Intelligent Agents on the Web – Some Ideas and Challenges

Michael Rovatsos

Centre for Intelligent Systems and their Applications

British University in Dubai 24th May 2005

Introduction

 Modern computer applications are increasingly moving towards open, decentralised systems

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:
 - Interaction with components stemming from different people/organisations

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:
 - Interaction with components stemming from different people/organisations
 - Very hard to impose restrictions on others' behaviour (potentially self-interested/malicious)

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:
 - Interaction with components stemming from different people/organisations
 - Very hard to impose restrictions on others' behaviour (potentially self-interested/malicious)
 - Impossible to predict global behaviour of the system!

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:
 - Interaction with components stemming from different people/organisations
 - Very hard to impose restrictions on others' behaviour (potentially self-interested/malicious)
 - Impossible to predict global behaviour of the system!
- Communication replaces direct control

informatio

- Modern computer applications are increasingly moving towards open, decentralised systems
- Examples
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, peer-to-peer systems
- Open systems:
 - Interaction with components stemming from different people/organisations
 - Very hard to impose restrictions on others' behaviour (potentially self-interested/malicious)
 - Impossible to predict global behaviour of the system!
- Communication replaces direct control
- A paradigm shift in systems development?

informatic

Introduction

Intelligent agents provide a useful metaphor for such systems

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour
- In Distributed Artificial Intelligence, the focus is on interaction between agents situated in a common environment

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour
- In Distributed Artificial Intelligence, the focus is on interaction between agents situated in a common environment
 Two sub-fields:

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour
- In Distributed Artificial Intelligence, the focus is on interaction between agents situated in a common environment
- Two sub-fields:
 - Distributed Problem Solving (strictly cooperative)

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour
- In Distributed Artificial Intelligence, the focus is on interaction between agents situated in a common environment
- Two sub-fields:
 - Distributed Problem Solving (strictly cooperative)
 - Multiagent Systems (focus on coordination among self-interested agents)

- Intelligent agents provide a useful metaphor for such systems
- Deeply rooted in the endeavour of Artificial Intelligence, which is to
 - Understand intelligence in natural systems (humans, animals)
 - Build artificial systems that exhibit intelligent behaviour
- In Distributed Artificial Intelligence, the focus is on interaction between agents situated in a common environment
- Two sub-fields:
 - Distributed Problem Solving (strictly cooperative)
 - Multiagent Systems (focus on coordination among self-interested agents)
- In this talk, I will discuss how multiagent systems can be used as a suitable technology for open systems using the Web as an example

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Outline

Introduction

Agents and the Web

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Learning communication patterns

The ESB Architecture

Conclusions

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Outline

Introduction

Agents and the Web

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Learning communication patterns

The ESB Architecture

Conclusions

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

An agent is anything that can perceive its environment (through its sensors) and act upon that environment (through its effectors)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

An agent is anything that can perceive its environment (through its sensors) and act upon that environment (through its effectors)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

An agent is anything that can perceive its environment (through its sensors) and act upon that environment (through its effectors)

Autonomous agent:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

An agent is anything that can perceive its environment (through its sensors) and act upon that environment (through its effectors)

Autonomous agent:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

What is an agent?

Most widely accepted definition:

An agent is anything that can perceive its environment (through its sensors) and act upon that environment (through its effectors)

Autonomous agent:

A computer system that is capable of independent (autonomous) action on behalf of its user or owner

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Intelligent agents

Intelligent agents are usually considered to be

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Intelligent agents

Intelligent agents are usually considered to be

Autonomous (capable of independent action)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)
 - Proactive (able to take initiative for action)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)
 - Proactive (able to take initiative for action)
 - Rational (goal-oriented, striving to optimise its decisions)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)
 - Proactive (able to take initiative for action)
 - Rational (goal-oriented, striving to optimise its decisions)
 - Socially capable (able to communicate and interact with others)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)
 - Proactive (able to take initiative for action)
 - Rational (goal-oriented, striving to optimise its decisions)
 - Socially capable (able to communicate and interact with others)
- Optional) additional features:
Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Intelligent agents

- Intelligent agents are usually considered to be
 - Autonomous (capable of independent action)
 - Situated (embedded in an environment)
 - Reactive (responsive to changes in environment)
 - Proactive (able to take initiative for action)
 - Rational (goal-oriented, striving to optimise its decisions)
 - Socially capable (able to communicate and interact with others)
- Optional) additional features:
 - adaptiveness, mobility, lifelike qualities, real-time behaviour, sensorimotor capabilities, etc.

