Multiagent Learning: Towards a New Synthesis

Michael Rovatsos

Centre for Intelligent Systems and their Applications

AAMAS Symposium, Paris, 21st March 2005

The Open Systems Challenge

 Multiagent systems (MAS) are increasingly moving towards open systems

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs
 - Internal state not accessible to other agents

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs
 - Internal state not accessible to other agents
 - Agents potentially self-interested or malicious

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs
 - Internal state not accessible to other agents
 - Agents potentially self-interested or malicious
- Example application areas:

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs
 - Internal state not accessible to other agents
 - Agents potentially self-interested or malicious
- Example application areas:
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, P2P computing

The Open Systems Challenge

- Multiagent systems (MAS) are increasingly moving towards open systems
 - Large (and changing) agent populations
 - Heterogeneous agent designs
 - Internal state not accessible to other agents
 - Agents potentially self-interested or malicious
- Example application areas:
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, P2P computing
- This is true regardless of our highbrow academic theories of agents, it is happening in the real world!

informatic

The Open Systems Challenge

Openness is inevitable:

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI
 - Machine Learning

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI
 - Machine Learning
 - Game-Theoretic Approaches

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI don't rely on your beliefs!
 - Machine Learning
 - Game-Theoretic Approaches

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI don't rely on your beliefs!
 - Machine Learning use your experience!
 - Game-Theoretic Approaches

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI don't rely on your beliefs!
 - Machine Learning use your experience!
 - Game-Theoretic Approaches think strategically!

- Openness is inevitable:
 - We cannot impose restrictions on agent autonomy
 - We cannot predict the behaviour of the system
- What are others doing about this?
- ▶ Very few areas in AI can cope well with "openness":
 - Uncertainty & AI don't rely on your beliefs!
 - Machine Learning use your experience!
 - Game-Theoretic Approaches think strategically!
- How about multiagent learning?

The Case for Multiagent Learning

Multiagent learning (MAL) incorporates these aspects

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis
 - Built-in flexibility: try to improve knowledge with experience

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis
 - Built-in flexibility: try to improve knowledge with experience
 - Active learning involves strategic decision-making

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis
 - Built-in flexibility: try to improve knowledge with experience
 - Active learning involves strategic decision-making
 - ➡ MAL should be ideally suited for open systems!

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis
 - Built-in flexibility: try to improve knowledge with experience
 - Active learning involves strategic decision-making
 - ➡ MAL should be ideally suited for open systems!
- And yet, is MAL achieving its full potential as this would lead us to expect?

- Multiagent learning (MAL) incorporates these aspects
 - Treat current model of the world as a hypothesis
 - Built-in flexibility: try to improve knowledge with experience
 - Active learning involves strategic decision-making
 - ➡ MAL should be ideally suited for open systems!
- And yet, is MAL achieving its full potential as this would lead us to expect?
- Certainly, quite some successes in (roughly) last ten years
 - Examples: Learning opponent models, learning organisational roles, multiagent reinforcement learning, learning in market environments, imitation learning, learning and negotiation, learning auction strategies, language evolution

The Current Landscape

 Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.
 - Algorithms: Can you name a successful MAL algorithm that is widely used in MAS and whose properties are well-studied?

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.
 - Algorithms: Can you name a successful MAL algorithm that is widely used in MAS and whose properties are well-studied?
 - ML: neural networks, reinforcement learning, ILP, decision trees, Bayesian learning etc.

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.
 - Algorithms: Can you name a successful MAL algorithm that is widely used in MAS and whose properties are well-studied?
 - ML: neural networks, reinforcement learning, ILP, decision trees, Bayesian learning etc.
 - Applications: Do you know practical applications in which MAL techniques have really made a difference?

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - > Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.
 - Algorithms: Can you name a successful MAL algorithm that is widely used in MAS and whose properties are well-studied?
 - ML: neural networks, reinforcement learning, ILP, decision trees, Bayesian learning etc.
 - Applications: Do you know practical applications in which MAL techniques have really made a difference?
 - ML: standard dataset repositories, Bayesian learning in user modelling, inference of biochemical rules with ILP

