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Objective: To devise a sufficiently general, abstract view of describing autonomous learning processes in order to
be able to utilise the whole range of methods for (i) rational reasoning and (ii) communication and coordination
offered by agent technology so as to build effective distributed learning systems.

Generic Model of Learning Process
A single iteration of a learning process can be seen as an agent reasoning cycle that has the following structure:
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Can we exploit this to investigate rich forms of interaction between learners in a distributed machine learning system?

Learner Coordination
Integration Matrix

The generic learner model allows us to look at the different possibilities for infor-
mation exchange among learners:
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Knowledge exchange problem: what knowledge to exchange, when to exchange
the knowledge, and how to use received knowledge

Evaluation of Example Merging Operators

So far, we have experimented with merging the models/hypotheses of different
learners using a contract-net-style approach.
Let hj the receiver’s own model hi the provider’s model in a clustering scenario:

:: ph→h(hi, hj) :

•m-join: The m best clusters (in terms of coverage of Dj) from hypothesis
hi are appended to hj.

•m-select: The set of the m best clusters (in terms of coverage of Dj) from
the union hi∪hj is chosen as a new model. (Unlike m-join this method does
not prefer own clusters over others’.)

:: ph→D(hi, Dj) :

•m-filter: The m best clusters (as above) from hi are identified and appended
to a new model formed by using those samples not covered by these clusters
applying the own learning algorithm fj.

Experimental Results
Homogeneous Learners

3 k-means agents
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Heterogeneous Learners

2 k-means agents and 1 k-medoids agent
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Performance: Speed Up

The m-filter operation, decreases the number of learn-
ing samples and thus can speed up the learning pro-
cess.

k-means k-medoids
filtering 30-40 % 10-20 %
m-filtering 20-30 % 5-15 %

Conclusion
Even a very simplistic application of MALEF architecture has proven capable of
improving the performance of individual learning agents.
In the future we want to explore other types of combining the different elements of
different learners through elaborate communication and reasoning methods.
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