MALEF:

A Framework for Agent-Based Distributed Machine Learning and Data Mining

Jan Tožička¹, Michael Rovatsos², and Michal Pěchouček¹

¹ Agent Technology Group, Gerstner Laboratory, Czech Technical University in Prague

² School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom

http://agents.felk.cvut.cz/

Introduction

Objective: To develop a generic agent-based framework for collaborative machine learning and data mining Learners:

- autonomous
- self-directed
- individual learning goals
- private knowledge

Interaction mechanism should allow agents to:

- 1. exchange knowledge
- 2. decide what knowledge to share
- 3. reason about how to use received knowledge

Learning Problem

Learning problem:

$$D \subseteq \mathcal{D}, \mathcal{D} \rightsquigarrow h \in \mathcal{H}$$

Performance measure:

$$g:\mathcal{H}\to\mathcal{Q}$$

Clustering:

• Learning data:

$$\mathcal{D} = \times_{i=1}^{n} [A_i]$$

• Hypothesis space:

 $\mathcal{H} \subseteq \{h|h: \mathcal{D} \to \mathbb{N}, h \text{ is total with range } \{1, \dots, k\}\}$

Definitions

Data set:

$$D = \langle d_1, \dots d_k \rangle$$

Training function producing *h*:

$$f: \mathcal{H} \times \mathcal{D}^* \to \mathcal{H}$$

Learning step:

$$l = \langle D, H, f, g, h \rangle,$$
 where $H \subseteq \mathcal{H}, \, h \in H$ and $l \in L$

Let $l_j = \langle D_j, H_j, f_j, g_j, h_j \rangle$ be the current "state" of agent j when receiving a learning process description $l_i = \langle D_i, H_i, f_i, g_i, h_i \rangle$ from agent i.

įj	D_j	H_j	f_j	g_j	h_j
D_i	$p_1^{D \to D}(D_i, D_j)$ \vdots $p_{k_{D \to D}}^{D \to D}(D_i, D_j)$	•••	• • •	n/a	•••
H_i		• • •		n/a	
f_i	÷		• •	n/a	
g_i	E			n/a	$p_1^{g \to h}(g_i, h_j)$ \vdots $p_{k_{g \to h}}^{g \to h}(g_i, h_j)$
h_i	:			n/a	•••

Diagonal contains most common ways of integration including replacing c_i by c_i or ignoring c_i .

Modification of D_j :

• append D_i to D_j ; filter out all elements from D_j which also appear in D_i ; append D_i to D_j discarding all elements with attributes outside ranges which affect g_j , or those elements already correctly classified by h_j ;

Modification of H_i :

• use the union/intersection of H_i and H_j ; alternatively, discard elements of H_j that are inconsistent with D_j in the process of intersection or union, or filter out elements that cannot be obtained using f_j (unless f_j is modified at the same time)

Modification of f_j :

• modify parameters or background knowledge of f_j using information about f_i ; assess their relevance by simulating previous learning steps on D_j using g_j and discard those that do not help improve own performance

Modification of h_j :

 combine h_j with h_i using (say) logical or mathematical operators; make the use of h_i contingent on a "pre-integration" assessment of its quality using own data D_j and g_j

No modification of g_j is allowed.

Knowledge Combining Operators (Examples)

Modification of D_j using f_i

 ${\ }$ pre-process samples in $f_i,$ e.g. to get intermediate representations that f_j can be applied to

Modification of D_j using h_i

 ${\mbox{ }}$ filter out samples from D_j that are covered by h_i and build h_j using f_j only on remaining samples

Modification of H_j using f_i

• filter out hypotheses from H_j that are not realisable using f_i

Modification of h_j using g_i

• if h_j is composed of several sub-components, filter out those sub-components that do not perform well according to g_i

AIS Domain description

Detection of unusual, potentially suspicious ships based on provided AIS data.

