
CAMP-BDI: A Pre-emptive Approach for Plan
Execution Robustness in Multiagent Systems

Alan White1, Austin Tate2, Michael Rovatsos3

Artificial Intelligence Applications Institute
Centre for Intelligent Systems and their Applications
School of Informatics, University of Edinburgh, UK

1a.g.white@sms.ed.ac.uk, 2a.tate@ed.ac.uk, 3mrovatso@inf.ed.ac.uk

Keywords: Multiagent Teamwork, Belief-Desire-Intention, Planning, Capability, Robustness

Abstract. Belief-Desire-Intention agents in realistic environments may face un-
predictable exogenous changes threatening intended plans and debilitative failure
effects that threaten reactive recovery. In this paper we present the CAMP-BDI
(Capability Aware, Maintaining Plans) approach, where BDI agents utilize intro-
spective reasoning to modify intended plans in avoidance of anticipated failure.
We also describe an extension of this approach to the distributed case, using a de-
centralized process driven by structured messaging. Our results show significant
improvements in goal achievement over a reactive failure recovery mechanism in
a stochastic environment with debilitative failure effects, and suggest CAMP-BDI
offers a valuable complementary approach towards agent robustness.

1 Introduction

The Belief-Desire-Intention (BDI) approach is widely applied towards intelligent agent behaviour,
including within realistic domains such as emergency response. Realistic environments are stochas-
tic and dynamic; exogenous change during execution can threaten the success of planned activ-
ities, risking both intention failure and debilitative consequences. Current BDI architectural im-
plementations typically employ reactive approaches for failure mitigation, replanning or repairing
plans after failure; Jason agents (Bordini and Hübner [2006]), for example, define recovery plans
explicitly triggered by goal failure(s). This may risk additional costs associated with recovering
from debilitated post-failure states – or even risk recovery being impossible. Continuous short-
term planning helps handle uncertainty, but risks inadvertently stymieing long-term goals – such
as if resource requirements are not identified and subsequently lost to contention.

We suggest agents embodied with capability knowledge can use introspective reasoning to
proactively avoid plan failure. The CAMP-BDI (Capability Aware, Maintaining Plans) approach
presented in this paper allows agents to modify intended plans when they are threatened by ex-
ogenous change – supporting use of long term planning whilst allowing response to unanticipated
world states. We contribute the following components as part of our approach;
– An algorithm for anticipatory plan repair behaviour, henceforth referred to as maintenance
– Extension to the distributed hierarchical team case, using structured communication to drive

individual adoption of responsibility for, and performance of, maintenance
– A supporting architecture, providing the capability, dependency, and obligation knowledge

required to support introspective reasoning during maintenance
– A policy mechanism allowing runtime tailoring of maintenance behaviour



2

An experimental implementation of CAMP-BDI was evaluated against a reactive replanning
system, using a logistics environment where unpredictable exogenous events could occur during
intention execution. Our results were gathered over multiple experimental runs, for several prob-
abilities of negative failure consequences. Our proactive approach was observed to hold a signif-
icant advantage in goal achievement over a reactive approach, and to offer greater efficiency (in
terms of planning calls) at higher probabilities of negative failure consequences (i.e. where it was
more likely failure led to a world state that increased difficulty of recovery planning).

2 Motivating Example

Our motivating example is a logistics domain, where goals require delivery of cargo to a set loca-
tion in a stochastic, dynamic, continuous and non-deterministic environment. Uncertainty arises
from agent health state, weather conditions (rainstorms may flood roads or cause landslips), or
emergence of ’danger zones’ (hostile insurgent activity at a given location). Failure risks nega-
tive consequences including vehicle damage (and, if already damaged, being rendered unusable),
stranding off-road, or cargo destruction with possible toxic contamination rendering roads unus-
able. Figure 1 depicts a Truck agent travelling a planned route from location A to M, when road
F→M is rendered unusable by flooding – threatening Truck’s intended activity, move(F , M ).

Fig. 1: Example of Truck executing a plan to travel from A to M.

We target environments where exogenous change causes divergence from the beliefs held at
intention formation, failure risks debilitation, and resource contention prevents continual plan-
ning. This requires a pre-emptive approach; anticipating failure risks and proactively altering
plans to compensate. Behaviour must extend to both local and multiagent contexts; i.e. if Truck
cannot maintain sufficient confidence in meeting an obligation, the dependent agent should be
able to compensate by modifying it’s local (dependent) intended plan.

3 Architecture Components

In order to support a pre-emptive approach and allow introspective examination of intended
plans, CAMP-BDI agents require the following meta-knowledge components. We suggest these
can be regarded as subsets of agent Beliefs, although storage and retrieval semantics will be
implementation-specific; the key element is that CAMP-BDI agents must specifically distinguish
and consequently use this information in maintenance reasoning. Due to our approach of plan
modification to avoid threatened failure, we adopt Simari and Parsons [2006]’s definition of an
intention i as combining a goal and plan; i.e. i = {igoal , iplan}.

3.1 Capabilities
Capabilities define meta-knowledge regarding activities performable, and goals achievable, by
agents. Our capability model provides the information required for introspective maintenance



3

reasoning – it is also used to provide a representation of such information when conveyed within
a dependency contract, allowing our algorithms to employ the same reasoning approach for both
locally performed and delegated activities.

We define an activity a as similar to a task in a Hierarchical Task Network; where successful
execution of a achieves some given state transition. A planned activity may represent either an
atomic action or a (sub)goal, where performance of the latter entails execution of some subplan
(i.e. an ordered sequence of activities). A capability c(a), denoting the holding agents ability to
perform a, has the following fields;

c(a) = <s, g(a), pre(a), eff(a), conf(a, Ba)>

– s: signature with name n and t parameters (s=n(t1,..., nt)); a specific capability instance c within
the MAS can be uniquely identified by combining s and (identifier of) the agent holding c(a).

