
Hierarchical Common-Sense

Interaction Learning

Michael Rovatsos

Knowbotic Systems GmbH & Co KG

Jürgen Lind

German Research Center for Artificial

Intelligence (DFKI)

Introduction

• The need for coordination among agents is

inherent to the nature of multi-agent sys-

tems.

• Difficulty of predicting society-level phenom-

ena on the grounds of local interactions sug-

gests learning coordination strategies.

• Game-theoretic models widely used to model

interaction situations at an abstract level

(e.g. mechanism design, game-learning).

• However, little research focuses on agents

learning something about the interaction it-

self.

• Idea: enable agents to develop a common-

sense (“naive”?) understanding of the on-

going interaction.

• Our approach:

– decompose the “coordination learning

problem” in an intuitive way into several

learning goals,

– devise a hierarchical learning architecture

to solve sub-problems and

– integrate results.

• Identification of three essential determinants

of interaction:

1. interdependence modalities

2. opponent behaviour

3. cooperation potential

• Objective: construction of a layered learning

architecture that integrates learning compo-

nents for these (as an extension of the In-

teRRaP architecture).

• We concentrate on learning coordination in

societies of purely selfish agents:

– for abstract interaction situations (repeated

n-player games),

– without explicit communication and

– without any prior knowledge of payoff func-

tions, opponent strategies and opponent

decision-making processes.

• Overview:

1. Interaction Scenario

2. Intuitive model of the

“coordination problem”

3. The LAYLA agent architecture

4. Experimental Results

5. Conclusions

Interaction Scenario

• n-person games in normal form with black-

box payoff function (private knowledge of

the Simulation Engine).

• Simulation procedure in round t:

1. agents (players) N = {1, . . . n} communi-

cate their action choices (taken from a

joint strategy space S = ×i∈NSi) to the

Simulation Engine (SE),

2. SE computes all the resulting payoff

ui(s1, . . . sn) for every agent i,

3. each agent is notified of the performed

joint action (s1, . . . sn) and of the private

payoff ui it receives,

4. round t + 1 is started.

• Repeated for a finite number of rounds which

is unknown to the agents; no knowledge of

the payoffs opponents receive.

Intuitive Model of the

Coordination Problem

• Starting point: agents as individual utility-

maximisers but problem of “egoist traps”,

esp. in the case of non-pareto-optimal Nash

equilibria.

• Socially coherent behaviour can be defined

as OPT ⊆ S where

opt ∈ OPT ⇐⇒
u(opt) is in the
kernel of the game

• What do agents need to know in order to

converge to such behaviour?

• Decomposition of learning problem into sub-

problems corresponding to essential determi-

nants of interaction

Interdependence Modalities:

• Denote “what the interaction consists of”

i.e. in which way actors’ actions affect each

other.

• In repeated n-player games equivalent to learn-

ing the utility function.

⇒ Learning task: construct an explicit repre-

sentation π : S → R of agent i’s private pay-

off function ui

Opponent Behaviour Prediction:

• Important to predict others’ future actions

to plan strategically.

• Enables reasoning about what the interac-

tion will be like (rather than what it could

be like).

• Learning task: learn a function that can be

used to predict any future opponent action

sequence on the basis of past joint actions.

Cooperation Potential:

• Difference to opponent behaviour prediction:

cooperation potential learning helps to alter

opponent behaviour rather than only antici-

pate it.

• Learn to predict own action sequences that

will “massage” the opponents into their most

cooperative stance.

⇒ Clearly all three learning goals hardly achiev-

able in the presented form, but valuable for

defining the overall problem.

The LAYLA Agent

Architecture

• Reasoning layers in the InteRRaP agent ar-

chitecture correspond to the identified learn-

ing tasks.

• Idea of the LAYered Learning Agent ar-

chitecture: extend each InteRRaP layer by

a learning component to attack (simplified

versions of) the learning problems.

• Devise concrete learning algorithms for the

layers for the specific problem of learning re-

peated games.

⇒ prototypical Utility Engine, Strategy En-

gine and Social Behaviour Engine

Utility Engine (LIM): learn an approximation

π of the actual payoff function ui.

• Straightforward supervised learning problem:

given joint-action/payoff pairs, approximate

the payoff function.