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Controversy

Autonomous, situated in an environment, proactive and "intelligent" (in a way), but is it an agent?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Web

► The current Web landscape: A collection of files/documents

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)
- Hyperlinks: Annotated with text, sometimes barely understandable even for humans

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)
- Hyperlinks: Annotated with text, sometimes barely understandable even for humans
- Capabilities:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)
- Hyperlinks: Annotated with text, sometimes barely understandable even for humans
- Capabilities:
 - Simple information retrieval (scalability?)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)
- Hyperlinks: Annotated with text, sometimes barely understandable even for humans
- Capabilities:
 - Simple information retrieval (scalability?)
 - Fairly simple transactions/services (play chess, buy a book)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Web

- ► The current Web landscape: A collection of files/documents
 - mostly text, some multimedia, some databases, some (simple) services
- HTML: Modest compliance with standards (thanks to robustness of browsers)
- Hyperlinks: Annotated with text, sometimes barely understandable even for humans
- Capabilities:
 - Simple information retrieval (scalability?)
 - Fairly simple transactions/services (play chess, buy a book)
- All the relevant data is (or will soon be) on the Web, but in a form suitable for human processing only (it seems)

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Problem

This is what my homepage looks like to a machine:

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

> Why can't my online calendar and bank account negotiate with my garage's to arrange a mutually convenient time and price to repair my leaking tyre?

How can my agent find/parse/extract garage's free times?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

- How can my agent find/parse/extract garage's free times?
- Which of my appointments are critical/flexible? Even if I annotated entries, what if the garage's timetable doesn't have such a concept?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

- How can my agent find/parse/extract garage's free times?
- Which of my appointments are critical/flexible? Even if I annotated entries, what if the garage's timetable doesn't have such a concept?
- Lots of constraints:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

- How can my agent find/parse/extract garage's free times?
- Which of my appointments are critical/flexible? Even if I annotated entries, what if the garage's timetable doesn't have such a concept?
- Lots of constraints:
 - How long will it take to get to the garage?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

- How can my agent find/parse/extract garage's free times?
- Which of my appointments are critical/flexible? Even if I annotated entries, what if the garage's timetable doesn't have such a concept?
- Lots of constraints:
 - How long will it take to get to the garage?
 - Would I pay extra if they come to collect the car?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Example

We would like the Web to be used for automating more complex tasks:

> Why can't my online calendar and bank account negotiate with my garage's to arrange a mutually convenient time and price to repair my leaking tyre?

- How can my agent find/parse/extract garage's free times?
- Which of my appointments are critical/flexible? Even if I annotated entries, what if the garage's timetable doesn't have such a concept?
- Lots of constraints:
 - How long will it take to get to the garage?
 - Would I pay extra if they come to collect the car?
 - Can they repair the door lock too?

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

The idea of representing Web content in a form that is more easily machine-processable and to use intelligent techniques to take advantage of these representations

Semantic Web technologies:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

- Semantic Web technologies:
 - Explicit meta-data: try to capture the meaning of data by annotating it with information about the content

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

- Semantic Web technologies:
 - Explicit meta-data: try to capture the meaning of data by annotating it with information about the content
 - Ontologies: facilitate organisation/navigation & search, bridge gaps between terminologies

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

- Semantic Web technologies:
 - Explicit meta-data: try to capture the meaning of data by annotating it with information about the content
 - Ontologies: facilitate organisation/navigation & search, bridge gaps between terminologies
 - Logic: reasoning about the meta-data using ontological knowledge

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

What is the Semantic Web?

- Semantic Web technologies:
 - Explicit meta-data: try to capture the meaning of data by annotating it with information about the content
 - Ontologies: facilitate organisation/navigation & search, bridge gaps between terminologies
 - Logic: reasoning about the meta-data using ontological knowledge
 - Agents: the programs that are going to use all this

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

Semantic Web Technologies: The Layer Cake

informatics

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The Semantic Web

 A lot of progress has been made as concerns basic Semantic Web technologies

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- A lot of progress has been made as concerns basic Semantic Web technologies
 - Standardisation efforts (esp. SW languages)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- A lot of progress has been made as concerns basic Semantic Web technologies
 - Standardisation efforts (esp. SW languages)
 - Inference engines

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- A lot of progress has been made as concerns basic Semantic Web technologies
 - Standardisation efforts (esp. SW languages)
 - Inference engines
 - Tools

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- A lot of progress has been made as concerns basic Semantic Web technologies
 - Standardisation efforts (esp. SW languages)
 - Inference engines
 - Tools
- However, the interaction perspective has received fairly little attention so far

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- A lot of progress has been made as concerns basic Semantic Web technologies
 - Standardisation efforts (esp. SW languages)
 - Inference engines
 - Tools
- However, the interaction perspective has received fairly little attention so far
- In other words: The data is (or will be) out there, but where are the agents that are going to use it?

