Multiagent Systems for Social Computation: The SmartSociety approach

Michael Rovatsos
The University of Edinburgh
CretaMASSS
Chania 22nd July 2013
SmartSociety

- 4-year €6.8M EU FP7 FET Integrated Project, co-ordinated by Trento
- Aim: building hybrid and diversity-aware collective adaptive systems to solve challenging societal problems
- Our focus: social orchestration of multi-level and overlapping concurrent computations + learning them from data
 - By the way, we’re looking for a PhD student with machine learning/incentives background
System context

• **Diversity** - we are interested in diverse populations of interacting humans and machines, with different backgrounds, knowledge, skills, objectives, and expectations

• **Hybridity** - humans and machines playing different roles (providing data, performing computations, making decisions), all our systems involve interaction with humans

• **Compositionality** - how do we compose individual interactions to obtain collective action and globally coherent social computations?
Research agenda

- **Design principles** - methods that are needed to build collective adaptive systems, to manage the emergent behaviours they give rise and to validate these designs.

- **Operating principles** - principles by which collective adaptive systems operate. How are they controlled and optimised? How can they provide long-term stability? How do they resolve conflicts and failures?

- **Evolutionary principles** – we need to understand the nature of systems evolution, to relate it to individual and collective learning processes, and how these affect operating and design principles.
Compositionality & Social Orchestration

- Edinburgh part in the project: develop architectures and algorithms for composing and orchestrating social computations
- Provides the link between conceptual modelling layers and actual implementation of social computation systems
- First iteration: static lightweight social orchestration
- Second iteration: dynamic aspects of social computation
 - identifying emergent social structures, developing adaptive incentive systems, optimising social orchestrations
Abstract architecture
Platform architecture

- Nodes know about (some) capabilities of (some) other nodes, can devise plans to achieve a goal
- Task workflows are advertised on an (initially) centralised platform (later enhanced by peer search & federation)
- Platform provides a small set of meta-protocols for this
 - brokering & network exploration (friend-of-a-friend search)
 - voting (for social choice)
 - auction (for resource or task allocation)
- Meta-protocol execution leads to agreement on task workflow, sub-tasks allocated to peers
Lightweight social orchestration

• Actually, we want to do all of this without a peer-to-peer style platform, without shared state and heavy runtime co-ordination
• Instead, exploit process=data duality in the following way:
 ▫ Social computation specification provided as distributed linked data describing peers, tasks, preferences, goals, norms etc
 ▫ Atomic contributions by humans and machines viewed as lightweight RESTful web services provided by endpoints
 ▫ Execution becomes a distributed query over several datastores, where humans supply the inference steps machines cannot complete
Lightweight social orchestration

• So, actually, we don’t want to build a “hybrid human multiagent system”
• We want a Web-style way of crowdsourcing computation in an open-ended, arbitrarily scalable way
• Rely only on common Linked Data standards and separate client from data/process model
• With a view to learning and emergence work to be done later, this gives us also directly a “Big Data” view of the world
So where do agent techniques come into all this?

- Automated decomposition of planning domains (Crosby & MR)
- Planning for self-interested agents (Jonsson & MR)
- Argumentation-based conflict resolution in planning (Belesiotis & MR)
- Distributed execution of centralised plans with global constraint maintenance (Herry, Anderson & MR)
- Automated norm synthesis for planning environments (Christelis & MR)
- Qualitative trust modelling in interaction protocols (Serrano & MR)
Argumentation-Based Conflict Resolution in Planning

- Agents disagree about initial state and action definitions, but share goal
- Our work focuses on acceptable plans
 - p is acceptable wrt KB_1 and KB_2 iff
 $$KB_1 |- p \text{ and } KB_2 |- p$$
- Developed argumentation-based method based on evaluating individual agents’ proposals to compute defendable plan
- Scalability achieved by using off-the-shelf single-agent planners for sub-tasks in the process
Argumentation-based conflict resolution

- Plan proposal generated by single agent (with any planner)
- Dispute in case of disagreement, argumentation follows
- Ends in successful defence of initial proposal or rejection + belief revision
Example

• Robot gridworld domain
Application: ArguDem

• A demonstrator for helping robots navigate:

![Diagram of a grid and human-robot dialog interface]
Planning for Self-Interested Agents

- Agents with independent, potentially conflicting (though not inconsistent) goals
- Strategic problem, acceptability based on notions of stability and equilibrium
- Problem depends on whether contracts can be enforced and utility can be transferred
- Like concurrent planning with additional constraints on plan cost to individuals
- Hard to define meaningful solution concepts if goals incompatible or agents untrustworthy
Example