– g(a): defines an associated goal – a set of atoms ground to a. This can be used to distinguish
between a defined purpose of a and its side-effects; i.e. fly and drive would achieve the same
goal state (to arrive at some location), but with different total effects (eff (a), below).

– pre(a): preconditions (belief atoms) defining where a can be achieved - specifically, where use
of c(a) is not guaranteed to fail

– eff (a): the complete set of post-effects of using c(a) – i.e. eff (a) = g(a) ∪ side-effects(c(a)).
– conf : a×Ba → [0:1]; the confidence function; estimates the quality (in this context indicating

likelihood of success) of using c(a) to perform a, where belief set Ba gives the execution con-
text. This supports identification of where exogenous change decreases optimality of a planned
a – i.e. conf (driveAlong(F, M), B) is lower where B 3 slippery(F,M) than B 3 dry(F,M).

In summary, holding c(a) indicates that agent can achieve g(a), with total post-effects eff (a),
provided pre(a) holds in the execution context Ba, with the level of quality indicated by conf.

3.1.1 Capability typology
We define the type of a capability using two, overlapping categories;
Complexity: Primitive and Composite capabilities can be viewed as equivalent to basic and
high level activities (Dhirendra et al. [2010]). Primitive capabilities represent atomic activities;
Composites represent knowledge of one or more plans to perform some activity, or the ability to
form a plan under specified preconditions. Each plan in an agent’s plan library is represented by
exactly one composite capability, meaning plans:capabilities have an n:1 relationship.

The activities found within plans will themselves correspond to capabilities. Composites can
be seen as representing refinement options for (sub)goal activities within plans (i.e. requiring
execution of some subplan), and also support continual planning by allowing reasoning whether
plans exist for (as-yet unrefined) subgoals.
Locality: Internal capabilities represent activities an agent can perform itself; External capa-
bilities represent those advertised by others, where a can be performed by delegation; as any
decomposition is identified and performed by the resultant obligant(s) (i.e. the advertising agent),
external capabilities are always primitive (e.g. are atomic from the dependant’s perspective).

3.1.2 The Confidence function
Certain state combinations may impact the likelihood of activity success, without being signif-
icant enough to include within preconditions (the qualification problem defined by McCarthy
[1958]). The confidence function (conf (a, Ba)) is used to allow reasoning whether exogenous
change has increased risk of failure, even where preconditions are not violated. A numerical
value allows semantic-independent comparison between different internal and/or external capa-
bilities for the same s, and supports varying levels of granularity (e.g.yes=1, maybe=0.5, no=0).



4

Estimation depends on both the capability type and a itself. If a is unground, confidence indi-
cates the general ability of that agent to achieve g in Ba – an abstract estimation. If a is ground,
additional semantic information can be used for specific estimation. Primitive capabilities will
use a predefined calculation for both abstract and specific estimation – such as considering both
past execution results (similar to Dhirendra et al. [2010]) and states in Ba. Implementation is
domain and agent specific, requiring appropriate analysis of both.

External capabilities use a fixed, abstract confidence value as received in the relevant capa-
bility advertisement. Agents are unlikely to be able to share semantic knowledge required for
specific estimation, as recipients may lack the modelling or sensory ability required to interpret.
However, specific estimates are provided for delegated activities through the external capability
field of contracts (see 3.2). We treat the actual advertisement process as implementation specific.

Composite capability confidence derives from the set of plans represented by that capability
(Pcapability ). Plan confidence is the minimum held in a constituent activity (below, with conf ex-
panded to consider a plan p as the first argument, where Bp is the execution context of the first
activity in p); Ba requires updating with an’s effects to estimate the execution context of an+1.

conf(p, Bp) = mina∈pconf(a, Ba)

We assume the highest confidence plan is always selected for a goal. Composite capabil-
ity confidence is taken as the highest of a selectable plan (where preconditions hold – if none
are selectable, 0 is returned), where agoal is the activity being performed using the composite
capability and Bagoal it’s execution context.

conf(agoal , Bagoal ) = max p∈Pcapability

pre(p)⊂Bagoal

conf(p, Bagoal )

This equates to formation and traversal of an AND-OR tree, similar to goal-plan trees de-
scribed in Thangarajah et al. [2003], representing all potential plan and subplan execution ’paths’
required to decompose and achieve agoal. The return value derives from visiting every leaf activ-
ity (O(n) worst case complexity, for n leaf nodes), originating from either a primitive or external
capability confidence value. We assume cyclical loops cannot occur due to the decompositional
nature of plans; this property is also required to prevent infinite loops in agent activity itself. Use
of advertised confidence for external capabilities – rather than requesting potential dependants
calculate a value locally – restricts semantic knowledge requirements to the advertising agent.

There is considerable scope for domain specific optimization of confidence calculation for
both primitive and composite types. Average-case complexity can also be improved in contexts
where a minimum threshold is being tested by using α-β pruning based on that threshold value.
Finally, composite capabilities representing runtime planning abilities will require custom imple-
mentation of confidence estimation, similar to that used by primitive capabilities.

3.2 Obligation and Dependency Contracts

Our approach assumes dependency contracts are formed as early as possible, in advance of execu-
tion, to reserve agent capabilities and protect against possible agent resource contention. CAMP-
BDI agents are aware of their obligation (to perform some activity upon request) and dependency
(activities to be performed by some obligant) contracts. Contracts define mutual beliefs between
dependants and obligants regarding a delegated activity – our algorithms require the following
fields be represented and established during contract formation;
– The activity to be performed by the obligant(s) for the dependant.
– Causal link states; states that will be established by planned dependant, as effects of activities

in the plan, prior to execution of the delegated activity.