- Claim: Multiagent learning is far from where it should be (e.g. compared to general machine learning)
 - Problems: Can you define the key problems of MAL research?
 - ML: the problem of inductive inference, noise & overfitting, exploration vs. exploitation, sampling strategies etc.
 - Algorithms: Can you name a successful MAL algorithm that is widely used in MAS and whose properties are well-studied?
 - ML: neural networks, reinforcement learning, ILP, decision trees, Bayesian learning etc.
 - Applications: Do you know practical applications in which MAL techniques have really made a difference?
 - ML: standard dataset repositories, Bayesian learning in user modelling, inference of biochemical rules with ILP
- (Granted: ML has been around much longer, agents are much more complex and diverse than "disembodied" ML algorithms)

Problems

Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?
- And above all: Lack of a unifying framework which could be used to

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?
- And above all: Lack of a unifying framework which could be used to
 - develop a shared understanding among MAL researchers

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?
- And above all: Lack of a unifying framework which could be used to
 - develop a shared understanding among MAL researchers
 - come up with a set of well-defined research problems

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?
- And above all: Lack of a unifying framework which could be used to
 - develop a shared understanding among MAL researchers
 - come up with a set of well-defined research problems
 - define canonical problem instances & performance measures

- Complexity: MAS are difficult to control and analyse, let alone if we add learning capabilities to them!
- Diversity: Add (any type of) learning to any aspect of a MAS, and you obtain a different MAL flavour!
- Conceptual confusion: How can we map all work done in MAL to a single, coherent set of problems?
- And above all: Lack of a unifying framework which could be used to
 - develop a shared understanding among MAL researchers
 - come up with a set of well-defined research problems
 - define canonical problem instances & performance measures
 - communicate our results to the wider MAS/AI community

Conclusions

Towards a New Synthesis

This talk proposes such a unifying framework

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a
 - new (class of) learning algorithm(s)

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a
 - new (class of) learning algorithm(s)
 - a set of interesting learning problems

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a
 - new (class of) learning algorithm(s)
 - a set of interesting learning problems
 - or a methodology for building MAL systems

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a
 - new (class of) learning algorithm(s)
 - a set of interesting learning problems
 - or a methodology for building MAL systems
- Instead, we propose an abstract architecture for Practical Social Reasoning Systems

- This talk proposes such a unifying framework
- (Maybe surprisingly) this will not be a
 - new (class of) learning algorithm(s)
 - a set of interesting learning problems
 - or a methodology for building MAL systems
- Instead, we propose an abstract architecture for Practical Social Reasoning Systems
- Introducing the Expectation-Strategy-Behaviour model for practical social reasoning

Introduction

The ESB Architecture Integration with the BDI model A Prototypical Example Conclusions

Towards a New Synthesis

- Line of reasoning:
 - Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents

Towards a New Synthesis

- Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents
- We need a generic model for social reasoning to bridge the gap between cognitive and social processes

Towards a New Synthesis

- Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents
- We need a generic model for social reasoning to bridge the gap between cognitive and social processes
- An abstract framework for PSRS can serve as a starting point for grounding different MAL methods in a common basic model

Towards a New Synthesis

- Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents
- We need a generic model for social reasoning to bridge the gap between cognitive and social processes
- An abstract framework for PSRS can serve as a starting point for grounding different MAL methods in a common basic model
- Caution:

Towards a New Synthesis

- Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents
- We need a generic model for social reasoning to bridge the gap between cognitive and social processes
- An abstract framework for PSRS can serve as a starting point for grounding different MAL methods in a common basic model
- Caution:
 - Lots of hand-waving and speculative argument involved

Towards a New Synthesis

- Models of practical reasoning systems (in particular, the BDI model) don't account for reasoning about interaction between agents
- We need a generic model for social reasoning to bridge the gap between cognitive and social processes
- An abstract framework for PSRS can serve as a starting point for grounding different MAL methods in a common basic model
- Caution:
 - Lots of hand-waving and speculative argument involved
 - This is work in progress, shown here to generate discussion

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Introduction

The ESB Architecture

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Integration with the BDI model

A Prototypical Example

Conclusions

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Introduction

The ESB Architecture

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Integration with the BDI model

A Prototypical Example

Conclusions

informatics

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

The ESB Architecture

Expectation-Strategy-Behaviour

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals
- Concept of expectation used to bridge gap between cognitive and social system layer

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals
- Concept of expectation used to bridge gap between cognitive and social system layer
- Suitable for integration with the BDI architecture

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Informal definition:

An expectation is a conditional prediction whose fulfillment will be verified and reacted upon.

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Informal definition:

An expectation is a conditional prediction whose fulfillment will be verified and reacted upon.

