Autonomy vs. Uncertainty: Why agents are different and what we can do about it

Michael Rovatsos

Centre for Intelligent Systems and their Applications

Informatics Jamboree 2005 25th April 2005

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Introduction

 Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:
 - Developing heuristic approaches for hard problems

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:
 - Developing heuristic approaches for hard problems
 - Coping with underspecified, poorly understood domains

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:
 - Developing heuristic approaches for hard problems
 - Coping with underspecified, poorly understood domains
 - Anthropocentric (since anthropomorphous) design

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:
 - Developing heuristic approaches for hard problems
 - Coping with underspecified, poorly understood domains
 - Anthropocentric (since anthropomorphous) design
 - Dealing with uncertainty in the environment

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Introduction

- Artificial Intelligence (AI) aims to understand natural intelligence and to replicate intelligent behaviour in artificial (mostly computational) systems
- From a traditional computer science/engineering point of view the AI approach is seen to offer quite some advantages:
 - Developing heuristic approaches for hard problems
 - Coping with underspecified, poorly understood domains
 - Anthropocentric (since anthropomorphous) design
 - Dealing with uncertainty in the environment
- In recent years building "intelligent agents" has become one of the main concerns of AI research

informatio

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Intelligent Agents & Multiagent Systems

Agents are considered to be (according to a rough consensus)

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Intelligent Agents & Multiagent Systems

Agents are considered to be (according to a rough consensus)

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Intelligent Agents & Multiagent Systems

 Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- ▶ No agreed definition ("agents"=Al?/agent=thermostat?)

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- ▶ No agreed definition ("agents" = AI?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- No agreed definition ("agents" = AI?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)
- Lots of criticism, quite some of it is justified

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- No agreed definition ("agents" = AI?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)
- Lots of criticism, quite some of it is justified
- Is it all just a hype that will soon pass?

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- No agreed definition ("agents" = AI?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)
- Lots of criticism, quite some of it is justified
- Is it all just a hype that will soon pass?

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- No agreed definition ("agents" = AI?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)
- Lots of criticism, quite some of it is justified
- Is it all just a hype that will soon pass? Maybe, but there still is hope!

- Agents are considered to be (according to a rough consensus) autonomous, reactive & proactive, socially capable computational entities
- ▶ No agreed definition ("agents"=Al?/agent=thermostat?)
- Too broad for a well-defined research area (from RoboCup to electronic auctions via intelligent user interfaces to agent-oriented software engineering)
- Lots of criticism, quite some of it is justified
- Is it all just a hype that will soon pass? Maybe, but there still is hope! In this talk, I will try to explain why ...

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

An Alternative Definition

Instead of debating true nature of agents, consider the following definition:

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

An Alternative Definition

Instead of debating true nature of agents, consider the following definition:

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

An Alternative Definition

Instead of debating true nature of agents, consider the following definition:

An agent is a program that interacts with other programs representing different people/organisations in a common computational environment

An Alternative Definition

Instead of debating true nature of agents, consider the following definition:

An agent is a program that interacts with other programs representing different people/organisations in a common computational environment

 Replaces (vague, philosophical) notion of autonomy by a simple criterion emphasising the **observer** perspective

An Alternative Definition

Instead of debating true nature of agents, consider the following definition:

An agent is a program that interacts with other programs representing different people/organisations in a common computational environment

- Replaces (vague, philosophical) notion of autonomy by a simple criterion emphasising the **observer** perspective
- Justifies distinction between agents and "ordinary" programs (encapsulation of **purpose** of software rather than its functionality)

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Autonomy vs. Uncertainty

 Fundamental distinction between uncertainty (of a passive environment) and agent autonomy

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:
 - Changing populations of heterogeneous, opaque agents

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:
 - Changing populations of heterogeneous, opaque agents
 - Potentially self-interested/malicious

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:
 - Changing populations of heterogeneous, opaque agents
 - Potentially self-interested/malicious
 - Very hard to impose restrictions on agent behaviour

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:
 - Changing populations of heterogeneous, opaque agents
 - Potentially self-interested/malicious
 - Very hard to impose restrictions on agent behaviour
 - Impossible to predict global behaviour of the system!