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

An Example: Link Exchange Negotiations

 Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites
- Goal of each Web site owner (and his agent): Maximal dissemination of one's own opinion

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites
- Goal of each Web site owner (and his agent): Maximal dissemination of one's own opinion
- This can be achieved by:

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites
- Goal of each Web site owner (and his agent): Maximal dissemination of one's own opinion
- This can be achieved by:
 - Maximising the popularity of one's own site

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites
- Goal of each Web site owner (and his agent): Maximal dissemination of one's own opinion
- This can be achieved by:
 - Maximising the popularity of one's own site
 - Increasing the popularity of sites that express similar opinions

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

An Example: Link Exchange Negotiations

- Imagine agents representing Web sites are able to conduct inference about the content of other pages provided using Semantic Web methods
- Automated inspection of other sites + Knowledge about own preferences (i.e. those of one's owner) = Assessment of own stance of opinions expressed in other sites
- Goal of each Web site owner (and his agent): Maximal dissemination of one's own opinion
- This can be achieved by:
 - Maximising the popularity of one's own site
 - Increasing the popularity of sites that express similar opinions
 - Decrease the popularity of sites with unfavourable opinions

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

An Example: Link Exchange Negotiations

 Traffic provides a measure for popularity, and is affected by links between sites

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Traffic provides a measure for popularity, and is affected by links between sites
- Links are weighted with numerical "ratings" expressing opinion source site has of target site

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Traffic provides a measure for popularity, and is affected by links between sites
- Links are weighted with numerical "ratings" expressing opinion source site has of target site
 - In a more advanced system, these would correspond to comments such as "Click here for my favourite site on topic X"

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Traffic provides a measure for popularity, and is affected by links between sites
- Links are weighted with numerical "ratings" expressing opinion source site has of target site
 - In a more advanced system, these would correspond to comments such as "Click here for my favourite site on topic X"
- Of course, the displayed ratings (actual link weights) can differ from the (private) actual ratings

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

An Example: Link Exchange Negotiations

- Traffic provides a measure for popularity, and is affected by links between sites
- Links are weighted with numerical "ratings" expressing opinion source site has of target site
 - In a more advanced system, these would correspond to comments such as "Click here for my favourite site on topic X"
- Of course, the displayed ratings (actual link weights) can differ from the (private) actual ratings
- Agent goal: maximise opinion dissemination (in terms of some utility measure) through **negotiation** with other agent about link exchange

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

An Example: Link Exchange Negotiations

- Traffic provides a measure for popularity, and is affected by links between sites
- Links are weighted with numerical "ratings" expressing opinion source site has of target site
 - In a more advanced system, these would correspond to comments such as "Click here for my favourite site on topic X"
- Of course, the displayed ratings (actual link weights) can differ from the (private) actual ratings
- Agent goal: maximise opinion dissemination (in terms of some utility measure) through **negotiation** with other agent about link exchange
- System goal: increase linkage transparency on the WWW

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The LIESON System

Michael Rovatsos

The University of Edinburgh

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

The LIESON System

Utility model with interesting properties

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents
 - Full "honest" linkage yields lower utility than "politically correct" linkage (omitting negative links)

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents
 - Full "honest" linkage yields lower utility than "politically correct" linkage (omitting negative links)
- Highly boundedly rational agents!

