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I Internal state not accessible to other agents
I Agents potentially self-interested or malicious

I Example application areas:
I eCommerce, Semantic Web, Web Services, Grid computing,

mobile/ubiquitous computing, P2P computing
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agents, it is happening in the real world!
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I Multiagent learning (MAL) incorporates these aspects
I Treat current model of the world as a hypothesis
I Built-in flexibility: try to improve knowledge with experience
I Active learning involves strategic decision-making

MAL should be ideally suited for open systems!

I And yet, is MAL achieving its full potential as this would lead
us to expect?

I Certainly, quite some successes in (roughly) last ten years
I Examples: Learning opponent models, learning organisational

roles, multiagent reinforcement learning, learning in market
environments, imitation learning, learning and negotiation,
learning auction strategies, language evolution
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I Problems: Can you define the key problems of MAL research?
I ML: the problem of inductive inference, noise & overfitting,

exploration vs. exploitation, sampling strategies etc.

I Algorithms: Can you name a successful MAL algorithm that is
widely used in MAS and whose properties are well-studied?

I ML: neural networks, reinforcement learning, ILP, decision

trees, Bayesian learning etc.

I Applications: Do you know practical applications in which
MAL techniques have really made a difference?

I ML: standard dataset repositories, Bayesian learning in user

modelling, inference of biochemical rules with ILP

I (Granted: ML has been around much longer, agents are much
more complex and diverse than “disembodied” ML algorithms)
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I Diversity : Add (any type of) learning to any aspect of a MAS,
and you obtain a different MAL flavour!

I Conceptual confusion: How can we map all work done in MAL
to a single, coherent set of problems?

I And above all: Lack of a unifying framework which could
be used to

I develop a shared understanding among MAL researchers
I come up with a set of well-defined research problems
I define canonical problem instances & performance measures
I communicate our results to the wider MAS/AI community
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I This talk proposes such a unifying framework

I (Maybe surprisingly) this will not be a
I new (class of) learning algorithm(s)
I a set of interesting learning problems
I or a methodology for building MAL systems

I Instead, we propose an abstract architecture for Practical
Social Reasoning Systems

I Introducing the Expectation-Strategy-Behaviour model for
practical social reasoning
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agents

I We need a generic model for social reasoning to bridge the gap
between cognitive and social processes

I An abstract framework for PSRS can serve as a starting point
for grounding different MAL methods in a common basic
model

I Caution:
I Lots of hand-waving and speculative argument involved
I This is work in progress, shown here to generate discussion
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The ESB Architecture

I Expectation-Strategy-Behaviour

I Key ideas:
I Models of agents’ interaction behaviour are stored as

expectations and updated with new observations
I Set of current expectations creates a strategy space
I Own behaviour chosen from these strategies in accordance

with agent’s goals

I Concept of expectation used to bridge gap between cognitive
and social system layer

I Suitable for integration with the BDI architecture

Michael Rovatsos The University of Edinburgh 11
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We write (EXP a C E ϕ ρ
+

ρ
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Expectations

Informal definition:

An expectation is a conditional prediction whose fulfillment

will be verified and reacted upon.

Semi-formal description:

We write (EXP a C E ϕ ρ
+

ρ
−) iff agent a expects E to hold

true under condition C, and is going to verify this using test ϕ.

If the expectation is fulfilled he will react with ρ
+, otherwise

with ρ
−.

(Preliminary) formal definition:

(EXP a C E ϕ ρ
+

ρ
−) ⇔(BEL a [(BEL a ϕ ∧ C ) ⇒ (BEL a E ) ∧ (INT a ρ

+)])

∧ (BEL a [(BEL a ¬ϕ ∧ C ) ⇒ (INT a ρ
−)])
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others’ mental states (or expectations)
I However, “mentalism” is prevented because conditions for

inferring others’ mental states are made explicit
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+/ρ
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implementation
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behavior

expectation update

expectations
identification

strategies
choice

I Expectations generate strategies, these generate behaviours,
and the observation of these behaviours leads to new
expectations

I A closer look reveals that this nothing but a learning loop for
interaction learning

I Central insight: ESB as an abstract model for practical social
reasoning necessitates learning
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I (Of course, this remains to be shown for concrete existing
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I All this may sound good, but how do we build ESB agents?

I The ESB model does not provide methods for (general)
practical reasoning

I Integration with the BDI model?

I Interestingly, ESB and BDI look quite similar from an agent’s
point of view

I However, there are also some intricacies . . .
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I Imagine a market of “complete strangers” where agents are
unlikely to interact more than once with the same partner

I They cannot collect enough evidence about some particular
opponent

I Agents may change names and re-enter the market
I The agent’s own participation in market exchange is hard to

predict

I Agents play a very simple game repeatedly:
I A potential buyer and seller are matched
I They decide whether they want to make a deal or not
I They agree to pay and deliver the goods simultaneously
I They may choose to cooperate (i.e. pay/deliver) or not
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I Reputation value = ratio between numbers of time p defected
and total purchases he participated in

I Resembles the rating mechanisms used on eBay, Amazon, etc.
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The ESB perspective

I “Reputation manager”: the source of expectation information
in this game

I Agent strategy is a function

f (history , own reputation, other ′s reputation

(this is all the information that is available, after all)

I Each agent knows other agents are taking her own reputation
value into account

I Crucial: taking the future effect of current behaviour on
expectation structures into account in decision making (ESB
loop)
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I Essentially, the reputation value is an expectation structure
that captures the social semantics of “I will cooperate”

I This is the simplest case of an “empicial semantics” approach
(language consists of a single symbol)
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I Target function: a certain behaviour of the system
I Learning data: mutually observed agent behaviour
I Hypothesis space: available ESB processing functions

I The Multiagent Learning endeavour should be an investigation

of how expectation processing mechanisms can be devised to

achieve a target functionality in a certain class of task

environments and multiagent system structures

I My suspicion: many approaches are already very successful at
doing this, but a shared understanding prevents focused and
effective research on key issues

I Today I described one way of attacking this problem
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The End

Thank you for your attention!
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