• Employ standard multi-layer feed-forward neu-

ral networks that are trained with samples of

the form
〈

β(s(t)),
u
(t)
i

maxt′≤t u
(t′)
i

〉

• Learning success satisfactory, but disadvan-

tage: neural network design choices hand-

crafted.

Strategy Engine (LOBP): learn an action-value

function m : Si → [0; 1] to approximate the ex-

pected utility of actions.

• Uses a combination of genetic algorithms

and nearest-neighbour learning.

• Trained by using pairs of consecutive oppo-

nent action pairs parametrised by the rea-

soning agent’s own action

s
(t−1)
i

s
(t−1)
−i −→ s

(t)
−i

• Fitness values of individuals depend on their

validity with respect to past experience.

• Standard one-point crossover and mutation,

wildcard bits; |Si| populations, one for each

action of agent i

• Nearest-neighbour heuristic used to predict

next opponent action depending on the pre-

vious action.

• Reduction of LOBP to a one-step lookahead.

• By making use of the utility function approx-

imator π a function

m(si) =
π(s̃−i, si)

∑

si∈Si
π(s̃−i, si)

can be calculated in each step (given the

previous opponent action s̃−i).

⇒ Ideally, m is maximal iff si is the (greedy)

best response to the predicted next oppo-

nent action.

Social Behaviour Engine (LCP):

• Learn peer preference structures, the “value”

of peers for the agent.

• Use the learned to concepts to approximate

the opponent’s reasoning mechanism.

• Developed special algorithm for LCP based

on gain models.

Idea: approximate two-player payoff depen-

dencies within n-player interactions by

1. combining worst-case and best-case pay-

offs for action combinations (si, sj) and

2. considering the overall risk of action si.

• Probabilistic Ordering Models are used for

the approximation of the peer’s gains.

• Recursive reasoning down to “level 3”.

• Line of social reasoning:

1. Assess the value of “help” that is pro-

vided to i by peer j by particular strate-

gies of j and vice versa.

2. Use 1. to compute the probability with

which j will play any sj if i plays any si.

3. Use 2. to determine the expected gain

gi(si) of every action si.

4. Construct the set of socially feasible ac-

tions

Lj = {si|m(si) + γ · gi(si) > maxs′i
m(s′i)}

(compromise factor γ ∈ [0; 1]).

5. Repeat 1.-4. for every peer j in a neigh-

bourhood Ni ⊆ N − {i}.

6. Construct the union of all socially feasible

action sets L =
⋃

Lj.

If empty, play according to mi.

Else choose that si ∈ L that (allegedly)

maximises opponents’ expected gains.

• No built-in cooperativeness, but ability to

detect cooperation potentials and notion of

reciprocity.

• Integration of learning layers:

– downward commitment:

whenever compromise is possible, greedy

choices are overruled;

Utility Engine exploration action choices

can be overruled by the Strategy En-

gine;

– upward activation:

learning of super-layer does not start

until sub-layer makes sufficient progress;

the Utility Engine and Strategy Engine

perform supervised learning, so current

errors can be measured

⇒ use of thresholds

Experimental Results

• Application scenario:

resource-load balancing

• Special properties:

1. A single strict Nash equilibrium that is

not collectively rational (“greedy” action

combination).

2. Several “fair” resource allocation strate-

gies, that provide higher payoffs to all

agents than the equilibrium

• Tests in two-player two-resource, ten-player

five-resource and fifty-player five-resource set-

tings.

Fair
Greedy

Agent

Fair
Greedy

Agent

Fair
Greedy

Agent

Fair
Greedy

Agent

Fair
Greedy

Agent

Conclusions

• Selfish agents can learn to behave coopera-

tively

– in games in which it is tempting to defect,

– without being able to communicate,

– with very little prior knowledge and

– (although things get harder) even in games

with vast strategy spaces.

• Layered learning offers the possibility to de-

compose hard problems into simpler ones

but

– the decomposition itself was not “learned”,

– the architecture is only relevant in the

context of repeated games and

– learning algorithms were tuned to match

the needs of the application scenario.

• Drawbacks:

– dependence of success on appropriate choice

of compromise factor γ,

– lack of meta-reasoning capabilities,

– lack of dependable multi-agent learning

and layered learning theory to compare

our results with and

– high complexity.

• Open issues:

– Extensive form games,

– non-game-theoretic interaction models

– use of communication and

– meta-learning.