5

– An external capability, used by obligant(s) to convey the (anticipated) post-effects and confi-
dence for the activity – the latter estimating the execution context using the causal link states.
If there is more than one obligant, the individual obligant capabilities will be merged;
• Confidence is set as the minimum individual obligant confidence
• Preconditions are formed as the conjunction of all obligant preconditions
• Effects are set as the union of all obligant post-effects

– A maintenance policy, used to guide maintenance behaviour (see 3.3).

3.3 Maintenance Policies

A maintenance policy defines specific fields, applied to a defined set of agents and/or capabilities,
where both field values and the applicable agent-capability set are modifiable during runtime;
– Threshold: the minimum confidence (quality) value for an activity; runtime modification of

this value also allows compensation for over-sensitive confidence estimation
– Priority: guides relative prioritisation within maintenance behaviour, when multiple activities

in an iplan are identified as under threat
Maintenance policies are used to tailor maintenance behaviour; agent-capabilities associ-

ated with activities that have greater (probability or severity) failure consequences can be given
lower thresholds and higher priorities. This assists balancing the additional computational costs
of maintenance (lower threshold values act to increase the likelihood of an agent attempting to
identify a confidence-raising modification of the iplan ) against the benefits of avoiding failure.

Contract maintenance policies merge dependant and obligant policies – these are matched
respectively to the capability mapped to the dependent’s igoal (where iplan contains the delegated
activity) and to that associated with the obligant and delegated activity (obligant’s igoal ). To re-
strict changes to a minimal subset of the overall distributed plan, the merged maintenance policy
uses the most constrained field values (lowest threshold and highest priority values) to ensure
obligants must have attempted maintenance before informing dependants of confidence changes.

4 The CAMP-BDI algorithm

The reasoning cycle (algorithm 1) of a CAMP-BDI agent extends Rao and Georgeff [1995]’s
generic BDI algorithm with contract formation and maintenance steps (the former to support
information requirements of the latter). Intentions are selected before the maintain function at-
tempts to diagnose and correct threats to iplan , the performance of which may result in subsequent
modification. The maintain function is also called following receipt of obligationMaintained mes-
sages, which convey changes in how obligants will perform a delegated activity and also signifies
they have performed any required (possible) local maintenance. The formAndUpdateContracts
function forms new, and updates existing, dependency and obligation contracts; this executes af-
ter maintain, to account for plan modifications and/or inherited dependency contract changes.

The maintain function (Algorithm 2) first forms a priority-ordered list (agenda) of main-
tenance tasks – each representing a threatened activity. The agent iterates through this agenda,
terminating when a maintenance task is successfully handled or the agenda emptied. The func-
tion handleMaintenanceTask attempts to modify iplan to address the issue represented by a given
maintenance task, returning true if successful (false if iplan is unchanged).

Separating agenda formation and handling allows the former to prioritize amongst the com-
plete set of threatened activities. Decoupling of agenda formation (i.e. threat diagnosis) and han-
dling processes also facilitates investigation into alternate approaches for either.

In our motivating example (Fig. 1), handleAgenda would identify – using the associated capa-
bility’s pre field – that flooding of F → M violates the preconditions of move(F ,M ), and insert



6

Algorithm 1: The CAMP-BDI reasoning cycle with changes from Rao and
Georgeff [1995]’s generic algorithm highlighted as bold text, denoting mainte-
nance activities and contract formation/updates.

initializeState();
while agent is alive do

D← optionGenerator(eventQueue, I , B);
i← deliberate(D, I , B);
if i 6= null & i not waiting on a dependency to complete then

i← updateIntentions(D, I , B);
Bi← estimated execution context of i;
maintain(i, Bi);
formAndUpdateContracts(i);
execute();

for each obligationMaintained message ∈ eventQueue do
idependency ← the associated dependant intention;
Bdependency ← estimated execution context of idependency ;
maintain(idependency , Bdependency );
formAndUpdateContracts(idependency );

for each obligation contract ∈ agent’s Obligations do
if i = ∅ then

iobgoal ← activity defined in obligation;
iobplan ← cached plan for obligation (to achieve iobgoal );
iob ← iobgoal , iobplan ;
Bob ← execution context estimated using (causal links in obligation ∪
B);
maintain(iob , Bob);

formAndUpdateContracts(iob);

getNewExternalEvents();
I ← dropSuccessfulAttitudes();
I ← dropImpossibleAttitudes();
I ← postIntentionStatus();

Algorithm 2: The maintain function
Data: i – An intention; a plan iplan to meet some goal igoal

Bi – The estimated execution context of the first activity in iplan
handled ← false;
agenda ← new empty Agenda;
agenda ← the agenda returned by formAgenda(igoal , iplan , Bi, agenda);
while ¬ handled & ¬ agenda .isEmpty() do

handled ← handleMaintenanceTask(agenda .removeTop());

update Dependency contracts;
if i is an Obligation then

update contract and send to the dependant in an obligationMaintained message;



7

a corresponding maintenance task into the agenda. A subsequent handlingMaintenanceTask call
for that maintenance task would (attempt to) modify iplan such that igoal can be achieved, either
by avoiding use of move(F ,M ) or (if capable) removing the flooded state of F → M .

If there are multiple possible intentions (I 6= ∅), the agent only attempts to maintain the spe-
cific i ∈ I that has been selected for execution. We view intention selection as goal driven be-
haviour, such that maintenance changes to improve an iplan will not invalidate the original choice
to select that i. This avoids the cost of maintaining every potential intention prior to selection – es-
pecially as maintenance of unselected intentions risks being rendered futile by subsequent agent
activity. We terminate after the first successfully handled maintenance task, as modifications may
invalidate other maintenance tasks in the agenda; this also provides a guaranteed termination
point. An alternative is to iteratively diagnose and handle until either an empty agenda is formed
or handling fails, but this is likely to result in significantly higher computational cost.

