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Advice Taking in Multiagent Reinforcement
Learning

Michael Rovatsos and Alexandros Belesiotis

Abstract: We propose theβ-WoLF algorithm for multiagent reinforcement learning tha t uses an additional
“advice” signal (irrelevant to agents’ actual rewards) to inform agents about mutually beneficial forms of
behaviour. β-WoLF is based on the WoLF-PHC algorithm and assesses whether advice is

1.useful for the learning agent itself and

2. currently being followed by other agents.
Experimental results obtained with this novel algorithm indicate that it enables cooperation in complex sce-
narios where this is not possible using previous MARL algorithms.

Introduction
We consider stochastic games in which an additional “advice” signal that provides
feedback about optimal joint actions is available to (one ormore) agent(s).

Information that could be used to give such advice becomes available in many real-
world scenarios, e.g. through occasional (accidental) cooperation.

β-WoLF allows agents toautonomously decidewhether to follow advice based on
two criteria:

•Advice will only be followed if it yields payoffs that are at least as high as an
individually rational strategy (rationality), and

• advice will only be followed if other agents are also following it (mutuality).

The β-WoLF Algorithm
WoLF-PHC (Bowling & Veloso 2002) consists of two components:

1. A gradient-ascent algorithm PHC that modifies action selection probabilities ac-
cording to action values learned using standard Q-learning,

2. the WoLF heuristic for switching between different learning rates based on the idea
that agents should learn quickly when they are “losing” and learn cautiously when
they are “winning”

“Winning” means that the agent prefers its current strategyto that of playing an
equilibrium strategy against another agent’s current strategy, where the equilibrium
strategy is the long-term average of its greedy choices.

A β-WoLF-agent consists of the following WoLF-PHC “modules” and additional
rules:

1. Individual reward learner: Normal WoLF-PHC learning algorithm used for
maximising individual rewards, using a Q-tableQ(s, ai), updated using rewards
Ri(s, ai) for ai ∈ Ai, and evolving a policyπi(s, ai)

2.Collective reward learner: Maintains Q-table for valuesQ′(s, a) wherea ∈ A,
updated using rewardsRi(s, a) as inQ. Used to learn how usefuljoint actionsare
based on individual rewards.

3.n individual advice learners: One WoLF-PHC is used per agent (includingi it-
self) to model that agent’s learning process if following external adviceWi (rather
than individual actual reward). We denote these Q-tables byVj(s, aj) for aj ∈ Aj

and use update equation

Vj(s, aj)← (1− α)Vj(s, aj) + α(Wj(s, aj) + γ max
a′j

Vj(s
′, a′j))

Theadvice-based strategybased onVi is denoted byρj(s, aj).
Note: This requires knowledge of allWj signals byi.

4. Usingadvice factor β ∈ [0 : 1] andadvice learning rateδβ ∈ (0 : 1] the agent
updatespolicy σi(s, ai) as follows:

σi(s, ai) = (1− β)πi(s, ai) + βρi(s, ai)

Updateβ according to the following criterion:

β ←























min{1, β + δβ} if
∑

a

∏

j ρj(s, aj)Q
′(s, a) >

∑

ai
πi(s, ai)Q(s, ai)

andd|σ̄−i(s)− ρ−i(s)|/dt < 0

max{0, β − δβ} else

σ̄−i is the average (posterior) long-term strategy of the remaining agents.

5. If
∑

a

∏

j

ρj(s, aj)Q
′(s, a) >

∑

ai

πi(s, ai)Q(s, ai)

choose next action based onρi for k iterations with probabilityε/2 (for exploration
rateε); choose random action with probabilityε/2.
Else, choose random action with probabilityε. With probability1 − ε behave ac-
cording toσi.

Advice calculation
Observer receives information aboutsocial welfareR1(s, (a1, a2)) + R2(s, (a1, a2)),
acts as “passive” RL agent learning action valuesQg(s, a) for global reward using
standard Q-learning, and calculates the “relative cooperativeness” of each agent:

qi(s, a) =
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a

′

i, a−i))
∑

ai∈Ai
Qg(s, (ai, a−i))−mina′

i
Qg(s, (a′

i, a−i))

if
∑

ai∈Ai
Qg(s, (ai, a−i)) − mina′i

Qg(s, (a
′
i, a−i)) > 0, qi(s, a) = 1

|Ai|
else. The

advice for each agent is calculated asWi(s, a) = qi(s, a)Qg(s, a).

Experimental results
We have evaluated the algorithm extensively in a number of two-player games.
Iterated Prisoners Dilemma (IPD) game:

2 C D
1

C (3,3) (5,0)
D (0,5) (1,1)

Rational MARL algorithms should converge to best-responsebehaviour for any op-
ponent and sacrifice Pareto efficient payoff distribution. In β-WoLF self-play all 100
simulations converged to (C,C) with probability of 1 within5000 rounds:
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Against other types of (fixed and adaptive) opponents. . .

1. convergence to best-response with probability 1 is achieved against ALL C and
ALL D within less than 50 rounds,

2. against TIT for TAT over 90% of all games converge to mutualcooperation,

3.β-WoLF is able to recover from excessive reliance on advice against malicious
opponents (who switch fromβ-WoLF to ALL D suddenly).

Other games: In the Coordination Game that has equilibrium selection issues, all runs
converge almost perfect average payoff. In the purely competitive Game of Chicken,
agents resort to “safe” solution as advice calculation is inappropriate. In a two-state,
two-player game in which agents play a PD game in state 1 and a Coordination Game
in state 2, convergence to the optimal behaviour could only be achieved with much
random exploration at the beginning of the game.

Conclusion
β-WoLF enables agents to process advice regarding mutually beneficial behaviour
and to decideautonomouslywhether or not to follow this advice.

Experimental evaluation shows that this algorithm generates optimally coordinated
behaviour in games in which achieving this is a highly non-trivial task for MARL
algorithms.

The downside is computational complexity: agents have to maintain an individual
reward, a collective reward learning, andn individual advice action-value tables, and
compute the expected utilities of all resulting policies ineach step.

Advice-taking heuristic rests on a number of strong assumptions:

•We need to be able to describe the optimal social strategy as aconvex combination
of individually rational strategies and the strategy suggested by the advice signal.

•Agents need to be informed about the advice signals receivedby other agents.

•The advice must be useful in itself.
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