Semi-formal description:

We write (EXP a C E $\varphi \rho^+ \rho^-$) iff agent a expects E to hold true under condition C, and is going to verify this using test φ . If the expectation is fulfilled he will react with ρ^+ , otherwise with ρ^- .

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Informal definition:

An expectation is a **conditional prediction** whose fulfillment will be **verified** and **reacted** upon.

Semi-formal description:

We write (EXP a C E $\varphi \rho^+ \rho^-$) iff agent a expects E to hold true under condition C, and is going to verify this using test φ . If the expectation is fulfilled he will react with ρ^+ , otherwise with ρ^- .

(Preliminary) formal definition:

$$(EXP \ a \ C \ E \ \varphi \ \rho^+ \ \rho^-) \Leftrightarrow (BEL \ a \ [(BEL \ a \ \varphi \land C) \Rightarrow (BEL \ a \ E) \land (INT \ a \ \rho^+)]) \land (BEL \ a \ [(BEL \ a \ \neg \varphi \land C) \Rightarrow (INT \ a \ \rho^-)])$$

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

(EXP a (DO a request(A, B, X)) (DO B X) Done(X) nil retract)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

(EXP a (DO a request(A, B, X)) (DO B X) Done(X) nil retract)

 This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

- This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)
- Some remarks:

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

- This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)
- Some remarks:
 - E will usually be an action expression, but can also contain others' mental states (or expectations)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

- This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)
- Some remarks:
 - E will usually be an action expression, but can also contain others' mental states (or expectations)
 - However, "mentalism" is prevented because conditions for inferring others' mental states are made explicit

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

- This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)
- Some remarks:
 - ► *E* will usually be an action expression, but can also contain others' mental states (or expectations)
 - However, "mentalism" is prevented because conditions for inferring others' mental states are made explicit
 - If E is an action expression, φ will simply be defined as an observation of these actions (or their consequences)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

Example:

- This "formalisation" only used for illustration purposes, any cause-and-effect model will do (in particular, probabilistic representations will be more suitable in many cases)
- Some remarks:
 - ► *E* will usually be an action expression, but can also contain others' mental states (or expectations)
 - However, "mentalism" is prevented because conditions for inferring others' mental states are made explicit
 - If E is an action expression, φ will simply be defined as an observation of these actions (or their consequences)
 - ► Often ρ⁺/ρ⁻ will simply consist of strengthening/weakening (or even retracting) the expectation, but can also involve overt action

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expectations

 Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)
- This makes them essential in reasoning about open systems!

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)
- This makes them essential in reasoning about open systems!
- Strong relationship to

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)
- This makes them essential in reasoning about open systems!
- Strong relationship to
 - non-monotonic reasoning and truth maintenance systems

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Essentially expectations are a special kind of belief, but conditional upon the verification condition and tied to consequences
- But why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)
- > This makes them essential in reasoning about open systems!
- Strong relationship to
 - non-monotonic reasoning and truth maintenance systems
 - empirical agent communication semantics

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Strategies

At any given time, the current set of expectations defines a strategy space

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:
 - Strategies concerns others' actions as much as one's own

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:
 - Strategies concerns others' actions as much as one's own
 - Not all different action(s) (sequences) are different strategies, effect on expectations is what matters

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:
 - Strategies concerns others' actions as much as one's own
 - Not all different action(s) (sequences) are different strategies, effect on expectations is what matters
 - Strategy space includes potential effects on expectations

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:
 - Strategies concerns others' actions as much as one's own
 - Not all different action(s) (sequences) are different strategies, effect on expectations is what matters
 - Strategy space includes potential effects on expectations
 - Mostly, however, identifying fixed points in the expectation update function will not be feasible or too complex
 - ➡ restrict analysis to an "expectation horizon"

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- At any given time, the current set of expectations defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Important properties of strategies:
 - Strategies concerns others' actions as much as one's own
 - Not all different action(s) (sequences) are different strategies, effect on expectations is what matters
 - Strategy space includes potential effects on expectations
 - Mostly, however, identifying fixed points in the expectation update function will not be feasible or too complex
 - ➡ restrict analysis to an "expectation horizon"
- Strategies define the vocabulary of behaviours that may affect expectations so that an assessment of the desirability of these behaviours can follow

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Behaviours

 After analysing different stategies (of others and oneself), agents determine their behaviour

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!
- ► As far as own strategies are concerned, the agent can pick a strategy (like intentions are selected from desires in the BDI model) ⇒ but how about what others will do?

