Operational Modelling of Agent Autonomy: Theoretical
Aspects and a Formal Language

Gerhard WeiR, Felix Fischet, Matthias Nickles, and Michael Rovatsds

! Department of Informatics, Technical University of Muni@5748 Garching, Germany
{wei ssg, fi scherf, nickles}@s.tum edu
2 School of Informatics, The University of Edinburgh, Edingla EH8 9LE, United Kingdom
nrovat so@ nf . ed. ac. uk

Abstract. Autonomyhas always been conceived as one of the defining attributes
of intelligent agents. While the past years have seen ceraite progress regard-
ing theoretical aspects of autonomy, and while autonomybleas identified as
an enabler for new computing paradigms such as grid compu(tiveb-)service-
oriented computing or ubiquitous computing, autonomy asfaware property
is still miles away from implementation. The main reasontfos is that while
software can be given the autonomy to act on its own, it willagls be the de-
signers or users who aresponsibléfor its actions in a legal sense. Hence, the
implementation of autonomy will require rigorous modegliand verification, so
as to ensure maximum dependability of systems acting antouosly.

We take a first step in this direction by introducing a fornaadduageASL (Au-
tonomy Specification Language) that allows for a preciseifipation of the ac-
tivities to be carried out by a set of agents, the deontic tcaims imposed on
these activities, and the implications of activity exeontbn particular constraints
(i.e., constraint dynamics). Agent autonomy is implicitan ASL specification
as the degrees of freedom left to the agents for the execafiantivities. Fur-
ther,ASL allows for the automatic detection and handling of norm d¢ctsfl such
that conflicts can either be resolved at design time or apj@@pmeasures can
be taken for their runtime settlement. The expressivenegdlexibility of ASL
w.r.t. the specification of autonomy-related propertigfiustrated in the context
of an agent-based electronic trading platform.

1 Introduction

Since the inception of distributed artificial intelligene@tonomyhas always been con-
ceived as one of the defining attributes of intelligent agemntthe past years, particular
interest has been paid to the theoretical aspects of autpanthrelated concepts (like
the control of and cooperation between agents), and caadildeprogress has been
made in formally defining these [10, 5]. In addition to th&ie increasing complex-
ity of software in domains like e/m-commerce, telecommatiams, logistics, knowl-
edge management, and simulation of social and economiegses on the one hand
and the identification of autonomy as an enabler for emergifgmation process-
ing paradigms such as grid computing, (web-)service-teioomputing or ubiquitous
computing on the other have given rise to a more generalestén autonomy as a
software property

Nevertheless, software systems that tap the full poteotiaitelligent agents and
have autonomy as @al property rather than just a catchy label are still miles away
from implementation. The main reason for this is obviousilevitechnically) each
piece of software can be given the autonomy to act on its owwillialways be the
designers or users who aresponsibléor its actions in a legal sense. Hence, the only
way towards the implementation of autonomy is viayatematigrocess ofigorous
modelling and verificationso as to ensure maximum dependability of systems that
are given the permission to act autonomously. Without thgethdability, it is unlikely
that autonomously acting agents will be broadly used in stiéi, commercial and
scientific applications.

We respond to this challenge and take a first step by introduciformal language
ASL (Autonomy Specification Language) that allows for a presjsecification of the
activities to be carried out by a set of agents, the deontistraints imposed on these
activities, and the implications of activity execution carficular constraints (i.e., con-
straint dynamics). Agent autonomy is implicit in ASL specification as the degrees of
freedom left to the agents for the execution of activitiestiet its type and degree can
be precisely tailored to the task at hand. What distingsisls¢ from existing role- and
norm-based models of agent interaction is its operatidmnalacter and its expressive-
ness and flexibility particularly w.r.t. agent autonomy.

The remainder of this paper is structured as follows. Se@imtroducef\SL and
gives a formal definition of its syntax. Throughout this s@tftthe expressiveness and
flexibility of ASL is illustrated in the context of an agent-based electraaiding plat-
form. Section 3 then discusses the features®f, compares it to related work and
points to some shortcomings and future improvements.