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents
 - Full "honest" linkage yields lower utility than "politically correct" linkage (omitting negative links)
- Highly boundedly rational agents!
- Main problem: in an open system, it is unclear whether agents will fulfill one's requests

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents
 - Full "honest" linkage yields lower utility than "politically correct" linkage (omitting negative links)
- Highly boundedly rational agents!
- Main problem: in an open system, it is unclear whether agents will fulfill one's requests
- Objective: develop methods to learn strategic application of negotiation strategies

Agents & Multiagent Systems The (Semantic) Web The Interaction Perspective Link Exchange Negotiations

- Utility model with interesting properties
 - No linkage, "full positive" linkage, "full negative" linkage lead to low utility or all agents
 - Full "honest" linkage yields lower utility than "politically correct" linkage (omitting negative links)
- Highly boundedly rational agents!
- Main problem: in an open system, it is unclear whether agents will fulfill one's requests
- Objective: develop methods to learn strategic application of negotiation strategies
- Two levels of complexity: proposal-based/argumentation-based negotiation

The Interaction Frames Approach Interest-based Negotiation Experimental Results

The Interaction Frames Approach

 Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions

The Interaction Frames Approach Interest-based Negotiation Experimental Results

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of

The Interaction Frames Approach Interest-based Negotiation Experimental Results

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)

The Interaction Frames Approach Interest-based Negotiation Experimental Results

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)
 - pairs of logical conditions and variable substitutions

The Interaction Frames Approach Interest-based Negotiation Experimental Results

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)
 - pairs of logical conditions and variable substitutions
 - occurrence counters representing previous enactments

The Interaction Frames Approach Interest-based Negotiation Experimental Results

The Interaction Frames Approach

 Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions

Each pattern (interaction frame) consists of

- a sequence of message patterns (speech-act like, augmented with variables)
- pairs of logical conditions and variable substitutions
- occurrence counters representing previous enactments
- Combine hierarchical reinforcement learning methods, case-based reasoning and clustering techniques to learn "framing", i.e. strategic use of frames

The Interaction Frames Approach Interest-based Negotiation Experimental Results

An example

$$\begin{split} F &= \left\langle \left\langle \stackrel{5}{\rightarrow} \operatorname{request}(A_1, A_2, X) \stackrel{3}{\rightarrow} \operatorname{accept}(A_2, A_1, X) \right. \\ &\stackrel{2}{\rightarrow} \operatorname{confirm}(A_1, A_2, X) \stackrel{2}{\rightarrow} \operatorname{do}(A_2, X) \right\rangle, \\ &\left\langle \left\{ self(A_1), other(A_2), can(A_1, \operatorname{do}(A_1, X)) \right\}, \\ &\left\{ agent(A_1), agent(A_2), action(X) \right\} \right\rangle, \\ &\left\langle \stackrel{4}{\rightarrow} \left\langle [A_1/\operatorname{agent_1}], [A_2/\operatorname{agent_2}] \right\rangle, \\ &\left. \stackrel{1}{\rightarrow} \left\langle [A_1/\operatorname{agent_3}], [A_2/\operatorname{agent_1}], [X/\operatorname{deliver_goods}] \right\rangle \right\rangle \right\rangle \end{split}$$

Michael Rovatsos The University of Edinburgh

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Proposal-based negotiation

$$\begin{split} F_{1} &= \left\langle \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \operatorname{request}(A, B, X) \xrightarrow{0} \operatorname{accept}(B, A, X) \xrightarrow{0} \operatorname{confirm}(A, B, X) \xrightarrow{0} \operatorname{do}(B, X) \right\rangle, \\ &\quad \left\langle \operatorname{can}(B, X) @3, \operatorname{effects}(X) @4 \right\rangle \right\rangle \\ &\quad \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \langle \rangle \right\rangle \right\rangle \\ F_{2} &= \left\langle \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \operatorname{request}(A, B, X) \xrightarrow{0} \operatorname{propose}(B, A, Y) \xrightarrow{0} \operatorname{accept}(A, B, Y) \xrightarrow{0} \operatorname{do}(B, Y) \right\rangle, \\ &\quad \left\langle \left\{ \operatorname{can}(B, Y) @3, \operatorname{effects}(Y) @4 \right\} \right\rangle \\ &\quad \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \langle \rangle \right\rangle \right\rangle \\ F_{3} &= \left\langle \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \operatorname{request}(A, B, X) \xrightarrow{0} \operatorname{propose-also}(B, A, Y) \xrightarrow{0} \operatorname{accept}(A, B, Y) \\ &\quad \left\langle \operatorname{do}(B, X) \xrightarrow{0} \operatorname{do}(A, Y) \right\rangle, \\ &\quad \left\langle \left\{ \operatorname{can}(B, X) @3, \operatorname{effects}(X) @4, \operatorname{can}(A, Y) @4, \operatorname{effects}(Y) @5 \right\} \right\rangle \\ &\quad \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \langle \rangle \right\rangle \right\rangle \\ \end{array} \end{split}$$

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Interest-based Negotiation (IBN)