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!
- ► As far as own strategies are concerned, the agent can pick a strategy (like intentions are selected from desires in the BDI model) ⇒ but how about what others will do?
- No general statements can be made here, this depends on the implementation

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!
- ► As far as own strategies are concerned, the agent can pick a strategy (like intentions are selected from desires in the BDI model) ⇒ but how about what others will do?
- No general statements can be made here, this depends on the implementation
 - Simple strategies: consider only opponents' most likely/worst-case strategy and adjust own strategy to this

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!
- ► As far as own strategies are concerned, the agent can pick a strategy (like intentions are selected from desires in the BDI model) ⇒ but how about what others will do?
- No general statements can be made here, this depends on the implementation
 - Simple strategies: consider only opponents' most likely/worst-case strategy and adjust own strategy to this
 - The range and temporal scope of validity of a chosen strategy may vary (when will strategies be reconsidered?)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Behaviours

- After analysing different stategies (of others and oneself), agents determine their behaviour
- But things are not that simple!
- ► As far as own strategies are concerned, the agent can pick a strategy (like intentions are selected from desires in the BDI model) ⇒ but how about what others will do?
- No general statements can be made here, this depends on the implementation
 - Simple strategies: consider only opponents' most likely/worst-case strategy and adjust own strategy to this
 - The range and temporal scope of validity of a chosen strategy may vary (when will strategies be reconsidered?)
- In any case we end up with some behavioural constraints imposed on the agent herself (and, implicitly, on that of others)

informatics

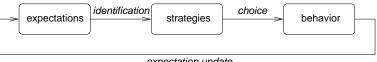
Expectations, Strategies & Behaviours **The ESB Feedback Loop** ESB vs. Multiagent Learning Expressiveness

The ESB Feedback Loop

 Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations

Expectations, Strategies & Behaviours **The ESB Feedback Loop** ESB vs. Multiagent Learning Expressiveness

The ESB Feedback Loop

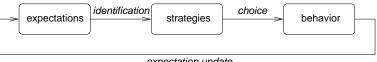


expectation update

- Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations
- A closer look reveals that this nothing but a learning loop for interaction learning

Expectations, Strategies & Behaviours **The ESB Feedback Loop** ESB vs. Multiagent Learning Expressiveness

The ESB Feedback Loop



expectation update

- Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations
- A closer look reveals that this nothing but a learning loop for interaction learning
- Central insight: ESB as an abstract model for practical social reasoning *necessitates* learning

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB (and back)

 LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB (and back)

- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)
- AdHoc (Rovatsos and Wolf, 2002): A heuristic for opponent classification in repeated games

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)
- AdHoc (Rovatsos and Wolf, 2002): A heuristic for opponent classification in repeated games
 - Grows a variable set of classes of opponents and learns an optimal strategy against each one of them (US-L* + Q-learning + new classification heuristic)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)
- AdHoc (Rovatsos and Wolf, 2002): A heuristic for opponent classification in repeated games
 - Grows a variable set of classes of opponents and learns an optimal strategy against each one of them (US-L* + Q-learning + new classification heuristic)
- ► InFFrA (Rovatsos, 2004): Learning interaction patterns

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB (and back)

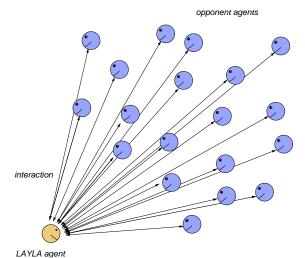
- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)
- AdHoc (Rovatsos and Wolf, 2002): A heuristic for opponent classification in repeated games
 - Grows a variable set of classes of opponents and learns an optimal strategy against each one of them (US-L* + Q-learning + new classification heuristic)
- ► InFFrA (Rovatsos, 2004): Learning interaction patterns
 - Patterns describe conversation runs together with context conditions, optimisation uses hierarchical RL + instance-based methods + cluster validation techniques to abstract from observed individual instances

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- LAYLA (Rovatsos, 1999): A layered learning agent architecture for adaptive behaviour in repeated games
 - Three layers: one to learn the payoff matrix (ANN), one to learn best response strategies (GA) and one to learn the cooperation potential given each other's preferences (POM)
- AdHoc (Rovatsos and Wolf, 2002): A heuristic for opponent classification in repeated games
 - Grows a variable set of classes of opponents and learns an optimal strategy against each one of them (US-L* + Q-learning + new classification heuristic)
- ► InFFrA (Rovatsos, 2004): Learning interaction patterns
 - Patterns describe conversation runs together with context conditions, optimisation uses hierarchical RL + instance-based methods + cluster validation techniques to abstract from observed individual instances
- Gradual shift towards expectation-centered learning methods information