2 The Autonomy Specification LanguageASL

The basic view underlyingSL is that agents are embedded in a social frame that regu-
lates their behaviour. This social frame, henceforth dathée spaceis composed of a
set ofroleswhich are available to the agents and through which theyryaio taichieve
individual and joint objectives. An agent may own sever&sat the same time, and
the same role may be owned by several agents. In the contthisqfaper, roles serve
as a means for specifying desired behaviour and for aclgéx@hmavioural predictabil-
ity, butnotto make sure that agents never exhibit unexpected and uablesbehaviour
(which would simply be impossible if autonomy is taken sesig). In particular, roles
may not fully specify or constrain the behaviour of poterdianers, but leave room for
individuality (so that different agents may fill in the sanoderdifferently, put emphasis
on different aspects, etc.).

Formally, a role inASL consists of a set dctivitiesto whichnormsandsanctions
are attached. As the owner of a role, an agent is exposedttteallorms and sanctions
attached to the role-specific activitigsSL distinguishes between three different types

3 This means decision and action choice for working and isterg towards a design objective
even under critical and unexpected circumstances and wtigubstantial human support or
intervention.

of norms (namely permissions, obligations, and interditd) and two types of sanc-
tions (reward and punishment). While norms correspond tmbieural expectations
held by agents against each other in their capacities aovwabers, sanctions denote
(potential) consequences of norm-conforming and norntatiitg behaviour. Hence,
through norms and sanctions, a system designer can elpdipécify the limits within
which an agent is supposed to act autonomously, and how liéteare enforced.

2.1 Notational Preliminaries

The syntax ofASL will be given as a set of production rules in extended Badkasr
form (more precisely, these rules resemble a context-fiig@garG, and this grammar
generates the languad€G) of valid ASL specifications). For the sake of readability,
nont er ni nal s (to be replaced) andiSL-specifickeywords andspeci al synbol s (which
both are terminal symbols) are written in different fonts.

2.2 Basic Language Constructs

Role Spaces The most general abstraction employedAsL is that of a role space
composed of several roles to be played by the individual &gientheir attempt to
achieve their goals. This is captured by the nonterminaé- space- spec* and the

production rule

rol e-space-spec := role space rol e-space-id {rol e-spect}

wherer ol e- space-i d is an identifie? composed of lettersL” and digits ‘D” and be-
ginning with a letter, i.e.,

role-space-id == L{L | D}*

rol e-space-id (i.e. any result of its replacement) is referred to asla space identi-
fier. The nonterminal ol e- spec, which allows for the specification of roles as sets of
activities, can be replaced according to the rule

role-spec = rolerole-id iact ivi ty-spec*l
wherer ol e-i d is arole identifierandact i vi t y- spec is given by the rule

activity-spec :=basic-activity-spec | activating-activity-spec |
deactivating-activity-spec | request-activity-spec

The four nonterminals on the right hand side of this ruleregponding to the different
kinds of activities inASL, are treated in section 2.3.

ExampleConsider an agent-based electronic supply chain manaderystem
(“eSUPPLY™") for which the system designers have identifieg fioles “European
supplier”, “US supplier”, “European assembly managerS‘assembly manager”, and
“member of the board of directors”. aSL, this role structure is written as

* Hencey ol e- space- spec is the starting symbol of the grammé@rthat generateaSL.
5 All the different kinds of identifiers used throughout thisper are assumed to be defined in
this way, individual identifiers are further assumed to bigjue.

role space eSUPPLY
{ role EUROsupplier{ ...} role USsupplier{ ...}
~ role EUROamg{ ...} role USamg{...} role MBdir {...} }

where the “...” remain to be filled with the appropriate aityigpecifications.

Variables In ASL, variables can be specified explicitly according to the potidn
rule

vari abl e-spec := variable-id oftype variable-type [variabl e-range]
wherevari abl e-i d is an identifier andari abl e-type is a data type, i.e.,
variable-type == {nat | int | real | bool | char | string | identifier }

All types butidentifier are standard primitive types known from various high-lgwel-
gramming languages. The typentifier , which encompasses all legal identifiers and has
no operations defined on it, serves to enable a designerdotig#ly refer to specific
roles and activities (details on these follow below). Opély, variable domains can
be restricted explicitly by giving possible (ranges of)ued after the type in square
brackets (e.d.1..10¢ or [EUROamg, USaniy.

