Social Performance Measurement for Multiagent Systems

Michael Rovatsos
rovatsos@informatik.tu-muenchen.de

Computer Science Department
Technical University of Munich
Motivation

- Multiagent systems (MAS) find their way to industrial and commercial applications
- Measuring their performance becomes increasingly important
- Agent-oriented Software Engineering (AOSE) provides no methods yet
- Motivation for social performance measurement:
 - challenge: complexity (decentralisation, emergence, micro-macro)
 - opportunity: exploiting high-level communication between agents
- This talk: first steps and initial results
Overview
Introduction
Introduction

Software Engineering is (among other things) concerned with meeting product requirements, such as

- availability,
- modifiability,
- security,
- usability,
- ...

In *Performance Engineering*, ideally,

- *external attributes* should be derived from
- *internal attributes*
Introduction (II)

In MAS particularly challenging due to

- encapsulation of functionality at agent-level,
- adaptive agents in dynamic environments,
- complex interactions between computational sub-processes,
- emergent (unforeseen) macro-level phenomena,
- potential ignorance of agents’ internal functionalities.

→ lack of work on performance measurement
Introduction (III)

Observation:
MAS exhibit certain properties that are actually advantageous in the development of measures of internal attributes.

1. They are (usually) based on deliberative, knowledge-based (i.e. symbolically operating) agents.

2. Agents in MAS (usually) communicate in high-level languages such as KQML or FIPA-ACL.
Principles of Social Performance Measurement
Social Performance Measurement (I)

Idea of social performance measurement: To exploit
(a) the existing layer of ongoing, symbolic
communication in the system which
(b) captures the interactions between agents
(c) and which is comprehensible for humans.

Goals:

• develop simple, easily measurable measures
based solely on internal communication data
(⇒ social)
• map these to external attributes
Social Performance Measurement (II)

Assumptions:

- MAS exhibit *social properties* that come about from communication processes
- use *communication data* as data material for performance measurement

Communication can be

1. a (textual) message passed between two or more agents or
2. some (physical) action that an agent performs publicly.
Social Performance Measurement (III)

Advantages:

1. By measuring communication we abstract from non-communicative properties of the system → immense reduction of global system complexity

2. We can exploit knowledge-level representations between knowledge-based agents

3. We are able to measure performance in open systems (where internal agent data cannot be accessed)

Prerequisite for defining measures: definition of an underlying MAS model.
A Generic MAS Model
A Generic MAS Model

- MAS consists of a set of agents $\mathcal{A} = \{a, b, c, \ldots\}$ capable of communicating in a high-level ACL (here: FIPA-ACL)
- Semantics of the ACL are common knowledge and obeyed (benevolence is not implied by this)
- MAS has to perform tasks from \mathcal{T} that enter the system at arbitrary points in time
- A real-valued measure

$$d : \mathcal{T} \rightarrow \mathbb{R}$$

for the difficulty of the tasks is available
A Generic MAS Model

Top-level processing cycle:
Communication (I)

Subset of FIPA-ACL messages of the form

\[\text{performative}(\text{sender, receiver, content}) \]

where

\[\text{performative} \in \{ \text{inform, inform_done, inform_rejected, agree, accept_proposal, request, cfp, reject_proposal, propose, failure, not_understood, refuse} \} \]

We measure all quantities wrt total number of messages

\[TNOM = |M| \] where the set of all messages is

\[M = \{ m_1, m_2, \ldots m_n \} \]
Communication (II)

Further definitions:
Partitioning messages according to tasks in

$$M_T = \{ m_{T_1}, \ldots m_{T_{n_i}} \}$$

where \(T \in \mathcal{T}_{curr} \) (set of processed tasks=\(\mathcal{T}_{curr} \subseteq \mathcal{T} \))

such that

$$M = \biguplus_{T \in \mathcal{T}_{curr}} M_T.$$

Partition tasks into “successfully completed” and “failed” tasks:

$$\mathcal{T}_{curr} = \mathcal{T}_{succ} \uplus \mathcal{T}_{failed}$$
Defining Social Performance Measures
Basic Performance Measures (I)

Very simple: counting messages and message types

1. \(MPTD = \text{messages per task and difficulty} \):

\[
MPTD = \sum_{T \in \mathcal{T}_{\text{curr}}} \frac{M_T}{d(T)}
\]

2. \textit{fail-fast} version (\(0 \leq \alpha \ll \beta \leq 1 \)):

\[
\text{ff } MPTD = \alpha \cdot \sum_{T \in \mathcal{T}_{\text{suc}}} \frac{M_T}{d(T)} + \beta \cdot \sum_{T \in \mathcal{T}_{\text{fai}}} \frac{M_T}{d(T)}
\]
Basic Performance Measures (II)

Less trivial: we can define *types* of performatives. Assume partition

- \(Type1 = \{\text{request}\} \),
- \(Type2 = \{\text{inform, inform_done, inform_ref}\} \)
- \(Type3 = \{\text{cfp, propose}\} \)
- \(Type4 = \{\text{reject_proposal, refuse}\} \)
- \(Type5 = \{\text{accept_proposal, agree}\} \)
- \(Type6 = \{\text{not_understood, failure}\} \)

\[\rightarrow \text{We can count occurrences of these types}\]
Basic Performance Measures (III)

We obtain as further measure the *mean message type usage* MMTU:

$$\text{MMTU}(x) = \frac{1}{|T_{curr}|} \sum_{T \in T_{curr}} |\{m \in M_i | \text{type}(m) = x\}| \frac{1}{|M_T|}$$

for $x \in \{\text{Type1, \ldots, Type6}\}$ Trivially MMTU subsumes *mean performative usage*.

