Hierarchical Common-Sense Interaction Learning

Michael Rovatsos Knowbotic Systems GmbH & Co KG

Jürgen Lind German Research Center for Artificial Intelligence (DFKI)

Introduction

- The need for *coordination* among agents is inherent to the nature of multi-agent systems.
- Difficulty of predicting society-level phenomena on the grounds of local interactions suggests *learning* coordination strategies.
- Game-theoretic models widely used to model interaction situations at an abstract level (e.g. mechanism design, game-learning).
- However, little research focuses on agents learning something about the interaction *it-self*.
- Idea: enable agents to develop a commonsense ("naive"?) understanding of the ongoing interaction.

- Our approach:
 - decompose the "coordination learning problem" in an intuitive way into several learning goals,
 - devise a hierarchical learning architecture to solve sub-problems and
 - integrate results.
- Identification of three *essential determinants* of interaction:
 - 1. interdependence modalities
 - 2. opponent behaviour
 - 3. cooperation potential
- Objective: construction of a *layered learning architecture* that integrates learning components for these (as an extension of the *InteRRaP* architecture).

- We concentrate on *learning* coordination in societies of purely *selfish* agents:
 - for abstract interaction situations (repeated n-player games),
 - without explicit communication and
 - without any prior knowledge of payoff functions, opponent strategies and opponent decision-making processes.
- Overview:
 - 1. Interaction Scenario
 - 2. Intuitive model of the "coordination problem"
 - 3. The LAYLA agent architecture
 - 4. Experimental Results
 - 5. Conclusions

Interaction Scenario

- *n*-person games in normal form with blackbox payoff function (private knowledge of the *Simulation Engine*).
- Simulation procedure in round *t*:
 - 1. agents (players) $N = \{1, ..., n\}$ communicate their action choices (taken from a joint strategy space $S = \times_{i \in N} S_i$) to the Simulation Engine (SE),
 - 2. SE computes all the resulting payoff $u_i(s_1, \ldots s_n)$ for every agent *i*,
 - 3. each agent is notified of the performed joint action $(s_1, \ldots s_n)$ and of the *private* payoff u_i it receives,
 - 4. round t + 1 is started.
- Repeated for a finite number of rounds which is unknown to the agents; no knowledge of the payoffs opponents receive.

Intuitive Model of the Coordination Problem

- Starting point: agents as individual utilitymaximisers but problem of "egoist traps", esp. in the case of non-pareto-optimal Nash equilibria.
- Socially coherent behaviour can be defined as $OPT \subseteq S$ where

 $opt \in OPT \iff u(opt)$ is in the kernel of the game

- What do agents need to know in order to converge to such behaviour?
- Decomposition of learning problem into subproblems corresponding to *essential determinants of interaction*

Interdependence Modalities:

- Denote *"what the interaction consists of"* i.e. in which way actors' actions affect each other.
- In repeated *n*-player games equivalent to learning the utility function.
- \Rightarrow Learning task: construct an explicit representation $\pi: S \rightarrow \mathbf{R}$ of agent *i*'s private payoff function u_i

Opponent Behaviour Prediction:

- Important to predict others' future actions to plan strategically.
- Enables reasoning about what the interaction *will* be like (rather than what it *could* be like).
- Learning task: learn a function that can be used to predict any future opponent action sequence on the basis of past joint actions.

Cooperation Potential:

- Difference to opponent behaviour prediction: cooperation potential learning helps to *alter* opponent behaviour rather than only anticipate it.
- Learn to predict own action sequences that will "massage" the opponents into their most cooperative stance.

⇒ Clearly all three learning goals hardly achievable in the presented form, but valuable for defining the overall problem.

The LAYLA Agent Architecture

- Reasoning layers in the InteRRaP agent architecture correspond to the identified learning tasks.
- Idea of the **LAY**ered Learning Agent architecture: extend each InteRRaP layer by a learning component to attack (simplified versions of) the learning problems.
- Devise concrete learning algorithms for the layers for the specific problem of learning repeated games.
- ⇒ prototypical Utility Engine, Strategy Engine and Social Behaviour Engine

Utility Engine (L^{IM}) : learn an approximation π of the actual payoff function u_i .