Status Statements, Norms, and Sanctiondn ASL, each role is defined through a set
of characteristic activities. Attached to each activityeatch role is at least orstatus
statementhat specifies the norms and sanctions an agent playing kaésrexposed
to with respect to this particular activitASL distinguishes three types of norms —
permission (indicated by the keywopdl, obligation ¢), and interdiction i} to carry
out the activity — and two types of sanctions — rewall §nd punishmentp() — that
apply in the case of norm conformance and norm deviatiopgatively.

As we have already said at the beginning of section 2, it isaiistic to assume that
agents as autonomous entities do always act in accordatitawsilable norms (espe-
cially in openenvironments characterised by a changing population @rbgéneous,
self-interested agents). Instead, agents may ignore tatgimorms, be it intentional
or not. ASL takes care of this fact by enabling designers to explicigcify the con-
sequences of norm-conforming and norm-deviating behawuoterms of positive and
negative sanctions (i.e., reward and punishment). In otleeds, norms alone do not
impose any limitations on possible agent behaviour (sihisei$ impossible due to our
definition of autonomy), they rather work indirectly via thgent's internal reasoning
about the attached sanctions, making certain behaviothilfwnay be undesirable
from the designer’s point of view) undesirable for the aget@nce, it is the responsi-
bility of the system designer to devise a set of norms thatgpreundesirable behaviour
and the appropriate sanctions to enforce these norms. Itiadtb that, norms can be
coupled to logical conditions that specify the circumstsaender which they are valid
and apply.

Alternatively, the three types of norms (in combinationhwtthe sanctions attached
to them) can be viewed as different ways to specify the botieslaf agent autonomy:
while obligations and interdictions state which actistare outside an agent’s range of
behavioural choice and control, permissions state whitkiaes are within. Putting
sanctions aside, an agent may, but need not exeqémaittedactivity — the execution
is neither mandatory (as in the case of an obligation) ndrifloien (as in the case of an

interdiction). Whether or not an agent executes such awitgcsiolely depends on his
own decision about how to pursue his gdals.

Returning to theASL syntax, a designer can distinguish between two differgredy
of status statements (i.e. norm-sanction pairs) attached activity:

— independenstatus statements (keyward) an agent becomes subject to as a direct
consequence of entering the role to which the activity bgtpand

— dependenstatus statements (keywaréh) an agent as owner of the respective role
only becomes subject to if they are explicitly “activate¢’dnother agent (through
the execution of specialctivating activities details on which are given in section
2.3).

Hence, dependent status statements allow for the speifictadjustable autonomy
[9], and the status statements attached to activatingitesivesemble a kind of “meta-
autonomy” (i.e. autonomy w.r.t. influencing others’ autong, and so on. Formally,
status statements are given by the following rule:

status-statenment-spec = <{ind | deprole-id}> : normspec
[+ sanction-spec]

Thenorm specificatioris defined as
normspec = norm <{p | o | i}> <condition>

wherecondi ti on is a standard Boolean expression over the variables of thétyaco
which the status statement is attached (evaluatinge®r faise) and denotes when the
norm is actually valid. Theanction specificatiois given by

sanction-spec = sanc <{re | pu}> <sanction-ref>

Details onsancti on-ref will be given at the end of section 2.3, for now it shall suffice
to view sanction-ref as a (unique) identifier referring to a particular sanctithe
following examples shall illustrate the use of status stetets.