- Fundamental distinction between uncertainty (of a passive environment) and agent autonomy
- Communication replaces direct (physical) manipulation
- Influence exerted on others depends on their expectations
 - "A rock doesn't care about which robot is trying to move it"
- Open systems:
 - Changing populations of heterogeneous, opaque agents
 - Potentially self-interested/malicious
 - Very hard to impose restrictions on agent behaviour
 - Impossible to predict global behaviour of the system!
- In a sense, autonomy is dual to openness

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Application Context

 Modern computer applications are increasingly moving towards open systems

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Application Context

- Modern computer applications are increasingly moving towards open systems
- Example application areas:

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Application Context

- Modern computer applications are increasingly moving towards open systems
- Example application areas:
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, P2P computing

Introduction

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Application Context

- Modern computer applications are increasingly moving towards open systems
- Example application areas:
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, P2P computing
- This is true regardless of our highbrow academic theories of agents, it is happening in the real world!

Introduction

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Application Context

- Modern computer applications are increasingly moving towards open systems
- Example application areas:
 - eCommerce, Semantic Web, Web Services, Grid computing, mobile/ubiquitous computing, P2P computing
- This is true regardless of our highbrow academic theories of agents, it is happening in the real world!
- We need methods to deal with this kind of open systems
 focus of my research

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

The ESB Architecture

Expectation-Strategy-Behaviour

- Expectation-Strategy-Behaviour
- Key ideas:

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals
- Concept of expectation used to bridge gap between cognitive and social system layer

- Expectation-Strategy-Behaviour
- Key ideas:
 - Models of agents' interaction behaviour are stored as expectations and updated with new observations
 - Set of current expectations creates a strategy space
 - Own behaviour chosen from these strategies in accordance with agent's goals
- Concept of expectation used to bridge gap between cognitive and social system layer
- Suitable for integration with the Belief-Desire-Intention (BDI) architecture

Expectations

Definition:

An expectation is a conditional prediction whose fulfillment will be verified and reacted upon.

Expectations

Definition:

An expectation is a conditional prediction whose fulfillment will be verified and reacted upon.

Semi-formal description:

We write (EXP a C E $\varphi \rho^+ \rho^-$) iff agent a expects E to hold true under condition C, and is going to verify this using test φ . If the expectation is fulfilled he will react with ρ^+ , otherwise with ρ^- .

Expectations

Definition:

An expectation is a conditional prediction whose fulfillment will be verified and reacted upon.

Semi-formal description:

We write (EXP a C E $\varphi \rho^+ \rho^-$) iff agent a expects E to hold true under condition C, and is going to verify this using test φ . If the expectation is fulfilled he will react with ρ^+ , otherwise with ρ^- .

Example:

$$(EXP \underbrace{A}_{a} \underbrace{(DO \ A \ request(A, B, X))}_{C} \underbrace{(DO \ B \ X)}_{E} \underbrace{Done(X)}_{\varphi} \underbrace{nil}_{\rho^{+}} \underbrace{retract}_{\rho^{-}})$$

informatics

Expectations

Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)

- Essentially a set of expectations defines a belief revision mechanism, why should this be useful for practical social reasoning?
- Expectations can be
 - adaptive (and hence grounded in observation)
 - self-referential (which unlike normal belief permits agents to change them themselves)
 - recursive (expectations towards the reasoning agent herself)
 - generalised (valid for whole sets of agents/actions, especially in the case of communicative expectations)
- This makes them essential for reasoning about open systems!

Strategies

> Any set of expectations implicitly defines a strategy space

- Any set of expectations implicitly defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions

- Any set of expectations implicitly defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Strategies concerns others' actions as much as one's own

- Any set of expectations implicitly defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Strategies concerns others' actions as much as one's own
- Not all different action(s) (sequences) are different strategies, effect on expectations is what matters

- Any set of expectations implicitly defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Strategies concerns others' actions as much as one's own
- Not all different action(s) (sequences) are different strategies, effect on expectations is what matters
- ► Take potential effects on expectations into consideration

- Any set of expectations implicitly defines a strategy space
- Results from space of actions that will lead to (non-)fulfillment of verification conditions
- Strategies concerns others' actions as much as one's own
- Not all different action(s) (sequences) are different strategies, effect on expectations is what matters
- Take potential effects on expectations into consideration
- Strategies define the "vocabulary of behaviours" that may affect expectations so that an assessment of the desirability of these behaviours can follow

informatics

Behaviours

 After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?
- ▶ No general statements can be made here:

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?
- ▶ No general statements can be made here:
 - Consider only opponents' most likely/worst-case strategy and adjust own strategy to this

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?
- No general statements can be made here:
 - Consider only opponents' most likely/worst-case strategy and adjust own strategy to this
 - The range and temporal scope of validity of a chosen strategy may vary (when will strategies be reconsidered?)

