Autonomy, Interaction & Learning – A Semantic Web Perspective

Michael Rovatsos

Department of Informatics Technical University of Munich

15th April, 2004

Claim

Agent and multiagent technology will play a pivotal role in exploiting the full potential of the **Semantic Web** through

- agent autonomy
- agent interaction
- multiagent learning

because these features enable applications that go beyond the "content" view of the Internet.

Claim

Autonomy

Interaction

Agent Technology

Claim

Autonomy

Interaction

Semantic Web

Outline

Agents and Multiagent Systems

The Semantic Web & Agents

Current Research and Future Challenges

Conclusions

Outline

Agents and Multiagent Systems

The Semantic Web & Agents

Current Research and Future Challenges

Conclusions

Agents

- **Situated** in an environment
- Able to perceive and act upon an environment (through sensors/effectors)
- Autonomous, i.e. able to operate without external guidance

Agents

- **Situated** in an environment
- Able to perceive and act upon an environment (through sensors/effectors)
- Autonomous, i.e. able to operate without external guidance

Intelligent Agents

- **Reactive** to changes in the environment
- Pro-active, i.e. they take action to achieve their goals
- Able to interact with others in a social context

Multiagent Systems (MAS)

- Societies of interacting agents
- Decentralisation of data and control
- Asynchronous computation and communication

Multiagent Systems (MAS)

- Societies of interacting agents
- Decentralisation of data and control
- Asynchronous computation and communication
- Distributed AI distinguishes between two types:
 - Strictly cooperative, closed MAS (distributed problem-solving, task-oriented)
 - Open MAS (changing populations of self-interested agents, different internal designs)

A more specific definition

Agent concept very general/abstract, debatable

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that
 - is capable of autonomous, goal-oriented action

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that
 - is capable of autonomous, goal-oriented action
 - ▶ is able to perform complex tasks specified at a high level

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that
 - is capable of autonomous, goal-oriented action
 - is able to perform complex tasks specified at a high level
 - employs AI techniques to perform its tasks (e.g. KR & R, planning, machine learning, NLP, machine vision, robotic control)

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that
 - is capable of autonomous, goal-oriented action
 - is able to perform complex tasks specified at a high level
 - employs AI techniques to perform its tasks (e.g. KR & R, planning, machine learning, NLP, machine vision, robotic control)
 - interacts with other agents (including humans) through a common physical environment

- Agent concept very general/abstract, debatable
- In this talk, "agent" shall denote a computational entity that
 - is capable of autonomous, goal-oriented action
 - is able to perform complex tasks specified at a high level
 - employs AI techniques to perform its tasks (e.g. KR & R, planning, machine learning, NLP, machine vision, robotic control)
 - interacts with other agents (including humans) through a common physical environment
 - communicates with them using a high-level symbolic communication language

Autonomy Interaction Learning

Agents and Multiagent Systems

The Semantic Web & Agents Autonomy Interaction Learning

Current Research and Future Challenges

Conclusions

Autonomy Interaction Learning

The Semantic Web & Agents

Autonomy

Interaction

Agent Technology

Autonomy Interaction Learning

The Semantic Web & Agents

Autonomy

Interaction

Autonomy Interaction Learning

The Semantic Web – A Great Challenge

 Goal: to improve information access via machine-processable meta-data

Autonomy Interaction Learning

- Goal: to improve information access via machine-processable meta-data
- Primarily concerned with
 - Standards for meta-data representation (XML, RDF, UDDI, SOAP, WSDL, etc.),
 - Ontologies (DAML+OIL)

- Goal: to improve information access via machine-processable meta-data
- Primarily concerned with
 - Standards for meta-data representation (XML, RDF, UDDI, SOAP, WSDL, etc.),
 - Ontologies (DAML+OIL)
- Meta-data facilitates
 - search (for information/services)
 - logical inference/knowledge discovery
 - web mining/clustering/classification

- Goal: to improve information access via machine-processable meta-data
- Primarily concerned with
 - Standards for meta-data representation (XML, RDF, UDDI, SOAP, WSDL, etc.),
 - Ontologies (DAML+OIL)
- Meta-data facilitates
 - search (for information/services)
 - logical inference/knowledge discovery
 - web mining/clustering/classification
- Problem: Web still regarded as a static source of information in the form of text/multimedia content

- Goal: to improve information access via machine-processable meta-data
- Primarily concerned with
 - Standards for meta-data representation (XML, RDF, UDDI, SOAP, WSDL, etc.),
 - Ontologies (DAML+OIL)
- Meta-data facilitates
 - search (for information/services)
 - logical inference/knowledge discovery
 - web mining/clustering/classification
- Problem: Web still regarded as a static source of information in the form of text/multimedia content
- Focusing on the combination of autonomy, interaction and learning opens entirely new prospects for the SW!