ExamplesConsider a status statememid>: norm <p> <true> attached to an activity
Deliver of the roleEUROsupplier(a complete specification of this activity will be pro-
vided in section 2.3). Accordingly, each agent actingdROsupplieis permitted (as in-
dicated byp) to carry out this activity (i.e., to deliver material) undmy circumstances
(ascondi tion is true) and without any sanction coupled to this permission. B&ing
independent status statemeint), an agent becomes subject to this permission auto-
matically when entering the roBUROsupplier Further assume that timeliver activity
contains<dep EUROCamg : norm <o> < material =" stee! > + sanc <pu> <ChargeFine{00)>

as a second status statement. As indicatedigyEUROamd, this status statement can
be activated by agents acting as European assembly matagethis can be done is

5 n fact, for truly autonomous agents (which only judge notigsthe personal consequences
of attached sanctions) the distinction between differgpés$ of norms does not increase the
expressiveness @fSL, since assigning both a positive and a negative sanctioaco &ctivity
would suffice to fully specify the range of behavioural clei€his is an interesting similarity
to deontic logic, where each of the operators can be defirethei respective other, and we
will return to this aspect in the following section in the text of requests.

described in the following section). Through this actigatia European supplier (more
precisely, an agent owning the ra@#®ROsuppliey becomes obliged] to fulfil all re-
quests for delivering steel (from now on, and no matter wheindjty of steel is re-
quested). Moreover, this status statement says that diviolaf this obligation results
in a punishmentg() in the form of a$500 fine (as indicated byChargeFine{00)”).

Assuming a Closed World A well known assumption in Al (and the modelling realm
in general) is that of alosed world stating that everything that cannot be shown to be
true is assumed to be fals&SL adopts this principle in that every activity nexplic-
itly declared as being permitted, obligatory or interdictedi@rrcertain conditions), is
implicitly assumed to be interdicted (under these conditibhs)software engineering
terms, this corresponds to theast privilegesand complete mediatiodesign princi-
ples for secure software. The former principle states thatsiand programs should be
endowed with as few privileges as possible, and the lattgesthat only those activ-
ities — more specifically, those data accesses — being ékphtlowed should in fact
be executable. Obviously, implicit interdiction also r@gs an implicit sanction to be
effective, which we assume to be the “grounding” sanctioscdbed in the following
section.

2.3 Activity Specifications

Around the status statements defined in the previous seeti@will now introduce
the ASL syntax for four different types of activities, calldghsic activating deac-
tivating and requestactivities, respectively, and corresponding to the nanieals
basi c-activity-spec, activating-activity-spec, activating-activity-spec,
andr equest - acti vi ty- spec.
Basic Activities All activities that concern the handling of resources aneings are
referred to as basic activities. Examples for resource®tbdndled are time, money,
or data, and examples for events are the access to a datttibaskelivery of goods,
the execution of a negotiation protocol, or the responsa tereironmental chance. In
ASL, basic activities are specified according to the productide
basic-activity-spec :=actactivity-id(variable-id*)
{ vari abl e-spec*;
st at us-range-spec }

whereact i vi ty-i d is an identifier. The activity takes a (possibly empty) lisparam-
eters and contains a specification of all these variablesaapadditional (e.g. global)
ones referred to by the activity specification. At the coréhefactivity specification is
a nonempty set of status statements, the activitigfus rangeas given by

st at us-range-spec := statusrange st atus-statement-spect

ExampleConsider the following basic activity specification as pHrthe roleUSsup-
plier:

" It should be noted that while practically there is no differe between implicit and explicit in-
terdictions, the latter can be usedeliberatively— through the execution of activating activities
—to “override” permissions and obligations.

act Deliver (materia) quantity)
{ materialof type string [" steef, "silver', "gold", "platinunt'],
" quantityof type nat [1.. 100q; B
status range
<ind>: norm <o> <quantity> 100> + sanc <pu> <ChargeFine{00)>
<dep USam@ : norm <p> <quantity< 100>
<dep MBdir>: norm <i> <quantity> 50and material =" silver' > +
sanc <pu> <WithdrawRole }

According to the independent status statement of thisiggtar US supplier musto]
fulfil any delivery request with a quantity of at least0. If this obligation is violated,
the responsible US supplier has to pay a fine (more precigeyagent who violated
this norm in his capacity as US supplier). What's implicittiis independent status
statement is that delivery of quantitibelow 100 is forbidden, but due to the first de-
pendent status statement a US assembly manager can per§dugpblier to obey such
requests (for any kind of material given in the variable #jEtion). The second de-
pendent status statement says that a member of the boarectials Bdir) can forbid
(i) a US supplier to fulfil requests for delivering more than B@tsiof silver. An agent
is no longer allowed to act as US supplier if he violates thieridiction (indicated by
“WithdrawRol€).