4.1 Maintenance tasks

Maintenance tasks are data structures which define a threatened activity, details of the threat and
handling requirements. A maintenance task mt defines an activity a, task type (preconditions or
effects), estimated execution contextBa for a, estimated confidence confa of a givenBa, and the
maintenance policy mpa associated with a and used to set confidence thresholds;

mt = < a, type, Ba, confa , mpa >

Capability knowledge facilitates introspective reasoning for maintenance task generation.
Activities are mapped to – in precedence order – internal capabilities, contract-contained external
capabilities, and finally advertised external capabilities; this assumes activities are only delegated
where necessary and that agents adopt the least complex (fewest activities) approach for perform-
ing any activity. If an activity can be met by several external capabilities, that with highest general
confidence is selected; mirroring the most likely criteria for obligant selection. Maintenance tasks
are ordered in an agenda first by (mpa defined) priority, then by precedence within the plan.

Preconditions maintenance task are generated where a’s preconditions do not hold inBa, but
it is valuable to preserve a within the plan – either due to it fulfilling a goal state, or to avoid (the
costs of) cancelling a pre-existing dependency contract for a. This type indicates maintenance
should first attempt to restore precondition states before considering modifications to replace a.

Effects maintenance tasks arise where either preconditions do not hold and a does not re-
quire preservation, or confa is under mpa .threshold (a is of unacceptable quality and at risk of
failure). This indicates a should be replaced by an activity sequence that will achieve the same
post-execution effects as a.

4.2 Agenda Formation

Agenda formation (algorithm 3) employs recursion to support hierarchical plan structures (i.e.
where composite activities are achieved through sub-plans). Each leaf activity (primitive activity
or a composite which does not yet have an associated subplan, as may occur when employing con-
tinual planning) is iterated through in scheduled execution order. The getCapability function as-
sociates each activity with it’s representative capability; this knowledge is used to identify threats
and insert representative maintenance tasks into the agenda, with Ba finally being updated with
activity effects (estimating the execution context for the subsequent activity). The consolidate
function merges multiple maintenance tasks for the same subplan into a single maintenance task
within the agenda, where appropriate. This consolidated maintenance task represents a need to
maintain the entire subplan containing those activities – avoiding recurrent costs of re-diagnosing
and handling each threatened activity individually, over multiple reasoning cycles.



8

Algorithm 3: The formAgenda function
Data: g – a goal met, or composite activity performed, by p

p – plan of n activities {a0, a1, ..., an} to perform g
agenda – priority ordered list of maintenance tasks; empty in initial (top-level) call
Ba – estimated execution context of a0 in p

Result: agenda updated with maintenance tasks for p
Ba updated with post-effects of p (used by recursion)

Bstart ← copy of Ba (for execution context estimation);
for each activity a ∈ p do

if a is abstract then
return agenda , Ba;

ca← getCapability(a);
if ca = null then

Add effects type maintenance task for a in Ba to agenda;
Update Ba with effects of goal a;

else if ca primitive ‖ (ca composite & (a is not decomposed into a subplan)) then
if maintenance task mt found for leaf activity a then

add mt to agenda;
Update Ba with ca.eff(a);

else if ca composite & (a is decomposed into a subplan) then
pa← subplan decomposing a;
agenda , Ba← formAgenda(a, pa, Ba, agenda);

agenda ← consolidate(g, agenda , Bstart );

return agenda , Ba;

4.3 Handling Maintenance Tasks

Handling a maintenance task (mt) requires modification of the iplan containing mt.a, by iden-
tification and subsequent insertion of a new maintenance plan into iplan . This behaviour is per-
formed through the handleMaintenanceTask function (as called within the reasoning cycle given
by Algorithm 1), which uses submethods handlePreconditionsTask (Algorithm 4) and handleEf-
fectsTask (Algorithm 5) for the preconditions and effects types respectively. Capability knowledge
is used to define an operator specification (reflecting currently accessible capabilities) and form
the maintenance planning problem.

If a preconditions maintenance task cannot be handled, the algorithm generates and attempts
to handle an equivalent effects maintenance task – relaxing the (preconditions maintenance) prob-
lem to allow replacement of mt.a rather than fail from violated preconditions. For example, if
Truck cannot restore preconditions for move(F,M) by unblocking road F→M, it will attempt to
find an alternate method to achieve the required goal state at(M).

4.3.1 Performing Preconditions Maintenance
Preconditions maintenance (Algorithm 4) attempts to generate a plan re-establishing precondi-
tions of mt.a, to be inserted prior to mt.a (similar to prefix plan repair as defined by Komenda
et al. [2014]). Generated maintenance plans are only inserted where their confidence is above
mt.mpa.threshold. This condition attempts to prevent subsequent maintenance of the iplan aris-
ing from insertion of a suboptimal confidence plan, but is not applied if mt.a is immediately due
to execute – we deem any non-zero confidence plan preferable over guaranteed failure. In our mo-



9

tivating example (Fig. 1), successful preconditions maintenance would insert a (sub)plan which,
when completed, removes the flooded state of road F → M before move(F , M ) executes.

Algorithm 4: The handlePreconditionsTask function
Data: task – a maintenance task
Result: true if a plan was found and inserted
imt← plan containing task .a;
ca← getCapability(task .a);
Define planning problem proba, with initial state = task .Bmt and goal = ca.pre(task .a);
if acceptable plan plana solving proba found then

Insert plana into imt as predecessor of task .a, and return true;

return false;

4.3.2 Performing Effects Maintenance
Effects maintenance attempts to substitute a subset of the plan containing mt.a, with a new
(sub)plan achieving identical effects. In our previous motivating example (Fig. 1), successful
effects maintenance would substitute a new subplan for move(F , M ) which achieves the associ-
ated igoal – e.g. reforming the iplan such that Truck (given a current location atD) will now travel
through a (higher confidence offering) route D → E → I → L.