Autonomy

Essential for delegation of complex tasks to agents

Autonomy

- Essential for delegation of complex tasks to agents
- Still poorly understood, but important (e.g. IBMs Autonomic Computing Initiative)

Autonomy

- Essential for delegation of complex tasks to agents
- Still poorly understood, but important (e.g. IBMs Autonomic Computing Initiative)
- ► Our view:

	perspective	
range	internal	external
performative	capability	dependency
deliberative	motivation	control
normative	commitment	expectation

Autonomy

- Essential for delegation of complex tasks to agents
- Still poorly understood, but important (e.g. IBMs Autonomic Computing Initiative)
- ► Our view:

	perspective	
range	internal	external
performative	capability	dependency
deliberative	motivation	control
normative	commitment	expectation

Issues:

- How much autonomy is desirable?
- At what level should it be specified?
- How do we respond to other agents' autonomy?

Interaction

- The Web obtains its "semantics" only through the ways it is used
 - textual/visual content: interaction of reader/viewer with author
 - services: search, matchmaking, brokering, access (e.g. Web services)
 - markets: negotiation, contracting, financial transactions
 - forums: discussions, blackboards, collaborative authoring
 - organisations: knowledge management, process management

Interaction

- The Web obtains its "semantics" only through the ways it is used
 - textual/visual content: interaction of reader/viewer with author
 - services: search, matchmaking, brokering, access (e.g. Web services)
 - markets: negotiation, contracting, financial transactions
 - forums: discussions, blackboards, collaborative authoring
 - organisations: knowledge management, process management
- "Meaning" = the significance of communicative actions in the context of human/agent activity

Interaction

- The Web obtains its "semantics" only through the ways it is used
 - textual/visual content: interaction of reader/viewer with author
 - services: search, matchmaking, brokering, access (e.g. Web services)
 - markets: negotiation, contracting, financial transactions
 - forums: discussions, blackboards, collaborative authoring
 - organisations: knowledge management, process management
- "Meaning" = the significance of communicative actions in the context of human/agent activity
- Ongoing process of construction of meaning rather than pre-defined semantics

Autonomy Interaction Learning

Learning

 Agent autonomy and complex environments induce unpredictability

- Agent autonomy and complex environments induce unpredictability
- Impossible to pre-specify system behaviour

- Agent autonomy and complex environments induce unpredictability
- Impossible to pre-specify system behaviour
- Acquisition of knowledge from observation may
 - serve as a minimal-assumption approach
 - ensure that system dynamics is taken into account
 - provide information for long-term optimisation (either from human designer or agent perspective)

- Agent autonomy and complex environments induce unpredictability
- Impossible to pre-specify system behaviour
- Acquisition of knowledge from observation may
 - serve as a minimal-assumption approach
 - ensure that system dynamics is taken into account
 - provide information for long-term optimisation (either from human designer or agent perspective)
- Focus: communication learning
 - modelling and learning of interaction structures
 - evolutionary semantics of agent communication
 - autonomy-respecting intervention through strategic communication

Example Applications

- Electronic Travel Assistant on a PDA
 - Books tickets, provides directions, displays sightseeing information retrieved from the Web
 - How much autonomy should it be endowed with?

Example Applications

- Electronic Travel Assistant on a PDA
 - Books tickets, provides directions, displays sightseeing information retrieved from the Web
 - How much autonomy should it be endowed with?
- Biological eScience Forum
 - Platform for negotiating access to biological data (industry/academia mix)
 - How to interact strategically given predominant communicative conventions?

Example Applications

- Electronic Travel Assistant on a PDA
 - Books tickets, provides directions, displays sightseeing information retrieved from the Web
 - How much autonomy should it be endowed with?
- Biological eScience Forum
 - Platform for negotiating access to biological data (industry/academia mix)
 - How to interact strategically given predominant communicative conventions?
- Electronic auctions
 - "Buyers who won't pay" problem, what if distrust reaches dangerous level?
 - Learning how to identify critical situations, how to intervene

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Agents and Multiagent Systems

The Semantic Web & Agents

Current Research and Future Challenges Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Current Research and Future Challenges

Autonomy

Interaction

Agent Technology

Learning

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Current Research and Future Challenges

Autonomy

Interaction

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Autonomy: RNS – Roles, Norms and Sanctions

Example: basic activity

Example: request activity

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Formalism for describing structure and evolution of interaction practices using **expectation networks**

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Formalism for describing structure and evolution of interaction practices using **expectation networks**

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Formalism for describing structure and evolution of interaction practices using **expectation networks**

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Formalism for describing structure and evolution of interaction practices using **expectation networks**

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

Advantages over other models of communication semantics:

No mentalistic assumptions

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

- No mentalistic assumptions
- Can be used by agents/system observers

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

- No mentalistic assumptions
- Can be used by agents/system observers
- Allows for context-sensitivity and uncertainty

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Interaction: The Communication Systems Approach

- No mentalistic assumptions
- Can be used by agents/system observers
- Allows for context-sensitivity and uncertainty
- Captures the dynamics of evolving meaning

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Learning: Interaction Frames/InFFrA

 Interaction Frames and Framing Architecture

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Learning: Interaction Frames/InFFrA

- Interaction Frames and Framing Architecture
- Frame = model of a class of interactions
 - courses of interactions
 - roles of participants
 - context conditions
 - agent beliefs

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Learning: Interaction Frames/InFFrA

- Interaction Frames and Framing Architecture
- Frame = model of a class of interactions
 - courses of interactions
 - roles of participants
 - context conditions
 - agent beliefs
- Framing = process of constructing and applying frames

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Learning: Interaction Frames/InFFrA

- Interaction Frames and Framing Architecture
- Frame = model of a class of interactions
 - courses of interactions
 - roles of participants
 - context conditions
 - agent beliefs
- Framing = process of constructing and applying frames
- Specific architecture for reasoning about communication systems at micro-conversation level

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

InFFrA Reasoning Process

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

InFFrA Reasoning Process

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Hierarchical Reinforcement Learning View

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Challenges for Future Research: Autonomy

Methods for specifying and dealing with autonomy

- norms and conventions
- trust and reputation
- authentication and security
- autonomy-respecting intervention

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Challenges for Future Research: Autonomy

Methods for specifying and dealing with autonomy

- norms and conventions
- trust and reputation
- authentication and security
- autonomy-respecting intervention
- Autonomy and mobility
 - lack of theory in context-aware and ubiquitous computing
 - particular relationship between user and digital assistant autonomy
 - virtual co-presence, awareness, social context

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Challenges for Future Research: Interaction

- Evolving and negotiated ontologies
 - emergent semantics & pragmatics
 - integration with a priori semantics
 - conversation mining and communication process modelling
 - relationship between NLP and agent communication (bringing Web content and agent interaction together)

Challenges for Future Research: Interaction

- Evolving and negotiated ontologies
 - emergent semantics & pragmatics
 - integration with a priori semantics
 - conversation mining and communication process modelling
 - relationship between NLP and agent communication (bringing Web content and agent interaction together)
- Integration of different autonomous components in agent and system architectures (agent-oriented software engineering)

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Challenges for Future Research: Learning

Learning how to communicate

- Building models of social communication systems
- Active learning of communication strategies

Specifying Computational Autonomy Modelling Interaction Structures Learning Interaction Patterns

Challenges for Future Research: Learning

Learning how to communicate

- Building models of social communication systems
- Active learning of communication strategies
- Issues:
 - How to derive appropriate (manageable) state and policy abstractions
 - Combination of MDPs, interaction protocols and knowledge-based inference
 - Merging global and local views of communication systems

Conclusions

Autonomy

Interaction

Agent Technology

Learning

Conclusions

Autonomy

Interaction

Semantic Web

Learning

Conclusions

Made the case for exploiting agent autonomy, interaction and learning to advance Semantic Web technologies

- Made the case for exploiting agent autonomy, interaction and learning to advance Semantic Web technologies
- Anthropocentric view: the Web is made of how people use it (and not of HTML data)

- Made the case for exploiting agent autonomy, interaction and learning to advance Semantic Web technologies
- Anthropocentric view: the Web is made of how people use it (and not of HTML data)
- Ongoing agent research not sufficiently adapted to the needs of the Semantic Web and vice versa

- Made the case for exploiting agent autonomy, interaction and learning to advance Semantic Web technologies
- Anthropocentric view: the Web is made of how people use it (and not of HTML data)
- Ongoing agent research not sufficiently adapted to the needs of the Semantic Web and vice versa
- Research proposed here may help avoid:
 - The Web becoming a huge "information wasteland"
 - Agent technology degenerating to a "nice idea" for lack of killer apps

"The World is not the Web"

Variety of other relevant application areas:

"The World is not the Web"

Variety of other relevant application areas:

Agents for Context-Aware Computing (lack of theory)

"The World is not the Web"

- Agents for Context-Aware Computing (lack of theory)
- Autonomic Computing (lack of open systems view)

"The World is not the Web"

- Agents for Context-Aware Computing (lack of theory)
- Autonomic Computing (lack of open systems view)
- Agent-Supported Peer-to-Peer Computing

"The World is not the Web"

- Agents for Context-Aware Computing (lack of theory)
- Autonomic Computing (lack of open systems view)
- Agent-Supported Peer-to-Peer Computing
- Agents in Bioinformatics (algorithm level!)