A special kind of argumentation-based negotiation

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Interest-based Negotiation (IBN)

- A special kind of argumentation-based negotiation
- As opposed to proposal-based negotiation, IBN allows agents to
 - obtain information about others' beliefs and goals
 - point at others' misconceptions
 - identify/suggest alternatives

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Interest-based Negotiation (IBN)

- A special kind of argumentation-based negotiation
- As opposed to proposal-based negotiation, IBN allows agents to
 - obtain information about others' beliefs and goals
 - point at others' misconceptions
 - identify/suggest alternatives
- Our goal: not performance improvement, but coping with more complex communication "regime"

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Interest-based Negotiation (IBN)

- A special kind of argumentation-based negotiation
- As opposed to proposal-based negotiation, IBN allows agents to
 - obtain information about others' beliefs and goals
 - point at others' misconceptions
 - identify/suggest alternatives
- Our goal: not performance improvement, but coping with more complex communication "regime"
- Approach due to Rahwan et al.

The Interaction Frames Approach Interest-based Negotiation Experimental Results

IBN – Dialogue model

The Interaction Frames Approach Interest-based Negotiation Experimental Results

IBN frames – Example

$$\begin{split} F_{AGM} = & \left\langle \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \texttt{request}(A, B, X) \xrightarrow{0} \texttt{ask-reason}(B, A, \texttt{request}(X)) \xrightarrow{0} \right. \\ & \texttt{inform-goal}(A, B, G) \xrightarrow{0} \\ & \texttt{attack-goal}(B, A, alternative-action(Y)) \\ & \stackrel{0}{\rightarrow} \texttt{concede}(A, B, Y) \xrightarrow{0} \texttt{do}(B, Y) \right\rangle, \\ & \left\langle \{\texttt{can}(B, X), \texttt{goal}(A, G), \texttt{achieves}(X, G), \texttt{achieves}(Y, G), \right. \\ & \left. X \neq Y, \texttt{can}(B, Y) \textcircled{0}, \texttt{effects}(Y) \textcircled{0}6 \right\} \right\rangle, \left\langle \begin{array}{c} \stackrel{0}{\rightarrow} \langle \rangle \rangle \right\rangle \end{split}$$

The Interaction Frames Approach Interest-based Negotiation Experimental Results

Without Frame Learning

The Interaction Frames Approach Interest-based Negotiation Experimental Results

With Frame Learning

Michael Rovatsos The University of Edinburgh
Outline

Introduction

Agents and the Web

Learning communication patterns

The ESB Architecture

Conclusions

Outline

Introduction

Agents and the Web

Learning communication patterns

The ESB Architecture

Conclusions

The ESB Architecture

Expectation-Strategy-Behaviour architecture

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach
- Key ideas:

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals

- Expectation-Strategy-Behaviour architecture
- Generalisation of ideas of interaction frames approach
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals
- Concept of expectation used to bridge gap between cognitive and social system layer

The ESB Feedback Loop

 Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations

The ESB Feedback Loop

- Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations
- Agent-level (cognitive) vs. system-level (social) views (managing one's own interactions versus controlling open systems)

The ESB Feedback Loop

- Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations
- Agent-level (cognitive) vs. system-level (social) views (managing one's own interactions versus controlling open systems)
- A closer look reveals that this nothing but a learning loop for interaction learning

Interaction Frames and ESB

 The framing mechanism represents an expectation processing mechanism

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour
 - "Second-order" effect of own behaviour taken into account (heuristics for trading off long-term reliability of frames vs. short-term utility maximisation)

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour
 - "Second-order" effect of own behaviour taken into account (heuristics for trading off long-term reliability of frames vs. short-term utility maximisation)

informatics

Unifying Existing Approaches in ESB

 Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest

Unifying Existing Approaches in ESB

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)

informatics

Unifying Existing Approaches in ESB

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)
 - Problem: simplification of interaction mechanisms to guarantee properties, "worst-case reasoning"

informatics

Challenges

Improve our understanding of expectation-based systems

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)
- Map existing approaches to a common "ESB language" to compare (and combine?) them

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)
- Map existing approaches to a common "ESB language" to compare (and combine?) them
- Apply these methods to the development of open systems in real-world applications

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)
- Map existing approaches to a common "ESB language" to compare (and combine?) them
- Apply these methods to the development of open systems in real-world applications
- ► Vision: Semantic Web ➡ Strategic Web

informatics

The End

Thank you for your attention!