Our algorithm (algorithm 5) adopts a similar approach to HTN plan repair – we use upwards
recursion to re-refine composite activities (subgoals or the root igoal ), terminating when either an
acceptable confidence (greater than mt.mpa .threshold ) maintenance plan is found and inserted,
or the algorithm has reached the level of igoal (i.e. attempted and failed to reform the entire iplan ).
We trade-off the potential cost of multiple planning calls at goal/subgoal levels against the stabil-
ity costs of complete replanning (Fox et al. [2006]).

The algorithm also considers potential costs from dependency cancellation, either from per-
forming communication or the loss of external capability. Changes in circumstance after initial
contract formation may render potential obligants subsequently unable to accept dependencies,
even where now-cancelled dependency contracts previously existed – potentially stymieing main-
tenance planning if that external capability was necessary. To account for dependencies, we at-
tempt two more restricted scope planning operations at the lowest level of iteration (the subplan
containingmt.a). Firstly, if dependency contracts have been formed formt.a or it’s successors in
that subplan, the algorithm first attempts to generate a maintenance plan that directly and solely
replaces mt.a; retaining successive activities and their associated dependency contracts. If any
dependencies precede mt.a, the algorithm may also attempt suffix plan repair (Komenda et al.
[2014]); where the generated maintenance plan replaces mt.a and it’s successors in that subplan,
but preserves preceding activities. These two more constrained cases attempt to reduce disruption
to a distributed plan performing team, at the cost of (potentially) requiring multiple planner calls.

The algorithm will, in the worst case, iterate and attempt to plan all levels of a hierarchical
imt, including at the initial pmt level twice (once for a failed preconditions maintenance task,
and once for the replacement of mt.a only), equivalent to O((n+2)p) complexity (where n is the
number of plan levels, and p the cost of planning). This, however, may still entail significant ac-
tual computational cost due to multiple planner invocations.

We are also investigating potential optimizations, including using policies to define condi-
tions where planning is intractable (i.e. if Truck had been damaged to the extent any plan would
have too low confidence) – allowing handling to terminate early and effectively delegate to any
dependent. Another alternative is use of heterogeneous planners, allowing computationally re-



10

Algorithm 5: The handleEffectsTask function
Data: task – a maintenance task
Result: true if a plan was found and inserted
imt← intended plan containing task .a;
if imt is a hierarchical plan then

pmt← subplan of imt containing a;

else
pmt← imt;

Bmt← task.Ba;
if a not last in imt ‖ a has subsequent dependencies then

ca← getCapability(a);
Define planning problem proba, with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace a in pmt with plana ;
return true;

if a not first in imt ‖ a has preceding dependencies then
a← goal achieved by pmt ;
ca← getCapability(a);
Define proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace pmt from a inclusive with plana ;
return true;

while a 6= root goal of imt do
a← goal activity for pmt;
Bmt← estimated execution context of a;
ca← getCapability(a);
Define proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace pmt with plana ;
return true;

return false;

stricted agents to employ less flexible, but faster, approaches such as HTN planning or libraries.
Finally, it is trivial to modify the effects maintenance algorithm to only perform top-level modi-
fication, if minimizing computational cost takes precedence over maximizing plan stability.

5 Distributed Behaviour

MASs use co-operative teams of agents to achieve goals unattainable by individuals; activity fail-
ure impacts other team members and threatens the success of distributed plans. In our approach,
we assume hierarchical agent teams arise from delegation to, and decomposition into plans by,
obligants. We define a decentralized approach as the distribution of knowledge and capability
across agents often renders centralized approaches infeasible for realistic domains. We apply the
previously defined individual maintenance algorithms to the distributed context, using structured
communication to drive successive adoption of maintenance responsibility by individual agents
at increasingly abstract levels of the decompositional team hierarchy (Fig. 2).



11

The supporting architecture is critical in supporting this behaviour; dependency and obliga-
tion contracts allow specific capability information to be provided for a delegated activity. Placing
external capabilities within contracts makes this information available to dependants, whilst off-
setting semantic knowledge requirements to the actual obligant(s). As both internal and external
capabilities share the same representative model, this allows an agent’s maintenance reasoning to
regard delegated activities in the same manner as those (to be) performed locally.

If an agent maintains an iplan where the igoal meets an obligation, the (waiting) dependent
agent is messaged after maintenance completes. Dependants are viewed as quiescent during ex-
ecution of a delegated activity; this allows maintenance of a dependency to be triggered in re-
sponse to obligants completing their local maintenance. Obligants will maintain intentions both
when performing (as an intention) an obligation, or when not presently pursuing any intention
(Algorithm 1) – in the latter case, such that idle agents will act to maintain mutual beliefs with
their dependent regarding the future achievement (or otherwise) of that delegated activity.

Dependants adopt maintenance responsibility if and when their obligants are unable to main-
tain confidence in their subpart of a greater distributed plan; restricting changes in a distributed
plan to the ’lowest’ (most specific) agent level. We informally refer to this as ’percolation’ of
maintenance responsibility – in that responsibility gradually moves upwards in the team hierar-
chy, until an agent has maintained an intention and produced an outcome acceptable to both itself
and any direct dependant. In our motivating example, if Truck is unable to reachM (despite local
maintenance), the dependant may alter it’s own iplan to instead use a Helicopter (not hindered by
flooding) as an obligant to achieve the delivery igoal .

We can summarize the resultant behaviour in general terms (Fig. 2) as follows;

Fig. 2: The adoption of responsibility process in a hierarchical team, where B is an
obligant of A, and C and D are obligants for a joint activity in B’s plan.