Behaviours

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?
- No general statements can be made here:
 - Consider only opponents' most likely/worst-case strategy and adjust own strategy to this
 - The range and temporal scope of validity of a chosen strategy may vary (when will strategies be reconsidered?)
- Outcome of this decision making step: behavioural constraints imposed on the agent and her peers

informatic

- After analysing different stategies of others and oneself, agents determine their behaviour (much harder than it sounds)
- As far as own strategies are concerned, the agent can pick a strategy but how about what others will do?
- No general statements can be made here:
 - Consider only opponents' most likely/worst-case strategy and adjust own strategy to this
 - The range and temporal scope of validity of a chosen strategy may vary (when will strategies be reconsidered?)
- Outcome of this decision making step: behavioural constraints imposed on the agent and her peers
- (Hypothetical) "suspension of autonomy" of others

The ESB Feedback Loop

 Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations

The ESB Feedback Loop

- Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations
- Agent-level (cognitive) vs. system-level (social) views (managing one's own interactions versus controlling open systems)

The ESB Feedback Loop

 Expectations generate strategies, these generate behaviours, and the observation of these behaviours leads to new expectations

- Agent-level (cognitive) vs. system-level (social) views (managing one's own interactions versus controlling open systems)
- A closer look reveals that this nothing but a learning loop for interaction learning

informatics

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

The Interaction Frames Approach

 Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)
 - pairs of logical conditions and variable substitutions

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)
 - pairs of logical conditions and variable substitutions
 - occurrence counters representing previous enactments

- Goal: learn patterns of agent conversations from experience and apply them strategically in one's own interactions
- Each pattern (interaction frame) consists of
 - a sequence of message patterns (speech-act like, augmented with variables)
 - pairs of logical conditions and variable substitutions
 - occurrence counters representing previous enactments
- Combine hierarchical reinforcement learning methods, case-based reasoning and clustering techniques to learn "framing", i.e. strategic use of frames

An example

$$\begin{split} F &= \left\langle \left\langle \stackrel{5}{\rightarrow} \texttt{request}(A_1, A_2, X) \stackrel{3}{\rightarrow} \texttt{accept}(A_2, A_1, X) \right. \\ &\stackrel{2}{\rightarrow} \texttt{confirm}(A_1, A_2, X) \stackrel{2}{\rightarrow} \texttt{do}(A_2, X) \right\rangle, \\ &\left\langle \{\texttt{self}(A_1), \texttt{other}(A_2), \texttt{can}(A_1, \texttt{do}(A_1, X))\}, \\ &\left\{\texttt{agent}(A_1), \texttt{agent}(A_2), \texttt{action}(X)\} \right\rangle, \\ &\left\langle \stackrel{4}{\rightarrow} \left\langle [A_1/\texttt{agent_1}], [A_2/\texttt{agent_2}] \right\rangle, \\ &\left. \stackrel{1}{\rightarrow} \left\langle [A_1/\texttt{agent_3}], [A_2/\texttt{agent_1}], [X/\texttt{deliver_goods}] \right\rangle \right\rangle \right\rangle \end{split}$$

Michael Rovatsos The University of Edinburgh

informatics

Frame semantics

▶ Given a conversation prefix w and a knowledge base KB, a set F = {F₁,..., F_n} of frames induces a continuation probability

$$P(w'|w) = \sum_{F \in \mathcal{F}} P(w'|F, w) P(F|w) = \sum_{F \in \mathcal{F}, ww' = T(F)\vartheta} P(\vartheta|F, w) P(F|w)$$

Frame semantics

▶ Given a conversation prefix w and a knowledge base KB, a set F = {F₁,..., F_n} of frames induces a continuation probability

$$P(w'|w) = \sum_{F \in \mathcal{F}} P(w'|F, w) P(F|w) = \sum_{F \in \mathcal{F}, ww' = T(F)\vartheta} P(\vartheta|F, w) P(F|w)$$

• Define probability of ϑ proportional to its *similarity* to *F*:

$$P(\vartheta|F, w) \propto \sigma(\vartheta, F) = \sum_{i=1}^{|\Theta(F)|} \underbrace{\frac{\text{similarity}}{\sigma(T(F)\vartheta, T(F)\Theta(F)[i])}}_{i=1} \underbrace{\frac{\sigma(F)}{\sigma(F)[i]}}_{i=1} \underbrace{\frac{\sigma(F, \vartheta, KB)}{\sigma(F, \vartheta, KB)}}_{i=1}$$

informatics

The Framing Process

Frames represent classes of interactions

The Framing Process

- Frames represent classes of interactions
- Proposed hierarchical decision-making approach:
 - 1. Select the appropriate frame for a given situation (i.e. classify the situation)
 - 2. Optimise within the selected frame while disregarding other frames