Activating and Deactivating Activities As we have already mentionefiSL explic-
itly captures adjustable autonomy (i.e. autonomy that gharover time) and meta-
autonomy (i.e. autonomy w.r.t. influencing others’ autogdioy means of so-called
activating and deactivating activities, which serve tavaté and deactivate dependent
status statements and thus dynamically expose role owmerstain norms and sanc-
tions. TheASL syntax of activating activities is given by the rule
activating-activity-spec :=actactivity-id
activate activity-idofrole-id
{ vari abl e-spec*;
status-r ange-spec ;
impact st at us- st at ement - spec*l

The firstacti vi ty-i d is a unique identifier for the activating activity, while teecond
activity-id and therol e-i d identify the activity being affected. The status state-
ments included in npact - spec are those statements of that activity that are activated
(i.e. the same that occur in the corresponding dependeussteatement). Deactivating
activities (nonterminadeact i vati ng- acti vi t y- spec) are specified analogously with
activate replaced byieactivate (the meaning of this should be clear).

Obviously, a soundSL specification should include one corresponding activating
activity for each dependent status statement in order tareribat each such statement
can be activated (and also a deactivating activity if it 3tdne possible to deactivate it
afterwards). Compared to that, independent status statsraee inherently active and
they concern agents immediately upon entering a role. lyjrigshould be emphasised
that activating and deactivating activities apply at thke iather than the individual
agent level (i.e., a status statement can only be activatatdlfagents acting as owners
of a particular role).

ExampleConsider the basic activitpeliver of a US supplier as specified above. Ac-
cording to the first dependent status statement of thisipctav US supplier can be

permitted by a US assembly manager to fulfil delivery recgiaater certain circum-
stances. Consequently, within the raldamgthere should be an activating activity cor-
responding to this “permissive” status statement. Assumatthis activating activity is
given by the following specification:

act PermitDeliver
activate Deliver of USamg
{ EcoSituatiorof type string [" poor', "mediunt, "excellent] ;
~ status range
<ind>: norm <p> <true>
<dep MBdir>: norm <o> <EcoSituation = poor' > + sanc <re> <EarnBonus(508)
impact
<dep USam@ : norm <p> <quantity< 100> }

As desired, thenpact part includes the first status statement (i.&dep USamg> ...")

of the Deliver activity of a US supplier, thus clearly identifying both thetivity to be
affected and the effect of executing the activating agtigiie., US assembly managers
are granted the permission to deliver less than 100 piecasatdrial). The respective
deactivating activity (for example callgebrbidDelive) will only differ by the keyword
activate replaced byeactivate and will have just the opposite effect (in this case revok-
ing the above permission). A pair of corresponding actiasind deactivating activities
hence facilitates the exertion of full control over the atfble autonomy inherent in
a dependent status statement. The semantics of the stagesisathe same across the
different activity types (basic, activating and deacfivg}. Hence, according to the in-
dependent status statement, a US assembly manager istpdrig)itto execute this
activating activity (hence to permit US suppliers to fulfélder requests with an or-
der volume lower than 100) without any restrictioage(). According to the dependent
status statement, a US assembly manager can be obdigled 4 member of the board
of directors {Bdir) to carry out this activating activity, provided that thedaomic sit-
uation is rated as poor. By following this obligation, a USermbly manager earns a
bonus.