1. Agents C and D call maintain within local reasoning cycle(s).
2. C and D individually perform post-maintenance messaging; each sends a obligationMain-

tained message to B that includes contracts updated to account for any maintenance changes.
3. B calls it’s maintain method upon receipt of obligationMaintained messages from all obli-

gants. Information in the messaged, updated contracts is used to update the contract held by B
for that dependency, which will itself be sent on to A after maintain completes.

4. B sends A post-maintenance messaging, again using obligationMaintained messages.
5. A calls maintain upon receipt of B’s post-maintenance message); as A is not an obligation, no

further messaging is required.
Contracts are employed to help synchronize this behaviour through defining a common

maintenance policy for that activity, applied by both obligant(s) and dependant. As both share
confidence threshold triggers, for a dependent to diagnose and attempt to handle an effects main-
tenance task the obligant must have first attempted the same. Although the above example indi-
cates a linear approach to dependency formation, indirect ’self dependencies’ can emerge – for
example, in the above, D may form a dependency upon some other capability of A in the course



12

of performing it’s own intention.
Our overall design aims to replicate HTN plan repair, but over a distributed plan; where each

obligant’s intended plan can be seen as analogous to an HTN task refinement. Agents assume
responsibility for maintenance both when executing their own planned activities (as in Algo-
rithm 1), and in response to an obligant maintaining it’s own intention for an obligation. In the
latter case, the dependant can use contractual information to judge whether that maintenance
outcome is acceptable by it’s own standards and modify the dependant iplan if not.

6 Evaluation

CAMP-BDI was implemented by extending the Jason agent framework (Bordini and Hübner
[2006]). We compared a MAS of CAMP-BDI agents against a system using reactive replanning,
in our previously described motivating logistics domain. Three types of post-failure debilitation
could occur, with defined probabilities for cargo damage, cargo spillage (requiring roads to be
decontaminated), and for agent damage (with graded degrees and associated confidence loss).
We evaluated performance under four probabilities: 0.2, 0.4, 0.6 and 0.8; representing 20, 40,
60 and 80% chance of an activity failure resulting in debilitation. These probabilities were ap-
plied individually for each debilitation type, albeit with cargo damage/spillage debilitation only
possible if the failed activity was to load, unload or move whilst carrying cargo. Results for ten
experimental runs, performed under fixed simulation seeds, were averaged and are presented in
Fig. 3. A system with no failure mitigation was used as a worst-case indicator.

(a) y-axis; Average goals
achieved (%)

(b) y-axis; Average activity
success (%)

(c) y-axis; Average planner
calls per goal achieved

Fig. 3: Experimental results; x-axis denotes post-failure damage probability. CAMP-
BDI results are shown as solid lines, Replanning dashed, and Worst-Case dotted.

Our results show CAMP-BDI enjoyed significant advantage in goal success rate over replan-
ning, increasing with the likelihood of debilitative failure consequences (Fig. 3a); CAMP-BDI
maintained around 95% goal achievement for all consequence probability ranges, whilst replan-
ning dropped from achieving 61.9% of goals at probability 0.2, to 26.6% at 0.8. In all three
graphs CAMP-BDI shows fairly consistent performance; avoidance of failure (Fig. 3b) meant
changes in consequence probability were unlikely to impact performance. In contrast, acceptance
of failure as a ’trigger point’ for reactive recovery meant replanning faced increasing difficulty in
recovering (and achieving goals) from post-failure states as debilitation became more likely.

Worst case behaviour remained more variable (although always worst), as these agents would
fail goals immediately upon activity failure regardless of debilitation (or otherwise) – unlike re-
planning, where agents would pursue the intended goal until all options were exhausted, po-
tentially failing in multiple activities (with resultant accumulated debilitation) before recovery



13

attempts finally became futile. Goal and activity success rates of the worst case system were sim-
ilarly variable; as no recovery mechanism was employed, each goal failure could be attributed to
a single activity failure. This contrasts with reactive replanning, where agents would pursue an
intended goal until all reactive replanning options were exhausted; each goal failure was poten-
tially associated with multiple activity failures and consequent debilitations.

One obvious concern with a proactive approach is cost, particularly with CAMP-BDI’s use
of planning. Toyama and Hager [1997] note reactive approaches hold an advantage in only ex-
pending their costs following definitive, rather than potential, failure. Indeed, our results show
CAMP-BDI performed significantly more planning calls at lower consequence probabilities (Fig.
3c); 9.91 calls per goal, compared to 5.62 for replanning at the lowest consequence probability.
As the probability of post-failure debilitation increased, reactive replanning became significantly
less efficient; an average 19.51 planning calls were required for each goal achieved at the highest
consequence probability, compared to 11.03 for CAMP-BDI. This reflects an increasingly likeli-
hood of debilitation stymieing reactive recovery – suggesting maintenance costs can be balanced
against those incurred by failure. It may also still be preferable to employ a higher cost proactive
approach, in domains where failure risks sufficiently severe consequences – such as if delivery
goals are concerned with transport of nuclear waste or essential medical supplies.

7 Related Work

CAMP-BDI draws from a variety of existing work; our capability model captures the concepts
of know-how-to-perform, can-perform and know-how-to-achieve defined by Morgenstern [1986].
Plan confidence estimation is similar to a subset of TÆMS quality metrics (Lesser et al. [2004]),
such as q min; future work may investigate alternate estimation approaches. He and Ioerger
[2003] also suggest a quantitative estimation approach, in their case for producing maximally
efficient schedules. Sabatucci et al. [2013] suggests use of capabilities (representing plans and
viability conditions) to evaluate whether desires are achievable when selecting intentions.