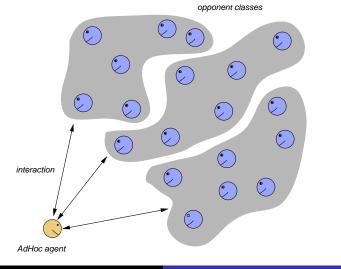
Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB



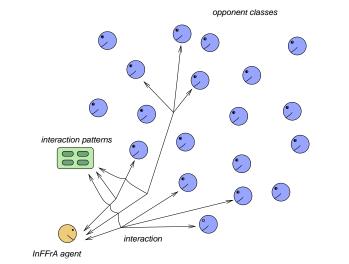
Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB



Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

From MAL to ESB



Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expressiveness

> Three categories of methods for reasoning about interaction

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- Three categories of methods for reasoning about interaction
- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)
 - Problem: simplification of interaction mechanisms to guarantee properties, "worst-case reasoning"

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expressiveness

ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid
 - Design social laws (e.g. a commitment mechanism) with a focus on handling failure to meet social requirements

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid
 - Design social laws (e.g. a commitment mechanism) with a focus on handling failure to meet social requirements
 - Drop rationality assumptions in mechanism design if agents behave irrationaly

Expectations, Strategies & Behaviours The ESB Feedback Loop ESB vs. Multiagent Learning Expressiveness

Expressiveness

- ESB does not solve the basic problems, but it provides a uniform set of concepts to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid
 - Design social laws (e.g. a commitment mechanism) with a focus on handling failure to meet social requirements
 - Drop rationality assumptions in mechanism design if agents behave irrationaly
- (Of course, this remains to be shown for concrete existing approaches)

The BDI Model ESB – Agent Perspective Integration

Introduction

The ESB Architecture

Integration with the BDI model The BDI Model ESB – Agent Perspective Integration

A Prototypical Example

Conclusions

The BDI Model ESB – Agent Perspective Integration

Introduction

The ESB Architecture

Integration with the BDI model The BDI Model ESB – Agent Perspective

Integration

A Prototypical Example

Conclusions

The BDI Model ESB – Agent Perspective Integration

Integration with the BDI model

All this may sound good, but how do we build ESB agents?

The BDI Model ESB – Agent Perspective Integration

- All this may sound good, but how do we build ESB agents?
- The ESB model does not provide methods for (general) practical reasoning

The BDI Model ESB – Agent Perspective Integration

- All this may sound good, but how do we build ESB agents?
- The ESB model does not provide methods for (general) practical reasoning
- Integration with the BDI model?

The BDI Model ESB – Agent Perspective Integration

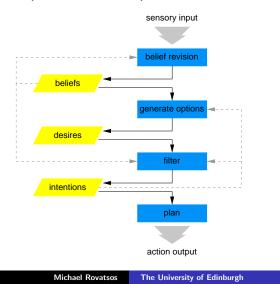
- All this may sound good, but how do we build ESB agents?
- The ESB model does not provide methods for (general) practical reasoning
- Integration with the BDI model?
- Interestingly, ESB and BDI look quite similar from an agent's point of view

The BDI Model ESB – Agent Perspective Integration

- All this may sound good, but how do we build ESB agents?
- The ESB model does not provide methods for (general) practical reasoning
- Integration with the BDI model?
- Interestingly, ESB and BDI look quite similar from an agent's point of view
- However, there are also some intricacies ...

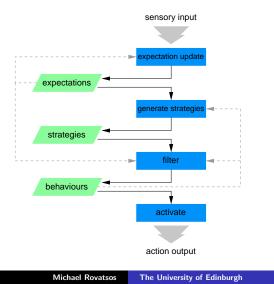
The BDI Model ESB – Agent Perspective Integration

The BDI Model (in 60 seconds)



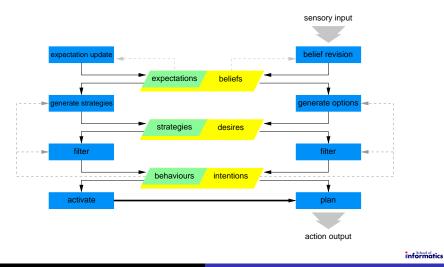
The BDI Model ESB – Agent Perspective Integration

