Strategic Knowledge-Based Technologies for the Web

Michael Rovatsos
(joint work with Alexandros Belesiotis, George Christelis, Matt Crosby)

Centre of Intelligent Systems and their Applications
School of Informatics, University of Edinburgh
mrovatso@inf.ed.ac.uk
Background

Visit www.cisa.inf.ed.ac.uk/agents for details
Background

- What is special about agents? Interaction in a common environment
- To make agents intelligent and autonomous, we need to automate such interaction
- Interested in knowledge-based reasoning about interaction
- Reasoning about interaction is by definition practical reasoning
- Vision: given a specification of the interaction problem, automatically synthesise behaviour
Background

- We are interested in **building systems**, not only specifying them formally
- We want to tell them **what** to achieve, not **how**, abstraction desirable
- This suggests using **knowledge representation** techniques
- **Planning** is the interface between KR methods and practical reasoning
- But multiagent planning underdeveloped, no simple common framework
The “Strategic” Web

• Many interactions on the Web are **strategic**, i.e. involve potentially divergent views and objectives of users
• Currently, very little support for this on the Web (with exception of some eCommerce applications)
• Applications rely on hardcoded policies, large-scale data mining, or manual user intervention
• Vision: represent knowledge about **interests** of users to be able to **reason** about them
• **Warning:** Same dangers as Semantic Web (standards, burden of annotation, scalability etc)
Examples

BUYER-SELLER
B: I would like an art history book.
S: Good art history books range from $35-$55.
B: I would like something cheaper.
S: There’s “Art for Kids” at $15.
B: I want a book for adults.
S: There’s “Art History for Dummies” at $25.
B: Great, I’ll take that.

(execution follows, including payment, delivery, etc)

PEER-TO-PEER
P: I’d like to stream a music concert in high quality tomorrow night.
Q: Who will be performing?
P: It’s a “best-of” transmission from a festival.
Q: I don’t like watching concerts unless I know what bands are playing.
P: Could I still borrow your bandwidth?
Q: OK, if you grant me prioritised access to yours for seven days after that.

(execution follows, including settings to preference in P2P system, actual streaming actions, etc)
The dialogue metaphor

- Examples deliberately looked like conversations, a simple, intuitive way of thinking about Strategic Web
- **Dialogue planning metaphor** covers synthesis, negotiation, and execution aspect
 - If communication actions are interpreted in a planning-based way, we should be able to plan them just like physical actions
 - But hard to decide about communication strategy before having synthesised collaborative plans
 - Actions planned for deception detection ahead of execution may affect suggested deals
The technology

Interaction problem modelling → Strategic planning & execution

Model generation

Content generation

Reasoning layer

Modelling layer

Interaction layer

abstraction, vagueness, stereotyping
planning problem formulation
hierarchical game models
human-inspired heuristics
dialogue plan synthesis
monitoring & replanning
custom information presentation

actors, actions, outcomes
context modelling

active preference elicitation
previous interaction experience

I want an art history book.
Good introductory books range from $35-$55.
I want something cheaper.
There’s “Art for Kids” at $15.
I want a book for adults.
There’s “Art history for Dummies” at $25.
Great, I’ll take that.

http://strategic.web.site.com

Strategic Knowledge-Based Technologies for the Web
Challenges

• Languages for describing strategic interaction situations on the Web
• Tractable (approximate?) inference and plan synthesis algorithms
• Preference elicitation and content presentation techniques
• Human-centric & interdisciplinary approach required
Game theory? Yes, but...

- Game-theoretic methods very popular currently and address the problem of reasoning about interaction.
- Information in real-world domains available in relational terms (e.g. on the Web), not enumerated state actions as assumed in game theory.
- **Non-incremental**: unable to express how a game changes when we incrementally change background knowledge.
- Knowledge-based methods might be useful in lifting overly restrictive assumptions (full rationality, perfect knowledge, etc).
- Intuition: many large-scale games might be actually “easier” than we think *(this is speculative)*.
Previous work

• Two examples of our current work on knowledge-based reasoning about interaction:
 - Automated norm synthesis
 - Argumentation-based conflict resolution

• Address general multiagent systems problems:
 – Setting up social laws to avoid undesirable states
 – Exchanging information to align divergent views

• From a general computer science point of view:
 – Designer-level specification of system constraints
 – Integration of distributed sources of data
Automated norm synthesis in a planning environment

- Norms ensure global conflict states are never entered by prohibiting actions in certain states.
- At the same time agents’ private goals should remain achievable.
- Automated synthesis of such norms is NP-hard in enumerated state systems.
- Existing methods don’t exploit abstractions of propositional/first-order domain theories.
- Our method: find “detours” around conflict states by local search in generalised state spaces.
Automated norm synthesis

Iterated process of forward-backward search around conflict state specification:

• Not better than full state-space search in the worst case but often get lucky
• With simple additional pruning techniques search can often be cut down drastically
• Currently working on synthesising sanctions
Example