- Straightforward supervised learning problem: given joint-action/payoff pairs, approximate the payoff function.
- Employ standard multi-layer feed-forward neural networks that are trained with samples of the form

$$\left\langle \beta(s^{(t)}), \frac{u_i^{(t)}}{\max_{t' \leq t} u_i^{(t')}} \right\rangle$$

 Learning success satisfactory, but disadvantage: neural network design choices handcrafted. **Strategy Engine** (L^{OBP}): learn an action-value function $m : S_i \rightarrow [0; 1]$ to approximate the expected utility of actions.

- Uses a combination of genetic algorithms and nearest-neighbour learning.
- Trained by using pairs of consecutive opponent action pairs parametrised by the reasoning agent's own action

$$s_{-i}^{(t-1)} \xrightarrow{s_i^{(t-1)}} s_{-i}^{(t-1)}$$

- Fitness values of individuals depend on their validity with respect to past experience.
- Standard one-point crossover and mutation, wildcard bits; $|S_i|$ populations, one for each action of agent i
- Nearest-neighbour heuristic used to predict next opponent action depending on the previous action.

- Reduction of L^{OBP} to a one-step lookahead.
- By making use of the utility function approximator π a function

$$m(s_i) = \frac{\pi(\tilde{s}_{-i}, s_i)}{\sum_{s_i \in S_i} \pi(\tilde{s}_{-i}, s_i)}$$

can be calculated in each step (given the previous opponent action \tilde{s}_{-i}).

⇒ Ideally, m is maximal iff s_i is the (greedy) best response to the predicted next opponent action.

Social Behaviour Engine (L^{CP}) :

- Learn peer preference structures, the "value" of peers for the agent.
- Use the learned to concepts to approximate the opponent's reasoning mechanism.
- Developed special algorithm for L^{CP} based on gain models.
 Idea: approximate two-player payoff dependencies within n-player interactions by
 - 1. combining worst-case and best-case payoffs for action combinations (s_i, s_j) and
 - 2. considering the overall *risk* of action s_i .
- *Probabilistic Ordering Models* are used for the approximation of the peer's gains.
- Recursive reasoning down to "level 3".

- Line of social reasoning:
 - 1. Assess the value of "help" that is provided to i by peer j by particular strategies of j and vice versa.
 - 2. Use 1. to compute the probability with which j will play any s_j if i plays any s_i .
 - 3. Use 2. to determine the expected gain $g_i(s_i)$ of every action s_i .
 - 4. Construct the set of *socially feasible actions*

 $L_{j} = \{s_{i} | m(s_{i}) + \gamma \cdot g_{i}(s_{i}) > max_{s'_{i}}m(s'_{i})\}$ (compromise factor $\gamma \in [0; 1]$).

- 5. Repeat 1.-4. for every peer j in a neighbourhood $N_i \subseteq N \{i\}$.
- 6. Construct the union of all socially feasible action sets $L = \bigcup L_j$.

If empty, play according to m_i .

Else choose that $s_i \in L$ that (allegedly) maximises opponents' expected gains.

- No built-in cooperativeness, but ability to detect cooperation potentials and notion of reciprocity.
- Integration of learning layers:
 - downward commitment:

whenever compromise is possible, greedy choices are overruled;

Utility Engine exploration action choices can be overruled by the Strategy Engine;

- upward activation:

learning of super-layer does not start until sub-layer makes sufficient progress;

the Utility Engine and Strategy Engine perform supervised learning, so current errors can be measured ⇒ use of thresholds

Experimental Results

• Application scenario:

resource-load balancing

- Special properties:
 - A single strict Nash equilibrium that is not collectively rational ("greedy" action combination).
 - 2. Several "fair" resource allocation strategies, that provide higher payoffs to all agents than the equilibrium
- Tests in two-player two-resource, ten-player five-resource and fifty-player five-resource settings.

Conclusions

- Selfish agents can learn to behave cooperatively
 - in games in which it is tempting to defect,
 - without being able to communicate,
 - with very little prior knowledge and
 - (although things get harder) even in games with vast strategy spaces.
- Layered learning offers the possibility to decompose hard problems into simpler ones but
 - the decomposition itself was not "learned",
 - the architecture is only relevant in the context of repeated games and
 - learning algorithms were tuned to match the needs of the application scenario.

- Drawbacks:
 - dependence of success on appropriate choice of compromise factor γ ,
 - lack of meta-reasoning capabilities,
 - lack of dependable multi-agent learning and layered learning theory to compare our results with and
 - high complexity.
- Open issues:
 - Extensive form games,
 - non-game-theoretic interaction models
 - use of communication and
 - meta-learning.