Visualisation: *message type partition chart*
Basic Performance Measures (IV)

Example:
Basic Performance Measures (IV)

MMTU can be refined through parametrisation, e.g.

\[
\text{MMTU}(x, d_1, d_2) = \frac{1}{|\mathcal{T}_{curr}[d_1 : d_2]|} \sum_{T \in \mathcal{T}_{curr}[d_1 : d_2]} \frac{|\{m \in M_i | \text{type}(m) = x\}|}{|M_T|}
\]

where

\[
\mathcal{T}_{curr}[d_1 : d_2] = \{ T \in \mathcal{T}_{curr} | d_1 \leq d(T) \leq d_2 \}
\]

Alternatives to difficulty: subsets of agents/agent types, spatial network regions, etc.
Complex Message Patterns (I)

- Simple measures don’t allow for *syntactic analysis* of communication

→ We introduce *message patterns* to abstract from message sequences

- Use variables A, B, C . . . for messages or message fields (participant, content) and \star as a wildcard symbol

- Examples:

 $p = [\text{accept}(A, B, \text{do}(A, X)), \star, \text{do}(A, X)]$

 $q = [\text{accept}(A, B, \text{do}(A, X)), (\neg \text{do}(A, X))^n]$

- Define $\text{matches}(m, p)$ as a boolean function that matches message sequence m against pattern p
Complex Message Patterns (II)

Pattern-based measures:

• Average length of p:

$$\text{mean_length}(p) = \frac{1}{|\mathcal{T}_{curr}|} \sum_{\text{matches}(m,p) \land m \in M} \text{length}$$

• Task-relative version:

$$\text{mean_length}(p) = \frac{1}{|\mathcal{T}_{curr}|} \sum_{\text{matches}(m,p) \land m \in M} \frac{\text{length}}{|M|}$$

• Frequency of occurrence:

$$\text{frequency}(p) = \frac{|\{m \in M | \text{matches}(m, p)\}|}{|M|}$$
Complex Message Patterns (III)

Examples:
Let

\[p_a = \bigcap_{Q \in A} [\text{propose}(P, Q, X), \ast, \text{accept}(Q, P, X)], \]
\[p_c = \bigcup_{Q \in A} [\text{propose}(P, Q, X), \ast, \text{reject_proposal}(Q, P, X)] \]

Then mean time to agreement (MTTA) and mean time to conflict (MTTC) can be defined as

\[\text{MTTA} = \text{mean_length}(p_a), \]
\[\text{MTTC} = \text{mean_length}(p_c) \]

→ Usefulness of measure definitions in applications depends on interaction protocols
Example
Example (I)

Comparison of the Contract-Net Protocol with the Contract-Net-With-Confirmation Protocol:
Example (II)

- Problem: find internal attribute that best predicts *assigned tasks ratio* (ATR) where ATR(CNP)=0.65 and ATR(CNCP)=1.0
- Evaluation of *T NOM* (20130/30768 resp.) offers no explanation
- Neither does evaluation of *MMTU*:
Example (III)

- Therefore, we measure the frequency of “rejected unconditional proposals”
 \[p = \text{propose}(A, B, X, \{\}), \ast, \text{reject_proposal}(B, A, X) \]

- Result: \(\text{frequency}(p, \text{CNP}) = 0.35 \),
 \(\text{frequency}(p, \text{CNCP}) = 0.0 \)

- Superiority of CNCP is due to avoidance of “hasty allocations”
- Complex measure explained what simple measures couldn’t explain
Conclusions & Outlook
Summary

• We suggested *social performance measures* for MAS based on measuring communication processes

• Claimed that these aid complexity reduction while correctly predicting *external* from *internal attributes*

• Main feature: abstraction from intra-agent reasoning processes and physical execution

• Exploiting knowledge-level representations intelligent agents use

• Defined concrete measures, illustrated usefulness with examples
Outlook (I)

• Development and critical evaluation of further generic measures (in particular, standardised patterns)
• Further refinement of measures (advanced statistical methods)
• Definition of qualitative semantic measures:
 • classification into processing phases
 • analysing social relationships
 • logical properties - view communication as
 • distributed search
 • constraint satisfaction processes
 • distributed theorem proving
Outlook (II)

• Investigation of relationship external ↔ internal attributes
• Explore combination of social-level and cognitive-level measurements
• Explore more complex social phenomena (group formation, socialisation, power, authority, etc.)
• Develop tools for automatic measurement of complex MAS
Thank you for your attention!