• Tunnel world example:

• Agents entering tunnels have to leave them out the opposite end immediately (on entering tunnel, future crash not avoidable)
• Our algorithm solves this by computing a general norm

\[
\{ \text{at}_1(N), \text{at}_2(N'), \text{tunnel}(T), \text{conn}(N,T), \text{conn}(T,N') \}, \text{move}_1(N,T) \}
\]
Argumentation-based conflict resolution in planning

• **Argumentation** is a method for determining the status of propositions in the presence of conflicting information

• Different acceptability-based semantics and protocols that implement these

• Rarely used for reasoning about action, our intuition is that this can be done more efficiently due to domain structure

• Suggest framework for acceptable planning:
 A plan P is acceptable wrt (potentially conflicting) knowledge bases KB_1 and KB_2 iff $KB_1 \models P$ and $KB_2 \not\models P$
Argumentation-based conflict resolution

- Plan proposal generated by single agent (with any planner)
- Validation based on simple plan projection
- Dispute in case of disagreement, argumentation follows
- Ends in successful defence of initial proposal or rejection
- An alternative to generating one P that works under both KBs
Example

- Robot gridworld domain

\[PRO \]

\[
\begin{array}{cc}
2 & o \\
1 & r \\
\end{array}
\]

\[
\begin{array}{cc}
2 & t \\
1 & r \\
\end{array}
\]

\[OPP \]

\[
\begin{array}{cc}
2 & o \\
1 & r \\
\end{array}
\]

\[
\begin{array}{cc}
2 & t \\
1 & o \\
\end{array}
\]

\[PRO \rightarrow OPP \]

\[PRO \rightarrow OPP \]

\[(^{1}: \; P \rightarrow \neg \neg \neg \neg \neg \) \]

\[(^{1}: \; \uparrow, \text{pickup}, \Rightarrow, \text{drop}) \]

(1): \; P \rightarrow \neg \neg \neg \neg \neg

(2): \; GNA

(3): \; HE

(4): \; HI

(5): \; DA

(6): \; HI

(7): \; Belief

 Strategic Knowledge-Based Technologies for the Web
Planning Games

• Examples illustrate use of knowledge-based methods for reasoning about interaction
• But so far not concerned with strategic interaction
• Currently trying to look at more general framework of strategic multiagent planning
• Why planning? At the frontline of what is possible in terms of scalability while maintaining “knowledge-level” flavour
Examples

• Parcel delivery: the simplest (?) domain which raises interesting issues

![Diagram showing utility calculation and different cost scenarios]

- utility = reward - cost
- independent cost = 4 (inefficient)
- selfish cost = 0 (irrational)
- cooperative cost = 2 (unstable)

• Fundamental question: how can domain structure help here?
Introduce notion of coalition-planning game (reward for goal, cost for plan, no action = 0).

Solution stable if no set of agents can increase utility by jointly adopting other plan.

Formally: plan π stable for iff no plan π exists for any subset Φ' of agents Φ such that $u_{\phi}(\pi') > u_{\phi}(\pi)$ for all ϕ in Φ'.

Present an algorithm for computing stable plans, but complexity issues (enumeration of strategies necessary).
Interesting problems

Three general problems seem interesting:

• How to compute acceptable plan given a solution criterion (in particular adapting existing planning heuristics)

• How to search plan space incrementally for generating proposals during negotiation

• How to use background knowledge to guide plan recognition and optimal response generation
Computing acceptable plans

• *How do you find a plan that is a reasonable compromise?*

• Initial idea: look at actions that A performs “for” B and vice versa

• Adjust planning heuristics by “discounting” the cost of actions done for the other

• This is currently being implemented in state of the art planners
Incremental plan space search

• Given a joint plan P, how do you find P' that is slightly more/less acceptable?
• Important for negotiation: finding a selfish/selfless plan is trivial, search for proposal in between hard
• Hierarchical representations should help: if sub-tasks can be identified they can be re-assigned to different agents
Guiding plan recognition and response

- *How can knowledge about other’s preferences help filter possible plans given action sequence observation?*
- Plan recognition can already be done in a scalable way
- When jointly executing an agreed plan, likely alternative execution paths are contingent on (joint) preferences
- Important for detecting deception or risk of deception, and responding to it
Conclusions

• Argued for “Strategic” Web as an interesting field for agent applications
• Personal view: automated reasoning about strategic interaction is key contribution of agent technology
• Examples of previous work indicate practical reasoning algorithms are possible
• Current goal is to develop similar methods for settings of strategic interaction
• A lot of scope for doing things in a multiagent planning setting, very little previous work
Thank you. Questions?

Material based on
Christelis, MR & Petrick @ AAMAS 2009/2010
Belesiotis, MR & Rahwan @ AAMAS 2010

Find out more/get involved at
http://www.cisa.inf.ed.ac.uk/agents