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Introduction

I Artificial Intelligence (AI) aims to understand natural
intelligence and to replicate intelligent behaviour in artificial
(mostly computational) systems

I From a traditional computer science/engineering point of view
the AI approach is seen to offer quite some advantages:

I Developing heuristic approaches for hard problems
I Coping with underspecified, poorly understood domains
I Anthropocentric (since anthropomorphous) design
I Dealing with uncertainty in the environment

I In recent years building “intelligent agents” has become one
of the main concerns of AI research
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I Agents are considered to be (according to a rough consensus)

autonomous, reactive & proactive, socially capable
computational entities

I No agreed definition (“agents”=AI?/agent=thermostat?)

I Too broad for a well-defined research area (from RoboCup to
electronic auctions via intelligent user interfaces to
agent-oriented software engineering)

I Lots of criticism, quite some of it is justified

I Is it all just a hype that will soon pass? Maybe, but there still
is hope! In this talk, I will try to explain why . . .
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I Instead of debating true nature of agents, consider the
following definition:

An agent is a program that interacts with other
programs representing different people/organisations
in a common computational environment

I Replaces (vague, philosophical) notion of autonomy by a
simple criterion emphasising the observer perspective

I Justifies distinction between agents and “ordinary” programs
(encapsulation of purpose of software rather than its
functionality)
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I Communication replaces direct (physical) manipulation

I Influence exerted on others depends on their expectations
I “A rock doesn’t care about which robot is trying to move it”

I Open systems:
I Changing populations of heterogeneous, opaque agents
I Potentially self-interested/malicious
I Very hard to impose restrictions on agent behaviour
I Impossible to predict global behaviour of the system!

I In a sense, autonomy is dual to openness
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I Example application areas:
I eCommerce, Semantic Web, Web Services, Grid computing,

mobile/ubiquitous computing, P2P computing

I This is true regardless of our highbrow academic theories of
agents, it is happening in the real world!

I We need methods to deal with this kind of open systems
focus of my research
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The ESB Architecture

I Expectation-Strategy-Behaviour

I Key ideas:
I Models of agents’ interaction behaviour are stored as

expectations and updated with new observations
I Set of current expectations creates a strategy space
I Own behaviour chosen from these strategies in accordance

with agent’s goals

I Concept of expectation used to bridge gap between cognitive
and social system layer

I Suitable for integration with the Belief-Desire-Intention (BDI)
architecture
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An expectation is a conditional prediction whose fulfillment
will be verified and reacted upon.

Semi-formal description:

We write (EXP a C E ϕ ρ+ ρ−) iff agent a expects E to hold
true under condition C, and is going to verify this using test ϕ.
If the expectation is fulfilled he will react with ρ+, otherwise
with ρ−.

Example:

(EXP A
︸︷︷︸

a

(DO A request(A, B, X ))
︸ ︷︷ ︸

C

(DO B X )
︸ ︷︷ ︸

E

Done(X )
︸ ︷︷ ︸

ϕ

nil
︸︷︷︸

ρ+

retract
︸ ︷︷ ︸

ρ−

)
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I Essentially a set of expectations defines a belief revision
mechanism, why should this be useful for practical social
reasoning?

I Expectations can be
I adaptive (and hence grounded in observation)
I self-referential (which – unlike normal belief – permits agents

to change them themselves)
I recursive (expectations towards the reasoning agent herself)
I generalised (valid for whole sets of agents/actions, especially in

the case of communicative expectations)

I This makes them essential for reasoning about open systems!
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I Results from space of actions that will lead to
(non-)fulfillment of verification conditions

I Strategies concerns others’ actions as much as one’s own

I Not all different action(s) (sequences) are different strategies,
effect on expectations is what matters

I Take potential effects on expectations into consideration

I Strategies define the “vocabulary of behaviours” that may
affect expectations so that an assessment of the desirability of
these behaviours can follow
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I After analysing different stategies of others and oneself, agents
determine their behaviour (much harder than it sounds)

I As far as own strategies are concerned, the agent can pick a
strategy but how about what others will do?

I No general statements can be made here:
I Consider only opponents’ most likely/worst-case strategy and

adjust own strategy to this
I The range and temporal scope of validity of a chosen strategy

may vary (when will strategies be reconsidered?)

I Outcome of this decision making step: behavioural constraints
imposed on the agent and her peers

I (Hypothetical) “suspension of autonomy” of others
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behavior

expectation update

expectations
identification

strategies
choice

I Expectations generate strategies, these generate behaviours,
and the observation of these behaviours leads to new
expectations

I Agent-level (cognitive) vs. system-level (social) views
(managing one’s own interactions versus controlling open
systems)

I A closer look reveals that this nothing but a learning loop for
interaction learning

Michael Rovatsos The University of Edinburgh 14



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Michael Rovatsos The University of Edinburgh 15



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Michael Rovatsos The University of Edinburgh 16



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

The Interaction Frames Approach

I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

Michael Rovatsos The University of Edinburgh 17



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

The Interaction Frames Approach

I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

I Each pattern (interaction frame) consists of

Michael Rovatsos The University of Edinburgh 17



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

The Interaction Frames Approach

I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

I Each pattern (interaction frame) consists of
I a sequence of message patterns (speech-act like, augmented

with variables)