Request Activities ASL allows a designer to explicitly specify requests for cargyi
out activities through so-calle@quest activitiesRequest activities may be viewed as
requests for behaving cooperatively by executing the régdeactivity. This not only
allows for modelling autonomy w.r.t. issuing requests, disb enables a precise defi-
nition of the notion of “not executing an actiari often found in deontic frameworks,
namely as “not executing (immediately)when requestédThe ASL syntax of request
activities is defined quite similar to that of (de)activatarctivities by the rule

request-activity-spec :=actactivity-id
request activity-idofrole-id
{ vari abl e-spec*;
"~ status-range-spec}

with nonterminals as defined above. Again, the fitsti vi t y-i d serves to identify the
request activity, while the second together with ithee- i d refers to the activity being
requested. Observe that the parameters are determineé lgtibity being requested
and need not be specified again. Possible restrictions qratheneters can be expressed
by means of the request activity’s status range.

ExampleAssume that the following request activity specificatiomis part of the role
USamg

act RequestDeliver
request Deliver of USsupplier
{ materialof type string [" steet, "silver', "gold", "platinunt'] ,
"~ quantityof type nat [1.. 1000 ;
status range B)
<ind>: norm <p> <quantity< 200>
<dep MBdir>: norm <i> <material =gol¢ + sanc <pu> <WithdrawRole> }

According to this, a US assembly manager (i.e., an agentsircdgpacity as a US as-
sembly manager) is permitted under certain conditionsifgshgn the status range) to
request US suppliers to deliver certain types of mater@ir(@ly, steel, silver, gold and
platinum). The independent status statement says that as&&ndly manager is per-
mitted to order up to 200 units of material. According to tlependent status statement,
once activated through a member of the board of directorss as$sembly manager is
interdicted to request the delivery of gold.

An important feature w.r.t. the expressiveness and flegilmf ASL is that activities
of any type can be subject to both (de)activating and reqetisities. In particular, this
means thaASL allows for the formulation of “crossed” and “self-referidt constructs
such as requests for requests, requests for disallowitgjicactivities (i.e. requests for
carrying out activating or deactivating activities) andoso

Modelling Sanctions and Autonomy Dynamics So far, we have not given a formal
definition of the nonterminalancti on-ref introduced on page 5 and have rather re-
ferred to sanctions by some abstract identifiers. By meanscpfest activities, we are
now able to introduce a natural yet much more expressive hoddanctioning. This
can be done by defining a basic activity for every action thdbibe executed as the
result of a sanction (like paying a fine, for example), whigbbligatory for every role
it is part of. However, the corresponding request activithith is required to put this
obligation into practise) may not normally be executed,ibutiggeredautomatically
upon norm violatior?.

For sanctions to be of any use in the presence of really aatons agents, failure to
execute a sanctioning activity (which has become obligdigithe “triggered” request)
will again have to be sanctioned, until ultimately sogreunding sanctioris reached
(e.g. role withdrawal, as used in some of the above exampl&s)enable the use of
sanctioning activities in a status statement, we finallyraefi

sanction-ref == activity-id(variable-id*)

ExamplesConsider the following definition of a basic activiBayFineas part of the
role USsupplier It takes the amount of the fine as a parameter and is groundedei
withdrawal.

8 More precisely, this resembles an executive authoritydbastantly monitors all active norms
and is allowed to execute the corresponding request acthand does so — in case of a norm
violation.

9 By this, we implicitly assume that (at least) this groundgamction can always be enforced.
The existence of such a grounding sanction is crucial f@metg control over any system in
which autonomy is involved.

act PayFine(amoun}
{ amountof type int ;_
" status range
<ind>: norm <o> <true> + sanc <pu> <WithdrawRole }

The corresponding request activity (invoked automatydélUSsupplierviolates certain
norms) then forms part of the role specification for the etigewuthority:

act ChargeFine

request PayFineof USsupplier
{ status range

© <ind>: norm <p> <true> }

Besides sanctioning, activities that are triggered autmaildy upon norm confor-
mance or violation can also be used for modelling a wide tysaaEautonomy dynamics
like, for example, alternatives in norms, reciprocal narorscontrary-to-duty obliga-
tions. For example, the obligation to do eith€ror Y can be modelled by means of
deactivating activities that remove the obligation foheitof the two as soon the other
one is performed (i.e. as a reward). As an example for contmaduties, consider a
contract according to which a seller is obliged to delivemsogoods, and a buyer is
obliged to pay a certain price (not necessarily after thedgdwave been delivered).
However, if the buyer fails to pay for the goods, the sellestmo longer deliver them
(in addition to the buyer being fined). This situation can leledled by means of a de-
activating activity which impacts the seller’s obligatifto deliver) and is triggered as
a punishment for violating the obligation to pay. What istjgatarly interesting about
this model of a contract is that the buyer’s refusal to paytiergoods explicitly excuses
the seller from delivering. The formalisation of these twamples inASL is left to the
interested reader as an exercise.