Waters et al. [2014] suggest an intention selection mechanism prioritising the most con-
strained options, favouring those with least coverage (Thangarajah et al. [2012]), to increase the
chance of all intentions completing. This differs from CAMP-BDI through considering arbitra-
tion between options in order to maximize intention throughput, rather than to ensure a specific
intention succeeds. Whilst not explored in this paper, CAMP-BDI capability knowledge could
facilitate similar reasoning during desire and intention selection. Plan execution monitoring ap-
proaches, such as SIPE (Wilkins [1983]), and plan repair approaches, such as O-Plan (Drabble
et al. [1997]), share conceptual similarities with CAMP-BDI as both respond to divergence from
expected states. CAMP-BDI differs through explicit focus on a multi-agent context, and use of
confidence estimation to identify suboptimal activities.

Braubach et al. [2005] define two types of goals driving agent proactivity; those to achieve
some state, and those to maintain it (over some defined period or under set conditions). Duff et al.
[2006] further distinguishes reactive and proactive maintenance goals; the former requiring re-
establishment of the state once violated, the latter constraining goal and plan adoption to prevent
violation. In the reactive case, these drive adoption of achievement goals to re-establish violated
(maintained) states; CAMP-BDI could consequently be used to maintain resultant intentions.

Precondition maintenance in CAMP-BDI can be viewed as similar in outcome to inferring
proactive maintenance goals, corresponding to precondition states, and active until the relevant
activity executes. Effects maintenance can be viewed as somewhat similar, in the sense that the
loss of high-confidence associated states trigger plan modification; although our approach does
not necessarily entail re-establishment of specific states if maintenance planning can identify an
acceptable, alternate combination of activities. We also assume that plan formation mechanisms,



14

used both in intention formation and maintenance planning, will be implemented to recognise
and respect any maintenance goals.

Work by Hindriks and Van Riemsdijk [2007] uses (limited) lookahead similar to CAMP-
BDI, with regard to respecting proactive maintenance goals. They identify potential violations
from adopted goals and plans using a goal-plan tree to anticipate future effects of adopted in-
tentions. However, plans in this approach are treated as pre-defined and immutable; anticipated
violation is suggested as best addressed by goal relaxation to allow alternative plan options. This
may not be a viable approach in certain domains, if goals cannot be safely relaxed.

Duff et al. [2006] suggest a similar predictive approach, again using a goal-plan tree to filter
goal adoption based upon effects of potentially usable plans. CAMP-BDI varies by more ex-
plicitly considering exogenous change, rather than potential goal/plan adoption, as a source of
violation. Our approach also differs by focusing upon ensuring existing intentions avoid failure
after exogenous change – proactive maintenance goals are typically employed more as constraints
upon the formation and adoption of desires or intentions (although this encompasses adoption of
subgoals and subplans in continual approaches).

Continual planning handles uncertainty by deferring planning decisions (desJardins et al.
[2000]) – including decomposing certain abstract activities only upon execution. CAMP-BDI
supports this approach, using composite capabilities to reason whether abstract activities can
be met by (sub)plans. If planning incorporates sensing – representing knowledge requirements
through preconditions and effects – these can be represented similarly within capabilities.

Markov Decision Processes (MDPs) are an alternate approach for acting within stochastic
domains, using state transition probabilities and rewards to generate a policy defining the optimal
activity in every possible state. Partially Observable MDPs (POMDPs) remove total knowledge
assumptions through a probability map of state observations, used to infer actual states and de-
fine a solveable MDP. Whilst MDP approaches offer optimal behaviour, complexity issues ren-
der them intractable as state space increases. Schut et al. [2002] show BDI agents can handle
relatively simple domains that are intractable for MDPs and approximate MDP performance (de-
pending on time costs of runtime planning). Attempts to improve tractability typically involve
abstraction – simplifying state spaces at the cost of optimality (Boutilier and Dearden [1994]).

Although BDI is viewed as a (time-efficient) alternative to MDP approaches, work has been
performed to reconcile both; Simari and Parsons [2006] identify similarities and suggests pos-
sible mapping between policies and plans. Pereira et al. [2008] extend that work by defining
an algorithm to form deterministic plans (for libraries) from POMDP policies – although this
assumes the latter are formable offline. There is a risk that transition probability information is
unavailable, or impractical to learn under domain time constraints. An MDP specification of a
complex domain can also be non-intuitive, restricting practical usability; Meneguzzi et al. [2011]
suggest a method to map more intelligible HTN domains onto MDPs – defining probabilities
based upon state presence within operator preconditions, rather than probabilities in the environ-
ment. We defined CAMP-BDI under the assumption in realistic domains it is necessary to use
deterministic plans, due to the above intractability and domain knowledge issues. A relationship
can be envisaged between confidence estimation and MDP transition probabilities – although the
former only requires a scalar quality estimate, rather than requiring exact probability estimation.

8 Conclusion

In this paper, we contribute CAMP-BDI – an approach towards distributed plan execution ro-
bustness using pre-emptive plan modification or maintenance. We have described the provision
of capability knowledge, dependency contracts and dynamically modifiable policies to support
pre-emptive maintenance through introspection, and depicted a structured messaging approach



15

for extending that individual agent behaviour to perform decentralized, distributed maintenance.
Whilst we do not argue all failures can be prevented – that CAMP-BDI can replace reactive meth-
ods – we suggest it offers a valuable complementary approach. Finally, our supporting architec-
ture may be useful for other robustness approaches or improving desire and intention selection;
this helps justify the analytical costs involved in defining capability specifications.