Michael Rovatsos The University of Edinburgh 17



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

The Interaction Frames Approach

I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

I Each pattern (interaction frame) consists of
I a sequence of message patterns (speech-act like, augmented

with variables)
I pairs of logical conditions and variable substitutions

Michael Rovatsos The University of Edinburgh 17



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions

The Interaction Frames Approach

I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

I Each pattern (interaction frame) consists of
I a sequence of message patterns (speech-act like, augmented

with variables)
I pairs of logical conditions and variable substitutions
I occurrence counters representing previous enactments

Michael Rovatsos The University of Edinburgh 17



Introduction
A framework for expectation-based architectures

Strategic learning of communication patterns
Conclusions
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I Goal: learn patterns of agent conversations from experience
and apply them strategically in one’s own interactions

I Each pattern (interaction frame) consists of
I a sequence of message patterns (speech-act like, augmented

with variables)
I pairs of logical conditions and variable substitutions
I occurrence counters representing previous enactments

I Combine hierarchical reinforcement learning methods,
case-based reasoning and clustering techniques to learn
“framing”, i.e. strategic use of frames
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An example

F =
〈 〈 5

−→ request(A1,A2,X )
3
−→ accept(A2,A1,X )

2
−→ confirm(A1,A2,X )

2
−→ do(A2,X )

〉
,

〈
{self (A1), other (A2), can(A1, do(A1,X )},

{agent(A1), agent(A2), action(X )}
〉
,

〈 4
−→ 〈[A1/agent 1], [A2/agent 2]〉,

1
−→ 〈[A1/agent 3], [A2/agent 1], [X/deliver goods]〉

〉〉
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F = {F1, . . . ,Fn} of frames induces a continuation probability

P(w ′|w) =
∑

F∈F

P(w ′|F ,w)P(F |w) =
∑

F∈F ,ww ′=T (F )ϑ

P(ϑ|F ,w)P(F |w)

I Define probability of ϑ proportional to its similarity to F :

P(ϑ|F ,w) ∝ σ(ϑ,F ) =

|Θ(F )|
∑

i=1

similarity
︷ ︸︸ ︷

σ(T (F )ϑ,T (F )Θ(F )[i ])

frequency
︷ ︸︸ ︷

hΘ(F )[i ]

relevance
︷ ︸︸ ︷

ci (F , ϑ,KB)
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I Frames represent classes of interactions

I Proposed hierarchical decision-making approach:

1. Select the appropriate frame for a given situation
(i.e. classify the situation)

2. Optimise within the selected frame while disregarding
other frames

I Apply hierarchical reinforcement learning methods to learn
usefulness of frames in a given communication situation

I Start with an initial set of pre-defined frames (“social rules”)
I Adapt frame models according to observed behaviour (or

oneself and of others)

I Important: Architecture allows deviation from existing frames
on both sides
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Relationship to ESB

I The framing mechanism represents an expectation processing
mechanism

I Based on probabilistic model of communicative behaviour and
utility-relevant actions

I Scope of prediction: current communicative encounter
(conversation)

I Expectations will be adapted according to observed behaviour
I “Second-order” effect of own behaviour taken into account

(heuristics for trading off long-term reliability of frames
vs. short-term utility maximisation)

I Incorporation of social behaviour in agents’ general planning
processes

I Successfully applied in complex multiagent negotiation
scenarios
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Application: A Link Exchange System
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Unifying Existing Approaches in ESB

I Mentalistic: assume a model of mental states of other agents
(so that behaviour can essentially be fully predicted)

I Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
I Problem: Not feasible in open systems

I Objectivist: impose some kind of deontic apparatus on the
system to regulate agent behaviour

I Methods abound: commitments and conventions, norms, roles,
deontic logics, organisational approaches, electronic institutions

I Problem: no unifying model, no grounding in agent cognition

I Rationalistic: devise interaction mechanisms such that
system objectives are achieved despite agents’ self-interest

I Examples: game-theoretic approaches (mechanism design, etc.)
I Problem: simplification of interaction mechanisms to guarantee

properties, “worst-case reasoning”
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I ESB does not solve the basic problems of open systems, but it
provides a uniform set of abstractions to deal with them

I Concept of expectation can be applied to all three types of
mechanisms:

I Encode assumptions about mental states, deontic frameworks,
and agent rationality in expectations

I Added flexibility through adaptiveness of expectations:
I Revise mentalistic assumptions as soon as agent behaviour

indicates they are not valid
I Design social laws (e.g. a commitment mechanism) with a

focus on handling failure to meet social requirements
I Drop rationality assumptions in mechanism design if agents

behave irrationaly
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Challenges

I Improve our understanding of expectation-based systems

I Develop appropriate representations (rule-based, probabilistic,
deontic etc.) and decision-making algorithms

I Develop evaluation criteria for such architectures (are there
“stable” sets of expectations that ensure smooth interaction
in the system?)

I Map existing approaches to a common “ESB language” to
compare (and combine?) them

I Apply these methods to the development of open systems in
real-world applications
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The End

Thank you for your attention!
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