3 Discussion

After this extensive treatment of teSL syntax, we will now summarise the essential
features ofASL, compare it to related work and point to some shortcomingsc¢hll
for further research. From the engineering point of via®i,. offers two main benefits.
First, itis a highly expressive language that enables desgto specify agent autonomy
at a very precise level. Consequences of both norm-confayarid norm-deviating be-
haviour can be captured by means of positive and negativtieas. Instead of making
any assumptions about norm conformance or deviation, > control on agents
via their internal reasoning without limiting their autang. In a way,ASL is neutral
w.r.t. autonomy (i.e. neither biased for nor against it)eTact that no assumptions
whatsoever (e.g. mentalistic or based on social commitshané made about the type
or internal structure of agents is also reflected in the taatASL focuses on the role
rather than the individual agent level. Context sensitiait activities and norms (and
thus adjustable autonomy) can be captured by means of tiog\end deactivating ac-
tivities, which may either be executed at will by other agantfollow implicitly in case
of conformance with or deviation from certain norms. Regaetvities can be used to
explicitly model cooperation and coordination betweenndgie-inally, nested activity

constructs of arbitrary complexity can be formalised in ture way, such as requests
for requests or requests for activating activities. A seckay feature ofASL, which
has not been treated in this paper for lack of space, is ttadloivs for the detection
and resolution of autonomy-induced conflicts already aigtetime. In anASL spec-
ification, such conflicts manifest as inconsistencies betwerms (e.g. an obligation
and an interdiction that hold at the same time), and can hkaagetected by a pair-
wise comparison of status statements and resolved by agpdypreference ordering
those that conflict. Various strategies of different granity exist for this (like order-
ing norms, roles or single status statements) and can benstooresolve all possible
conflicts (either alone or in combination). While this do@s render high-level con-
flict resolution techniques usually investigated in theteshof agents, like negotiation,
mediation or arbitration (see, e.g. [8, 13]) unnecessarjakes the most of what can
already be done a design time. To have at least a partiahattee to the high-level
strategies is important, because these are not alwaysapfdiin real-world contexts
(e.g., due to limited communication bandwidth, knowledgeime available to identify
potential compromises and put them into practise).

There are several existing approaches for modelling thegantion of autonomous
agents, mainly in the area of electronic institutions arghaisations. [3] introduces
an abstract, normative, role-based model for interactimta/een autonomous agents
within an organisation. This model uses a deontic tempogatlto formalise contracts
about agents’ capabilities and obligations. [12] presarftamework for the normative
specification of electronic organisations of autonomownégiat different levels of ab-
straction. [11] uses a special deontic and action logidy witludes “acting in a role”
as first-order concept, to devise and reason about roledbaedels of groups of au-
tonomous agents. While botSL and the above approaches (as well as several others,
e.g. [2,4,6,14,15]) use deontic concepts to specify (thentaries of) autonomous
behaviour, there are three main differences. FirgtBi. has been built top-down for
maximum expressiveness and flexibility, especially wagent autonomy. Secondly,
it lends itself very well to an operational or procedurakiptretation, which is useful
when an abstract specification is to be transformed into areta(i.e. implementable)
agent system. ThirdhASL includes a notion of autonomy-induced conflict, and allows
for handling such conflicts and hence reducing the inhe@mtirmgency of autonomous
systems already at design time.