ESB – Agent Perspective



The BDI Model ESB – Agent Perspective Integration

Integration: BDI^{ESB}



The Reputation Game The ESB/Learning View

Introduction

The ESB Architecture

Integration with the BDI model

A Prototypical Example The Reputation Game The ESB/Learning View

Conclusions

The Reputation Game The ESB/Learning View

Introduction

The ESB Architecture

Integration with the BDI model

A Prototypical Example The Reputation Game The ESB/Learning View

Conclusions

The Reputation Game The ESB/Learning View

The Reputation Game

A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict
- Agents play a very simple game repeatedly:

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict
- Agents play a very simple game repeatedly:
 - A potential buyer and seller are matched

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict
- Agents play a very simple game repeatedly:
 - A potential buyer and seller are matched
 - They decide whether they want to make a deal or not

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict
- Agents play a very simple game repeatedly:
 - A potential buyer and seller are matched
 - They decide whether they want to make a deal or not
 - They agree to pay and deliver the goods simultaneously

The Reputation Game

- A minimal example to illustrate how expectations interface between social behaviour, cognitive decision-making processes
- Imagine a market of "complete strangers" where agents are unlikely to interact more than once with the same partner
 - They cannot collect enough evidence about some particular opponent
 - Agents may change names and re-enter the market
 - The agent's own participation in market exchange is hard to predict
- Agents play a very simple game repeatedly:
 - A potential buyer and seller are matched
 - They decide whether they want to make a deal or not
 - They agree to pay and deliver the goods simultaneously
 - They may choose to cooperate (i.e. pay/deliver) or not

informatics

The Reputation Game The ESB/Learning View

The Reputation Game

Assume there is a temptation to defect

➡ Situation very similar to Prisoner's Dilemma game

The Reputation Game The ESB/Learning View

- Assume there is a temptation to defect
 - Situation very similar to Prisoner's Dilemma game
- ► There is a central reputation mechanism that measures the frequency of defection (t/t' for the two players p and p')

The Reputation Game The ESB/Learning View

- Assume there is a temptation to defect
 - Situation very similar to Prisoner's Dilemma game
- ▶ There is a central reputation mechanism that measures the frequency of defection (t/t') for the two players p and p'
 - Reputation value = ratio between numbers of time p defected and total purchases he participated in

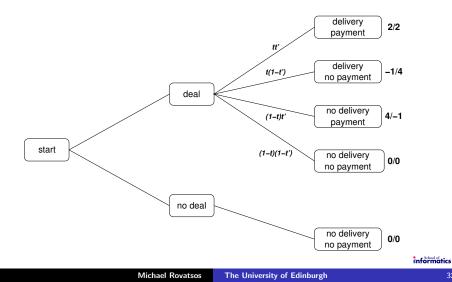
The Reputation Game The ESB/Learning View

- Assume there is a temptation to defect
 - Situation very similar to Prisoner's Dilemma game
- There is a central reputation mechanism that measures the frequency of defection (t/t' for the two players p and p')
 - Reputation value = ratio between numbers of time p defected and total purchases he participated in
- ▶ Resembles the rating mechanisms used on eBay, Amazon, etc.

The Reputation Game The ESB/Learning View

- Assume there is a temptation to defect
 - Situation very similar to Prisoner's Dilemma game
- ► There is a central reputation mechanism that measures the frequency of defection (t/t' for the two players p and p')
 - Reputation value = ratio between numbers of time p defected and total purchases he participated in
- ▶ Resembles the rating mechanisms used on eBay, Amazon, etc.
- Reputation value is a prototypical example for an expectation structure

The Reputation Game The ESB/Learning View



The Reputation Game The ESB/Learning View

The ESB perspective

 "Reputation manager": the source of expectation information in this game

The ESB perspective

- "Reputation manager": the source of expectation information in this game
- Agent strategy is a function

f(history, own reputation, other's reputation

(this is all the information that is available, after all)

The ESB perspective

- "Reputation manager": the source of expectation information in this game
- Agent strategy is a function

f(history, own reputation, other's reputation

(this is all the information that is available, after all)

 Each agent knows other agents are taking her own reputation value into account

The ESB perspective

- "Reputation manager": the source of expectation information in this game
- Agent strategy is a function

f(history, own reputation, other's reputation

(this is all the information that is available, after all)

