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pIntroduction

Objective: To develop a generic agent-based framework for collab-
orative machine learning and data mining
Learners:

� autonomous

� self-directed

� individual learning goals

� private knowledge

Interaction mechanism should allow agents to:

1. exchange knowledge

2. decide what knowledge to share

3. reason about how to use received knowledge
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pLearning Problem

Learning problem:

D ⊆ D,D  h ∈ H

Performance measure:

g : H → Q

Clustering:

� Learning data:
D = ×n

i=1[Ai]

� Hypothesis space:

H ⊆ {h|h : D → N, h is total with range {1, . . . , k}}
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pDefinitions

Data set:
D = 〈d1, . . . dk〉

Training function producing h:

f : H×D∗ → H

training function

ht

performance measure solution quality

qtgtft

training set

Dt

hypothesis

hypothesis

ht−1

Learning step:
l = 〈D, H, f, g, h〉,

where H ⊆ H, h ∈ H and l ∈ L
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pIntegration Matrix

Let lj = 〈Dj, Hj, fj, gj, hj〉 be the current “state” of agent j when
receiving a learning process description li = 〈Di, Hi, fi, gi, hi〉 from
agent i.

i j Dj Hj fj gj hj

Di
pD→D

1 (Di, Dj)
...

pD→D
kD→D

(Di, Dj)

. . . . . . n/a . . .

Hi
... . . . n/a

fi
... . . . n/a

gi
... n/a

pg→h
1 (gi, hj)

...

pg→h
kg→h

(gi, hj)

hi
... n/a . . .

Diagonal contains most common ways of integration including re-
placing cj by ci or ignoring ci.
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pLearning Process Modifications

Modification of Dj:

� append Di to Dj; filter out all elements from Dj which also
appear in Di; append Di to Dj discarding all elements with at-
tributes outside ranges which affect gj, or those elements already
correctly classified by hj;

Modification of Hi:

� use the union/intersection of Hi and Hj; alternatively, discard
elements of Hj that are inconsistent with Dj in the process of
intersection or union, or filter out elements that cannot be ob-
tained using fj (unless fj is modified at the same time)
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pLearning Process Modifications

Modification of fj:

� modify parameters or background knowledge of fj using infor-
mation about fi; assess their relevance by simulating previous
learning steps on Dj using gj and discard those that do not help
improve own performance

Modification of hj:

� combine hj with hi using (say) logical or mathematical operators;
make the use of hi contingent on a “pre-integration” assessment
of its quality using own data Dj and gj

No modification of gj is allowed.
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pKnowledge Combining Operators (Examples)

Modification of Dj using fi

� pre-process samples in fi, e.g. to get intermediate representations
that fj can be applied to

Modification of Dj using hi

� filter out samples from Dj that are covered by hi and build hj
using fj only on remaining samples

Modification of Hj using fi

� filter out hypotheses from Hj that are not realisable using fi

Modification of hj using gi

� if hj is composed of several sub-components, filter out those sub-
components that do not perform well according to gi
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pAIS Domain description

Detection of unusual, potentially suspicious ships based on provided
AIS data.
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pAgent-Based Distributed Learning System Design

To describe a concrete design for the AIS domain, we need to specify:

1. The datasets and clustering algorithms available to individual
agents

2. The interaction mechanism used for exchanging descriptions
of learning processes

3. The decision mechanism agents apply to make learning deci-
sions
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p1. Available Datasets and Clustering Algorithms

Datasets:

� each agent has private dataset containing vessel descriptions:
A = {1, . . . , n}

Learning algorithms – clustering with a fixed number of k clus-
ters:

� k-means

� k-medoids

Hypothesis space:

� H = {〈c1, . . . , ck〉|ci ∈ R|A|}
� For each hypothesis h ∈ H and any data point d ∈ ×n

i=1[Ai],
the closest cluster ci is choosen.
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p1. Available Datasets and Clustering Algorithms

Evaluation:

� Validation set Vi and generated fake vessels Fi such that
|Fi| = |Vi|

� Confidence value r(h, d) for ship d:

r(h, d) =
1

|d− cC(h,d)|

� a vessel in Fi ∪ Vi is classified as fake if its r-value is below the
median of all the confidences r(h, d) for d ∈ Fi ∪ Vi

� Quality: quality gi(h) ∈ R as the ratio between all correctly
classified vessels and all vessels in Fi ∪ Vi.
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p2. The Interaction Mechanism Used for LPD Exchange

We use a simple Contract-Net Protocol based on hypothesis trad-
ing mechanism:

1. Initiator of a CNP describes its own current learning state as
(∗, ∗, ∗, gi(h), ∗) and sends CfPs.

2. Participants may propose the quality of their own model.

3. If the bids (if any) are accepted by the initiator, the agents
exchange their hypotheses
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p3.The Decision Mechanism Making Learning Decisions

Having own model h, other’s model h′ is accepted if:

g(h′) > g(h), or with probability P
(
g(h′)/g(h)

)
Model merging operators:

� ph→h(hi, hj) :

−m-join: The m best clusters (in terms of coverage of Dj)
from hypothesis hi are appended to hj.

−m-select: The set of the m best clusters (in terms of coverage
of Dj) from the union hi ∪ hj is chosen as a new model.

� ph→D(hi, Dj) :

−m-filter: The m best clusters (as above) from hi are identified
and appended to a new model formed by using those samples
not covered by these clusters applying fj.
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pExperimental Results

Case description:

� 3 learning agents

� k-means and k-medoids learning methods

� dataset of 300 ships into three disjoint sets of 100 samples each
and assign each of these to one learning agent

� Single Agent is learning from the whole dataset

� k = 10 (Davies-Bouldin index)

� m = k for m-select

� m = 3 for m-join and m-filter

� homogeneous vs. heterogeneous learner societies

AAMAS 2007 Michael Rovatsos MALEF



pResults: Homogeneous Learners

k-means
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pResults: Heterogeneous Learners

2 k-means agents and 1 k-medoids agent
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2 k-medoids agents and 1 k-means agent
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pPerformance

The m-filter operation, decreases the number of learning samples
and thus can speed up the learning process.

k-means k-medoids
filtering 30-40 % 10-20 %
m-filtering 20-30 % 5-15 %

Conclusion
Even a very simplistic application of MALEF architecture has
proven capable of improving the performance of individual learn-
ing agents.
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pConclusion

MALEF

� abstract distributed machine learning and data mining framework

� requires very general learning architecture only

� captures complex forms of interaction between heterogeneous
or self-interested learners

� allows learners to improve their learning abilities with information
provided by other learners

� allows to exchange and integrate different types of knowledge
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Thank you.