There also exists a close relationship betwa&h and policy specification lan-
guages, in particular the Ponder language [1]. Ponder iclamddive, strongly-typed,
and object-oriented language for the specification of $gcpolicies and for policy-
based management of computer networks and distributeelnsgg]. It is fully imple-
mented and supported by a number of tools. In this respedtppaur future research
will be concerned with a more detailed investigation of thadamental relationship
between agent autonomy and security policies in generattenthnguageaSL and
Ponder in particular. Unlike PondexSL as defined in this paper does not include the
usual (object-oriented) constructs for role modellinghéritance, composition, etc.)
and assignment to individual agents. While this does noit lihe expressiveness of
ASL, it would be rather cumbersome to have certain activitige ¢he “sanctioning”
activity PayFing that are part of a large number of roles.

On the conceptual side, we see two main shortcomingssafin its current form.
First, it would be desirable to introduexplicit time and hence allow for the speci-
fication of deadlines as temporal constraints on normstfieetime interval between
a request, the execution of the corresponding activity &edritiation of a possible
sanction) or other temporal aspects of autonomy (e.g. néinatsare valid only at a
certain time). Second, giving a formal (e.g. possible wgjrkbmantics taSL will pro-
vide a proper theoretical grounding and ultimately paventag for model checking the
autonomy-related properties of a system. Our current resealdresses these issues to
further improve the expressivenessA&L and support the engineering of autonomy as
a property of dependable software systems.

References

1. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pondédicpspecification language.
In Proceedings of the 2nd International Workshop on Polictesfistributed Systems and
Networks volume 1995 of ecture Notes in Computer Scien@&istol, UK, 2001. Springer.

2. F. Dignum. Autonomous agents with norndstificial Intelligence and Law7:69-79, 1999.

3. V. Dignum. A model for organizational interaction: based on agentsytied in logic PhD
thesis, Utrecht University, The Netherlands, 2004.

4. M. EstevaEletronic institutions: from specification to developmd?hD thesis, IlIA, Spain,
2003.

5. H. Hexmoor, C. Castelfranchi, and R. Falcorgent autonomyvolume 7 ofMultiagent
Systems, Atrtificial Societies, and Simulated Organizat{dASA) Kluwer Academic Pub-
lishers, 2003.

6. F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraininganomy through norms. In
Proceedings of the First International Joint Conferencefarionomous Agents and Multia-
gent Systems (AAMAS002.

7. E. Lupu and M. Sloman. Towards a role based framework firiduted systems manage-
ment. Journal of Network and Systems ManagemB(it):5-30, 1997.

8. H.-J. Milller and R. Dieng, editorsComputational conflicts. Conflict modeling for dis-
tributed intelligent systemsSpringer, Berlin, 2000.

9. D. Musliner and B. Pell. Agents with adjustable autonoRgpers from the AAAI spring
symposium. Technical Report SS-99-06, AAAI Press, MenldkFaA, 1999.

10. M. Nickles, M. Rovatsos, and G. Weil3, editorsgents and computational autonomy. Po-
tential, risks, and solutionsolume 2969 (Hot Topics) dfecture Notes in Artificial Intelli-
gence Berlin, Germany, 2004. Springer.

11. O. Pacheco and J. Carmo. A role based model for the neersiecification of organized
collective agency and agents interactialournal of Autonomous Agents and Multi-Agent
Systems (JAAMAS)(2):125-184, 2003.

12. J. SalcedaThe role of norms and electronic institutions in multi-agepstems applied to
complex domainsPhD thesis, Technical University of Catalonia, Spain,200

13. C. Tessier, L. Chaudron, and H.-J. Muller, edit@snflicting agents. Conflict management
in multiagent systemsolume 1 ofMultiagent Systems, Artificial Societies, and Simulated
Organizations (MASA)Kluwer Academic Publishers, 2000.

14. H. VerhagenNorm Autonomous Agent®hD thesis, Department of System and Computer
Sciences, The Royal Institute of Technology and Stockhohivérsity, 2000.

15. G. Weil3, M. Rovatsos, M. Nickles, and C. Meinl. Capturaggnt autonomy in roles and
XML. In Proceedings of the Second International Joint ConferemcA&wtonomous Agents
and Multiagent Systems (AAMABages 105-112, 2003.