The Framing Process

- Frames represent classes of interactions
- Proposed hierarchical decision-making approach:
 - 1. Select the appropriate frame for a given situation (i.e. classify the situation)
 - 2. Optimise within the selected frame while disregarding other frames
- Apply hierarchical reinforcement learning methods to learn usefulness of frames in a given communication situation
 - Start with an initial set of pre-defined frames ("social rules")
 - Adapt frame models according to observed behaviour (or oneself and of others)

The Framing Process

- Frames represent classes of interactions
- Proposed hierarchical decision-making approach:
 - 1. Select the appropriate frame for a given situation (i.e. classify the situation)
 - 2. Optimise within the selected frame while disregarding other frames
- Apply hierarchical reinforcement learning methods to learn usefulness of frames in a given communication situation
 - Start with an initial set of pre-defined frames ("social rules")
 - Adapt frame models according to observed behaviour (or oneself and of others)
- Important: Architecture allows deviation from existing frames on both sides

informatics

Relationship to ESB

 The framing mechanism represents an expectation processing mechanism

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour
 - "Second-order" effect of own behaviour taken into account (heuristics for trading off long-term reliability of frames vs. short-term utility maximisation)

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour
 - "Second-order" effect of own behaviour taken into account (heuristics for trading off long-term reliability of frames vs. short-term utility maximisation)
 - Incorporation of social behaviour in agents' general planning processes

- The framing mechanism represents an expectation processing mechanism
 - Based on probabilistic model of communicative behaviour and utility-relevant actions
 - Scope of prediction: current communicative encounter (conversation)
 - Expectations will be adapted according to observed behaviour
 - "Second-order" effect of own behaviour taken into account (heuristics for trading off long-term reliability of frames vs. short-term utility maximisation)
 - Incorporation of social behaviour in agents' general planning processes
- Successfully applied in complex multiagent negotiation scenarios

Application: A Link Exchange System

Michael Rovatsos

Without Frame Learning

informatics

With Frame Learning

informatics

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Outline

Introduction

A framework for expectation-based architectures

Strategic learning of communication patterns

Conclusions

Unifying Existing Approaches in ESB

 Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest

Unifying Existing Approaches in ESB

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)

informatic

Unifying Existing Approaches in ESB

- Mentalistic: assume a model of mental states of other agents (so that behaviour can essentially be fully predicted)
 - Example: Mentalistic ACL semantics (e.g. in FIPA-ACL)
 - Problem: Not feasible in open systems
- Objectivist: impose some kind of deontic apparatus on the system to regulate agent behaviour
 - Methods abound: commitments and conventions, norms, roles, deontic logics, organisational approaches, electronic institutions
 - Problem: no unifying model, no grounding in agent cognition
- Rationalistic: devise interaction mechanisms such that system objectives are achieved despite agents' self-interest
 - Examples: game-theoretic approaches (mechanism design, etc.)
 - Problem: simplification of interaction mechanisms to guarantee properties, "worst-case reasoning"

informatics

Introduction A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Expressiveness

ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid
 - Design social laws (e.g. a commitment mechanism) with a focus on handling failure to meet social requirements

- ESB does not solve the basic problems of open systems, but it provides a uniform set of abstractions to deal with them
- Concept of expectation can be applied to all three types of mechanisms:
 - Encode assumptions about mental states, deontic frameworks, and agent rationality in expectations
- Added flexibility through adaptiveness of expectations:
 - Revise mentalistic assumptions as soon as agent behaviour indicates they are not valid
 - Design social laws (e.g. a commitment mechanism) with a focus on handling failure to meet social requirements
 - Drop rationality assumptions in mechanism design if agents behave irrationaly

informatic

Introduction A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

Challenges

Improve our understanding of expectation-based systems

A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)
- Map existing approaches to a common "ESB language" to compare (and combine?) them

- Improve our understanding of expectation-based systems
- Develop appropriate representations (rule-based, probabilistic, deontic etc.) and decision-making algorithms
- Develop evaluation criteria for such architectures (are there "stable" sets of expectations that ensure smooth interaction in the system?)
- Map existing approaches to a common "ESB language" to compare (and combine?) them
- Apply these methods to the development of open systems in real-world applications

Introduction A framework for expectation-based architectures Strategic learning of communication patterns Conclusions

The End

Thank you for your attention!

