 14, 15]) use deontic concepts to specify (the boundaries
of) autonomous behaviour, there are three main differences. Firstly, ASL has been built
top-down for maximum expressiveness and flexibility, especially w.r.t. agent autonomy.
Secondly, it lends itself very well to an operational or procedural interpretation, which
is useful when an abstract specification is to be transformed into a concrete (i.e. imple-
mentable) agent system. Thirdly, ASL includes a notion of autonomy-induced conflict,
and allows for handling such conflicts and hence reducing the inherent contingency of
autonomous systems already at design time. There also exists a close relationship be-
tween ASL and policy specification languages, in particular the Ponder language [1].
Ponder is a declarative, strongly-typed, and object-oriented language for the specifica-
tion of security policies and for policy-based management of computer networks and
distributed systems [7]. It is fully implemented and supported by a number of tools.

Future Work. In this respect, part of our future research will be concerned with a
more detailed investigation of the fundamental relationship between agent autonomy
and security policies in general and the languages ASL and Ponder in particular. Unlike
Ponder, ASL as defined in this paper does not include the usual (object-oriented) con-
structs for role modelling (inheritance, composition, etc.) and assignment to individual
agents. While this does not limit the expressiveness of ASL, it would be rather cumber-
some to have certain activities (like the “sanctioning” activity PayFine) that are part of a
large number of roles.

Operational Modelling of Agent Autonomy 15

On the conceptual side, we see two main shortcomings of ASL in its current form.
First, it would be desirable to introduce explicit time and hence allow for the speci-
fication of deadlines as temporal constraints on norms (i.e. the time interval between
a request, the execution of the corresponding activity and the initiation of a possible
sanction) or other temporal aspects of autonomy (e.g. norms that are valid only at a
certain time). Second, giving a formal (e.g. possible worlds) semantics to ASL will pro-
vide a proper theoretical grounding and ultimately pave the way for model checking the
autonomy-related properties of a system. Our current research addresses these issues to
further improve the expressiveness of ASL and support the engineering of autonomy as
a property of dependable software systems.

References

1. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification language.
In Proceedings of the 2nd International Workshop on Policies for Distributed Systems and
Networks, volume 1995 of Lecture Notes in Computer Science, Bristol, UK, 2001. Springer.

2. F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7:69–79, 1999.
3. V. Dignum. A model for organizational interaction: based on agents, founded in logic. PhD

thesis, Utrecht University, The Netherlands, 2004.
4. M. Esteva. Eletronic institutions: from specification to development. PhD thesis, IIIA, Spain,

2003.
5. H. Hexmoor, C. Castelfranchi, and R. Falcone. Agent autonomy, volume 7 of Multiagent

Systems, Artificial Societies, and Simulated Organizations (MASA). Kluwer Academic Pub-
lishers, 2003.

6. F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy through norms. In
Proceedings of the First International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 2002.

7. E. Lupu and M. Sloman. Towards a role based framework for distributed systems manage-
ment. Journal of Network and Systems Management, 5(1):5–30, 1997.

8. H.-J. Müller and R. Dieng, editors. Computational conflicts. Conflict modeling for distributed
intelligent systems. Springer, Berlin, 2000.

9. D. Musliner and B. Pell. Agents with adjustable autonomy. Papers from the AAAI spring
symposium. Technical Report SS-99-06, AAAI Press, Menlo Park, CA, 1999.

10. M. Nickles, M. Rovatsos, and G. Weiß, editors. Agents and computational autonomy. Poten-
tial, risks, and solutions, volume 2969 (Hot Topics) of Lecture Notes in Artificial Intelligence,
Berlin, Germany, 2004. Springer.

11. O. Pacheco and J. Carmo. A role based model for the normative specification of organized
collective agency and agents interaction. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS), 6(2):125–184, 2003.

12. J. Salceda. The role of norms and electronic institutions in multi-agent systems applied to
complex domains. PhD thesis, Technical University of Catalonia, Spain, 2003.

13. C. Tessier, L. Chaudron, and H.-J. Müller, editors. Conflicting agents. Conflict management
in multiagent systems, volume 1 of Multiagent Systems, Artificial Societies, and Simulated
Organizations (MASA). Kluwer Academic Publishers, 2000.

14. H. Verhagen. Norm Autonomous Agents. PhD thesis, Department of System and Computer
Sciences, The Royal Institute of Technology and Stockholm University, 2000.

15. G. Weiß, M. Rovatsos, M. Nickles, and C. Meinl. Capturing agent autonomy in roles and
XML. In Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 105–112, 2003.

	Introduction
	The Autonomy Specification Language ASL
	Notational Preliminaries
	Basic Language Constructs
	Activity Specifications
	Modelling Sanctions and Autonomy Dynamics

	Autonomy-Induced Conflicts
	Types of Conflicts
	Conflict Detection
	Conflict Resolution

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