- Each agent knows other agents are taking her own reputation value into account
- Crucial: taking the future effect of current behaviour on expectation structures into account in decision making (ESB loop)

informatics

The Reputation Game The ESB/Learning View

The Learning Perspective

Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"

The Reputation Game The ESB/Learning View

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?
 - If so, can we improve the mechanism itself over time?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?
 - If so, can we improve the mechanism itself over time?
 - What should initial reputation values be?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?
 - If so, can we improve the mechanism itself over time?
 - What should initial reputation values be?
 - How about the update mechanism?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?
 - If so, can we improve the mechanism itself over time?
 - What should initial reputation values be?
 - How about the update mechanism?
 - Can an agent learn whether to trust the mechanism or not?

- Essentially, the reputation value is an expectation structure that captures the social semantics of "I will cooperate"
 - This is the simplest case of an "empicial semantics" approach (language consists of a single symbol)
- Offers a great variety of interesting learning problems:
 - Does the reputation mechanism lead to more cooperation?
 - Or can agents learn to "beat" the reputation mechanism?
 - If so, can we improve the mechanism itself over time?
 - What should initial reputation values be?
 - How about the update mechanism?
 - Can an agent learn whether to trust the mechanism or not?
 - How about exchanging information about expectations among agents?

Introduction

The ESB Architecture

Integration with the BDI model

A Prototypical Example

Conclusions

Introduction

The ESB Architecture

Integration with the BDI model

A Prototypical Example

Conclusions

Summary

 Considering the challenges of open systems, multiagent learning has a huge potential

Summary

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss
- Argued that this is due to a lack of a simple practical social reasoning architecture for agents

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss
- Argued that this is due to a lack of a simple practical social reasoning architecture for agents
- Proposed such an architecture based on central notion of expectations

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss
- Argued that this is due to a lack of a simple practical social reasoning architecture for agents
- Proposed such an architecture based on central notion of expectations
- Described its capacity to capture different types of current social reasoning mechanisms

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss
- Argued that this is due to a lack of a simple practical social reasoning architecture for agents
- Proposed such an architecture based on central notion of expectations
- Described its capacity to capture different types of current social reasoning mechanisms
- Some initial ideas for its integration with general practical reasoning systems

Summary

- Considering the challenges of open systems, multiagent learning has a huge potential
- Yet a simple, unifying framework for MAL is still amiss
- Argued that this is due to a lack of a simple practical social reasoning architecture for agents
- Proposed such an architecture based on central notion of expectations
- Described its capacity to capture different types of current social reasoning mechanisms
- Some initial ideas for its integration with general practical reasoning systems
- Presented a prototypical example for expectation-centered learning

informatics

A Vision for MAL Research

So, finally, here is the deal ...

▶ The Multiagent Learning Problem:

A Vision for MAL Research

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system

A Vision for MAL Research

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system
 - Learning data: mutually observed agent behaviour

A Vision for MAL Research

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system
 - Learning data: mutually observed agent behaviour
 - Hypothesis space: available ESB processing functions

A Vision for MAL Research

So, finally, here is the deal ...

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system
 - Learning data: mutually observed agent behaviour
 - Hypothesis space: available ESB processing functions

The Multiagent Learning endeavour should be an investigation of how expectation processing mechanisms can be devised to achieve a target functionality in a certain class of task environments and multiagent system structures

A Vision for MAL Research

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system
 - Learning data: mutually observed agent behaviour
 - Hypothesis space: available ESB processing functions
- The Multiagent Learning endeavour should be an investigation of how expectation processing mechanisms can be devised to achieve a target functionality in a certain class of task environments and multiagent system structures
- My suspicion: many approaches are already very successful at doing this, but a shared understanding prevents focused and effective research on key issues

A Vision for MAL Research

So, finally, here is the deal ...

- The Multiagent Learning Problem:
 - Target function: a certain behaviour of the system
 - Learning data: mutually observed agent behaviour
 - Hypothesis space: available ESB processing functions
- The Multiagent Learning endeavour should be an investigation of how expectation processing mechanisms can be devised to achieve a target functionality in a certain class of task environments and multiagent system structures
- My suspicion: many approaches are already very successful at doing this, but a shared understanding prevents focused and effective research on key issues
- Today I described one way of attacking this problem

informatics

The End

Thank you for your attention!