"The World is not the Web"

- Agents for Context-Aware Computing (lack of theory)
- Autonomic Computing (lack of open systems view)
- Agent-Supported Peer-to-Peer Computing
- Agents in Bioinformatics (algorithm level!)
- Knowledge Management/Business Process Management (Agent-Supported CSCW, Enterprise Application Collaboration, eLearning, eScience)

"The World is not the Web"

- Agents for Context-Aware Computing (lack of theory)
- Autonomic Computing (lack of open systems view)
- Agent-Supported Peer-to-Peer Computing
- Agents in Bioinformatics (algorithm level!)
- Knowledge Management/Business Process Management (Agent-Supported CSCW, Enterprise Application Collaboration, eLearning, eScience)
- Agent based Anti-Spam/Anti-Fraud Systems

Thank you for your attention!

Criticism/Misconceptions

Criticism/Misconceptions

- Widely misused as a buzzword
 - eBay bidding "agents", mail transport "agent", etc.

Criticism/Misconceptions

- Widely misused as a buzzword
 - eBay bidding "agents", mail transport "agent", etc.
- Ongoing theoretical dispute
 - Is a thermostat/word processor/Google an agent?
 - How about ALife/ant algorithms/GAs?
 - How about robots?

Criticism/Misconceptions

- Widely misused as a buzzword
 - eBay bidding "agents", mail transport "agent", etc.
- Ongoing theoretical dispute
 - Is a thermostat/word processor/Google an agent?
 - How about ALife/ant algorithms/GAs?
 - How about robots?
- Necessity to distinguish between
 - design metaphor
 - set of methods, technologies and tools

Criticism/Misconceptions

- Widely misused as a buzzword
 - eBay bidding "agents", mail transport "agent", etc.
- Ongoing theoretical dispute
 - Is a thermostat/word processor/Google an agent?
 - How about ALife/ant algorithms/GAs?
 - How about robots?
- Necessity to distinguish between
 - design metaphor
 - set of methods, technologies and tools
- Chasm between concept of agent autonomy and classical engineering stance

Example: Intelligent Travel Assistant

- An agent on a PDA that uses Web information to assist a human traveller by ...
 - making sightseeing suggestions
 - booking tickets for attractions
 - displaying travel guide material
 - providing directions
 - planning itineraries

Example: Intelligent Travel Assistant

- An agent on a PDA that uses Web information to assist a human traveller by ...
 - making sightseeing suggestions
 - booking tickets for attractions
 - displaying travel guide material
 - providing directions
 - planning itineraries
- Should it be allowed to ...
 - purchase tickets without user approval?
 - suggest alternative routes according to his internal travel agenda or seek constant user feedback?
 - pro-actively negotiate with other agents (e.g. travel agents) online?

Example: Biological eScience Forum

- Platform for negotiating access to biological data and algorithms
 - Mixture of industry and academic labs
 - Reciprocal exchange and commercial trading

Example: Biological eScience Forum

- Platform for negotiating access to biological data and algorithms
 - Mixture of industry and academic labs
 - Reciprocal exchange and commercial trading
- Different protocols for automated
 - matchmaking (service directories, middle agents)
 - negotiation (auctions, argumentation)
 - reputation management (recommender agents)
 - contracting (e.g. trusted third parties)

Example: Biological eScience Forum

- Platform for negotiating access to biological data and algorithms
 - Mixture of industry and academic labs
 - Reciprocal exchange and commercial trading
- Different protocols for automated
 - matchmaking (service directories, middle agents)
 - negotiation (auctions, argumentation)
 - reputation management (recommender agents)
 - contracting (e.g. trusted third parties)
- Evolving culture of communicative conventions, e.g.
 - reputation of certain labs requires specific strategies
 - chasm or gradual convergence of academia/industry cultures
 - multidisciplinary cooperation (biologists, doctors, computing people)

Example: Electronic Auctions

"Buyers who won't pay" problem

Example: Electronic Auctions

- "Buyers who won't pay" problem
- eBay offers statistics of customer satisfaction with buyers/sellers and displays comment logs

Example: Electronic Auctions

- "Buyers who won't pay" problem
- eBay offers statistics of customer satisfaction with buyers/sellers and displays comment logs
- What if global level of distrust reaches dangerous level?

Example: Electronic Auctions

- "Buyers who won't pay" problem
- eBay offers statistics of customer satisfaction with buyers/sellers and displays comment logs
- What if global level of distrust reaches dangerous level?
- Necessity of
 - prompt identification of such deviance from normative rules of behaviour (constant monitoring and data analysis)
 - "soft" methods of intervention (e.g. selective filtering of comments, providing incentives for cooperative behaviour, appealing to other institutions)

Application Scenario: Web Linkage Negotiations

Michael Rovatsos Autonomy, Interaction & Learning

пп