• Delivery domain

utility = reward - cost
“isolated” cost: 6/6 (inefficient)
“selfish” cost: 0/8 (irrational)
“cooperative” cost: 4/4 (stable)
Planning for Self-Interested Agents

- **Best-Response Planning (Jonsson & MR):**
 - iterative method of optimising agents’ individual plans without breaking others’ plans
 - computes equilibrium plans fast in congestion games, restricted to interactions regarding cost
 - useful for plan optimisation in unrestricted domains

- **Network routing example:**

![Network routing example diagram](image-url)
Application: Ride Sharing

- Hrncir’s system uses BRP to determine joint travel routes using real-world UK public transportation data (>200,000 connections)
Automated norm synthesis

- Norms ensure global conflict states are never entered by prohibiting actions in certain states
- At the same time agents’ private goals should remain achievable
- Automated synthesis of such norms is NP-hard in enumerated state systems
- Existing methods don’t exploit abstractions of propositional/first-order domain theories
- Our method: find “detours” around conflict states by local search in generalised state spaces
Automated norm synthesis

- Iterated process of forward-backward search around conflict state specification:

- Not better than full state-space search in the worst case but we can often “get lucky”
- With simple additional pruning techniques search can often be cut down drastically
Example

• Tunnel world example:

• Agents entering tunnels have to leave them out the opposite end immediately (on entering tunnel, future crash not avoidable)

• Our algorithm solves this by computing a general norm “if you are next to a tunnel and another agent is at the opposite end, don’t enter the tunnel”
Qualitative Context Mining

- Qualitative context mining (Serrano&MR)
- Relate constraints in protocols to outcomes, exploiting knowledge-level ACL semantics
- Can be used for
 - predicting outcomes and adjusting strategies
 - identifying misaligned constraint interpretations
 - deriving qualitative trust and reputation measures
Qualitative context modelling
ProtocolMiner

1. Developer
2. Design
3. Learning strategy
4. OK components
5. ProtocolMiner GUI
6. Data set

- A1, A2, ..., An
- B1, B2, ..., Bm
- RDB

Open multiagent system

- OK Kernel with ProtocolMiner
- Learning algorithm

Forensic Analysis on Open Knowledge

- Protocols registered: cars
- Paths for the selected protocol:
 - termsWanted_A(T)\times reques(B,A,T)\times alternative(B,T)\times cannotOffer(B,A,T)
 - termsWanted_A(T)\times reques(B,A,T)\times alternative(B,T)\times alternative(A,T)\times cannotOffer(B,A,T)

Symbols [known]:
- LUIG_BOOT [Missing:0.00%, Distinct: 3]
- SAFETY [Missing:0.00%, Distinct: 5]
- INSTOCK_B_T [Missing:0.00%, Distinct: 2]
- ALTERNATIVE_B_T [Missing:0.00%, Distinct: 2]
- ALTERNATIVET_E_A_T [Missing:0.00%, Distinct: 2]
- KEEPINGOFTING_A_T [Missing:0.00%, Distinct: 2]
- PRICEWANTED_A_T_P [Missing:0.00%, Distinct: 2]
- Select All | Select None | Add filter | Add label | Accept paths

Results for the console:
Mining agent protocols

persons = 2: F (158)
persons = 4: F (158)
persons = more
 | lug_boot = small
 | | doors = 2: F (8)
 | | doors = 3: F (7)
 | | doors = 4: F (8)
 | | doors = 5-more: T (105)
 | lug_boot = med
 | | doors = 2: F (13)
 | | doors = 3: F (8)
 | | doors = 4: F (13)
 | | doors = 5-more: T (120)
 | lug_boot = big: T (402)
Conclusions

• Large-scale social computation: a new, challenging domain
• Many multiagent technologies can be used to (partially) automate hard sub-problems
• The challenge is to take them to the real world and confront them with humans
• Focus on developing generic techniques, not a single application that happens to work well
ESSENCE - Evolution of Shared Semantics in Computational Environments

- 4-year, €4M Marie Curie Initial Training Network, co-ordinated by Edinburgh
- Aim: to exploit human methods for negotiating, sharing, and evolving meanings for computational systems
- Focus in Edinburgh: Communication planning from heterogeneous sensor data and ontology learning
 - By the way, we have funding for 11 PhD students and 4 post-docs (but you have to go abroad)