Agent-Based Distributed Learning System Design

To describe a concrete design for the AIS domain, we need to specify:

- 1. The datasets and clustering **algorithms** available to individual agents
- 2. The **interaction mechanism** used for exchanging descriptions of learning processes
- 3. The **decision mechanism** agents apply to make learning decisions

1. Available Datasets and Clustering Algorithms

Datasets:

- each agent has private dataset containing vessel descriptions: $A=\{1,\ldots,n\}$

Learning algorithms – clustering with a fixed number of k clusters:

- *k*-means
- k-medoids

Hypothesis space:

- $\mathcal{H} = \{ \langle c_1, \dots, c_k \rangle | c_i \in \mathbb{R}^{|A|} \}$
- For each hypothesis $h \in \mathcal{H}$ and any data point $d \in \times_{i=1}^{n} [A_i]$, the closest cluster c_i is choosen.

1. Available Datasets and Clustering Algorithms

Evaluation:

- Validation set V_i and generated fake vessels F_i such that $|F_i| = |V_i|$
- Confidence value r(h, d) for ship d:

$$r(h,d) = \frac{1}{|d - c_{C(h,d)}|}$$

- a vessel in $F_i \cup V_i$ is classified as fake if its r-value is below the median of all the confidences r(h, d) for $d \in F_i \cup V_i$
- Quality: quality $g_i(h) \in \mathbb{R}$ as the ratio between all correctly classified vessels and all vessels in $F_i \cup V_i$.

2. The Interaction Mechanism Used for LPD Exchange

We use a simple Contract-Net Protocol based on **hypothesis trad**ing mechanism:

- 1. Initiator of a CNP describes its own current learning state as $(*,*,*,g_i(h),*)$ and sends CfPs.
- 2. Participants may propose the quality of their own model.
- 3. If the bids (if any) are **accepted** by the initiator, the agents exchange their hypotheses

3. The Decision Mechanism Making Learning Decisions

Having own model h, other's model h' is **accepted** if: g(h') > g(h), or with probability $P\left(g(h')/g(h)\right)$

Model merging operators:

•
$$p^{h \rightarrow h}(h_i, h_j)$$
 :

- -m-join: The m best clusters (in terms of coverage of D_j) from hypothesis h_i are appended to h_j .
- *m*-select: The set of the *m* best clusters (in terms of coverage of D_j) from the union $h_i \cup h_j$ is chosen as a new model.

• $p^{h \to D}(h_i, D_j)$:

- *m*-filter: The *m* best clusters (as above) from h_i are identified and appended to a new model formed by using those samples not covered by these clusters applying f_j .

Experimental Results

Case description:

- 3 learning agents
- *k*-means and *k*-medoids learning methods
- dataset of 300 ships into three disjoint sets of 100 samples each and assign each of these to one learning agent
- Single Agent is learning from the whole dataset
- k = 10 (Davies-Bouldin index)
- m = k for m-select
- m = 3 for m-join and m-filter
- homogeneous vs. heterogeneous learner societies

Results: Homogeneous Learners

Results: Heterogeneous Learners

2 *k*-means agents and 1 *k*-medoids agent

2 *k*-medoids agents and 1 *k*-means agent

Performance

The m-filter operation, decreases the number of learning samples and thus can speed up the learning process.

	k-means	k-medoids
filtering	30-40 %	10-20 %
<i>m</i> -filtering	20-30 %	5-15 %

Conclusion

Even a very simplistic application of **MALEF** architecture has proven capable of **improving the performance** of individual learning agents.

Conclusion

MALEF

- abstract distributed machine learning and data mining framework
- requires very general learning architecture only
- captures complex forms of interaction between heterogeneous or self-interested learners
- allows learners to improve their learning abilities with information provided by other learners
- allows to exchange and integrate different types of knowledge

Acknowledgement

Research supported by Army Research Laboratory project N62558-03-0819 and Office for Naval Research project N00014-06-1-0232.

Thank you.