CAMP-BDI does require gathering domain and agent information to model capability knowl-
edge; consideration whether to employ our approach must balance the analytical and computa-
tional costs against the likelihood and severity of failure costs. We believe this domain analysis is
a reasonable requirement, as such knowledge is used to form planning operators (or plan libraries)
for agents. Even if fully granular and/or probabilistic confidence estimation is not possible, we
view it as plausible for ’risky’ world states to be identified and incorporated. Time-weighted suc-
cess records can potentially be used for confidence estimation; similar to Dhirendra et al. [2010]’s
use in learning plan execution contexts.

Our future work intends to focus upon maximizing gains from failure avoidance whilst mini-
mizing planning costs; such as using policies to regulate maintenance behaviour, investigating
potential specification of proactive maintenance goals within policies, and methods to focus
’computational expenditure’ where avoiding failure is of greatest importance. Optimization of
confidence estimation and agenda formation remains another aspect of interest, although we an-
ticipate many of the most effective approaches will be domain specific.

Acknowledgements

This work was funded with support from EADS Innovation Works. Alan White would like to
extend additional thanks to Dr. Stephen Potter for his invaluable help and advice. The authors
and project partners are authorized to reproduce and distribute reprints and online copies for their
purposes, notwithstanding any copyright annotation hereon.

References

R.H. Bordini and J.F. Hübner. BDI Agent Programming in AgentSpeak Using Jason. In F. Toni
and P. Torroni, editors, Computational Logic in Multi-Agent Systems, volume 3900 of Lecture
Notes in Computer Science, pages 143–164. Springer Berlin Heidelberg, 2006.

C. Boutilier and R. Dearden. Using Abstractions for Decision Theoretic Planning with Time
Constraints. In Proceedings of the 12th National Conference on Artificial Intelligence, pages
1016–1022. San Francisco, CA: Morgan Kaufmann, 1994.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI Agent
Systems. In R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Pro-
gramming Multi-Agent Systems, volume 3346 of Lecture Notes in Computer Science, pages
44–65. Springer Berlin Heidelberg, 2005.

M.E. desJardins, E.H. Durfee, C.L. Ortiz Jnr., and M.J. Wolverton. A Survey of Research in
Distributed, Continual Planning, 2000.

S. Dhirendra, S. Sebastian, P. Lin, and S. Airiau. Learning Context Conditions for BDI Plan
Selection. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, pages 325–332, Richland, SC, 2010.
International Foundation for Autonomous Agents and Multiagent Systems.

B. Drabble, J. Dalton, and A. Tate. Repairing Plans On-the-fly. In Proceedings of the NASA
Workshop on Planning and Scheduling for Space, 1997.



16

S. Duff, J. Harland, and J. Thangarajah. On Proactivity and Maintenance Goals. In AAMAS-06,
pages 1033–1040, 2006.

M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning versus plan repair. In In
Proc. ICAPS, pages 212–221. AAAI Press, 2006.

L. He and T.R. Ioerger. A Quantitative Model of Capabilities in Multi-Agent Systems. In Pro-
ceedings of the International Conference on Artificial Intelligence, IC-AI ’03, June 23 - 26,
2003, Las Vegas, Nevada, USA, Volume 2, pages 730–736, 2003.

K.V. Hindriks and M.B Van Riemsdijk. Satisfying maintenance goals. In IN PROC. OF
DALT’07. Springer, 2007.

A. Komenda, P. Novák, and M. Pechoucek. Domain-independent multi-agent plan repair. J.
Network and Computer Applications, 37:76–88, 2014.

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. Nagendra Prasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang. Evolution of
the GPGP/TÆMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems, 9(1-2):87–143, 2004.

J. McCarthy. Programs with Common Sense. In Proceedings of the Teddington Conference on
the Mechanisation of Thought Processes, pages 77–84, 1958.

F. Meneguzzi, Y. Tang, K. Sycara, and S. Parsons. An approach to generate MDPs using HTN
representations. In Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, Barcelona, Spain, 2011.

L. Morgenstern. A First Order Theory of Planning, Knowledge, and Action. In Proceedings
of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, TARK ’86,
pages 99–114, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

D.R. Pereira, L.V. Gonçalves, G.P. Dimuro, and A.C.R. Costa. Constructing BDI plans from
optimal POMDP policies, with an application to AgentSpeak programming. In Proc. of Conf.
Latinoamerica de Informática, CLEI, volume 8, pages 240–249, 2008.

A.S. Rao and M.P. Georgeff. BDI Agents: From Theory to Practice. In In Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, 1995.

L. Sabatucci, M. Cossentino, C. Lodato, S. Lopes, and V. Seidita. A Possible Approach for
Implementing Self-Awareness in JASON. In EUMAS’13, pages 68–81, 2013.

M. Schut, M. Wooldridge, and S. Parsons. On Partially Observable MDPs and BDI Models. In
Selected Papers from the UKMAS Workshop on Foundations and Applications of Multi-Agent
Systems, pages 243–260, London, UK, UK, 2002. Springer-Verlag.

G.I. Simari and S. Parsons. On the Relationship Between MDPs and the BDI Architecture. In
Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’06, pages 1041–1048, New York, NY, USA, 2006. ACM.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference Between
Goals in Intelligent Agents. In IJCAI-03, pages 721–726, 2003.

J. Thangarajah, S. Sardina, and L. Padgham. Measuring Plan Coverage and Overlap for Agent
Reasoning. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’12, pages 1049–1056, Richland, SC, 2012. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

K. Toyama and G. Hager. If at First You Don’t Succeed... In Proc. AAAI, pages 3–9, Providence,
RI, 1997.

M. Waters, L. Padgham, and S. Sardina. Evaluating Coverage Based Intention Selection. In
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pages 957–964, Paris,
France, May 2014. IFAAMAS. Nominated for Jodi Best Student Paper award.

D. E. Wilkins. Representation in a Domain-Independent Planner. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence. Karlsruhe, FRG, August 1983, pages
733–740, 1983.


